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We study the joint inventory and sales effort management problems of a retailer in a broad context and investigate the optimal
policies for a single item, periodic-review system. In each period, the demand is uncertain depending on the sales effort level
exerted by the retailer, which incurs an associated cost. The retailer’s objective is to find a joint optimal inventory replenishment
and sales effort policy to maximize the discounted profit over a finite horizon. We first consider a basic setting with zero setup cost
and no batch ordering, under which the base stock list sales effort policy is optimal. Two extensions are then investigated: (1) the
case with nonzero setup cost, under which we show that (𝑠, 𝑆, 𝑒) policy is optimal; and (2) the case with batch ordering, under which
we prove the optimality of the (𝑟,𝑁𝑞, 𝑒) policy. Finally, we conduct numerical studies to provide additional managerial insights.

1. Introduction

Inventory and demand management has received much
attention due to the increasingly competitive environment.
Traditional inventory problems often consider an exoge-
nously determined uncertain demand and thus the key
decision facing firms is to decide on an appropriate inventory
policy to mitigate the mismatch cost of demand and supply.
However, demand could be endogenously influenced by
many factors such as price, freshness level of the product,
and the sales effort exerted by firms. Within these factors,
changing sales effort level is an important driver to match
supply and demand and achieve business goals. In this paper,
we focus on the optimal decision on the sales effort which
includes, to list a few, the incentives to the sales people and the
promotions with short-term effects such as in-store displays,
product-service bundling, and so forth.

Specifically, we study the joint inventory and sales effort
management of a retailer in a broad context and investi-
gate his/her optimal policies under a single item, periodic-
review system. In each period, the retailer decides on the
replenishment quantity and the sales effort to be exerted

jointly. For the basic setting without considering the setup
cost and batch ordering, we assume that the procurement
cost is linearly increasing in the order quantity and the
associated cost for exerting sales effort (e.g., rentals for in-
store displays and advertisement expenditure in media like
TV and newspaper) is increasing and convex in the sales
effort level. All replenishment arrives immediately and all
unmet demand is fully backlogged. The inventory holding
and shortage cost are charged based on the inventory leftover
at the end of each period. The retailer’s objective is to find a
joint optimal inventory replenishment and sales effort policy
to maximize the discounted profit over a finite horizon.
In addition to the basic setting mentioned above, we will
go further to investigate the retailer’s optimal polices when
each ordering incurs a non-zero setup cost and when the
order quantity for each procurement must be in batch size
respectively.

The model studied in this paper is closely related to
those dealing with the coordination between marketing and
operations management in general and those studying the
jointly pricing and inventory control problem under a multi
period framework in particular. Here we briefly review
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the most relevant work. As to the literature on joint pricing
and inventory control, reader of interest can refer to Yano
and Gilbert [1] for detailed reviews. Karakul [2], Serel [3],
andWebster andWeng [4] study these problems with a single
period setting. In a multi period setting, when there is no
ordering setup cost, Federgruen and Heching [5] show the
optimality of the so-called base stock list price policy. When
there is a setup cost for each ordering, several authors have
identified the conditions under which an (𝑠, 𝑆, 𝑝) policy is
optimal. In a finite horizon periodic-review setting, Chen and
Simchi-Levi [6] show the optimality of the (𝑠, 𝑆, 𝑝) policy
or a variation of such a policy. Chen and Simchi-Levi [7]
extend the optimality of a stationary (𝑠, 𝑆, 𝑝) policy to an
infinite horizon setting. The sales effort considered in our
paper is different from the pricing decisions, as it will not
influence the selling price of the product. Such sales effort is
rather reasonable as the retailers tend to avoid frequent price
changes, which on one hand may bring down the customer’s
perception on the product, and on the other hand often incur
additional cost (see, e.g., Chen et al. [8]).

Our research is also closely related to literature inves-
tigating the impact of various sales efforts on operational
inventory decisions. Balcer [9] consider a joint inventory and
advertising strategy problem. Cheng and Sethi [10] study the
joint inventory-promotion problem with Markov-dependent
demand state. Porteus andWhang [11] and Chen [12] analyze
the impact of incentive schemes of sales force compensation
on manufacturing decisions. Ernst and Kouvelis [13] study
the joint decision of goods bundling and inventory control
in a newsvendor setting. In a continuous-review setting,
Chen et al. [14] show that the (𝑠, 𝑆) type policy is optimal
for product inventory control, and an inventory level-based
service package composite is optimal for service offerings.
Zhang et al. [15] discuss the joint optimization of inventory
and pricing, and promotion, and ignore the fixed ordering
cost in their setting.Wei andChen [16] study the computation
method for the joint inventory and sales effort model in an
infinite horizon framework, when the optimal policy has an
(𝑠, 𝑆, 𝑒) type. However, to the best of our knowledge, few
researchers have been devoted to study the optimal joint
inventory and sales effort policy under a periodic-review
setting.

Our current work shares some similarities with Wei and
Chen [16]. However, the model is different from theirs in the
following ways. First, our model bases on the finite horizon
setting and the system parameters can be nonstationary,
while their analysis focuses on the infinite horizon with
stationary policy. Second, we derive the optimal policy, while
they only optimize the policy parameters given the policy
form. Third, we study the case when the demand has a
multiplicative form with the sales effort level. Moreover, we
also extend the analysis to the case when the order quantity is
in batch size. Through our analysis, we find that the optimal
policy is a base stock list sales effort policy when the setup
cost is negligible and is a (𝑠, 𝑆, 𝑒) policy when the setup cost
is considered. When the order size in each period is in batch,
we show the optimality of a (𝑟,𝑁𝑞, 𝑒) policy when there is no
setup cost. Numerical study shows that both the base stock
level and the optimal sales effort level are decreasing with the

unit cost and the diseconomy of scale of the sales effort cost.
However, although the base stock level is increasing in the
demand uncertainty, the corresponding sales effort level is
decreasing, which implies that the cost caused by additional
demand variance is larger than the profits made by additional
expected demandwhen the demand has amultiplicative form
in the sales effort level.

The reminder of this paper is organized as follows. In
Section 2, we first setup and analyze the basic model in which
there is no setup cost for each ordering. Then, in Section 3,
we extend the analysis to the case when there is a setup cost
and the case when the order size is in batch, respectively. The
optimal policies for both cases are identified. In Section 4, we
employ a numerical study to gain more insights on the joint
inventory and sales effort problem. Section 5 concludes the
paper with possible future directions.

2. Model Formulation

Consider a multi period inventory planning problem faced
by a retailer with sales effort sensitive demand. There are 𝑇

periods. At the beginning of each period 𝑡, 𝑡 = 1, 2, . . . , 𝑇,
depending on his/her on hand inventory level 𝑥

𝑡
, the retailer

should decide howmany to order from the supplier at a linear
unit cost 𝑐

𝑡
(actually, we will extend our analysis to the case

when there is a setup cost for each procurement) and how
much sales effort, 𝑒

𝑡
, to exert to stimulate the demand. The

replenishment becomes available instantaneously; that is, the
lead time is zero. Let 𝑦

𝑡
be the inventory level after orders

arrive. The cost to exert effort 𝑒
𝑡
is 𝑣(𝑒
𝑡
), which is increasing

convex in 𝑒
𝑡
with 𝑣(1) = 0. That is, the marginal cost to exert

the effort is increasing in the effort level. The new demand
after exerting sales effort 𝑒

𝑡
is given by 𝑒

𝑡
𝜉, in which 𝜉 is a

random variable when there is no sales effort exerts (i.e., 𝑒 =

1). Thus, the sales effort, although will increase the expected
sales, will also bring up the variance of the demand; however,
the coefficient of variant of the demand keeps constant. Let
𝐹(⋅) and 𝑓(⋅) be the cumulative distribution function and the
probability density function of 𝜉, respectively.Without loss of
generality, the demands in consecutive periods are assumed
to be independent and nonnegative.

The unit selling price of the product, 𝑝, is exogenously
given. Such exogenously determined selling price reflects the
retailer’s limited pricing power when facing intense competi-
tion in the market. The demand realizes. If demand exceeds
the available inventory, unsatisfied demand is backlogged
and incurs shortage cost; otherwise, excess inventory incurs
holding cost and will be carried to the next period. Let 𝐻

𝑡
(𝐼)

be the holding or backlogging cost incurred in period 𝑡 with
ending inventory level 𝐼. Let 𝐿

𝑡
(𝑦, 𝑒) = 𝐸[𝐻

𝑡
(𝑦− 𝑒𝜉

𝑡
)] denote

the one-period expected inventory and backlogging costs for
period 𝑡, when the inventory level after order arrives is 𝑦

and the exerted sales effort is 𝑒. We impose the following
assumption on the function 𝐿

𝑡
(𝑦, 𝑒) and 𝐻

𝑡
(𝐼).

Assumption 1. (i) lim
𝑦→∞

𝐿
𝑡
(𝑦, 𝑒) = lim

𝑦→−∞
[𝑐
𝑡
𝑦 +

𝐿
𝑡
(𝑦, 𝑒)] = lim

𝑦→∞
[(𝑐
𝑡
− 𝛼𝑐
𝑡+1

)𝑦 + 𝐿
𝑡
(𝑦, 𝑒)] = ∞ for all

𝑒 ∈ [𝑒min, 𝑒max]; (ii) 𝐻𝑡(𝐼) is convex in 𝐼.
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The first part of this assumption holds whenever the
inventory (and backlogging) cost function, 𝐿

𝑡
, tends to infin-

ity as the inventory level (or backlog size) increases to infinity;
the latter applies to any reasonable inventory cost structure in
which the loss associated with a stockout exceeds the unit’s
purchase price. Such assumption is to ensure the existence
of finite order-up-to level for each level of sales effort. The
second part is a technical assumption to ensures the existence
of the optimal policy. Actually, linear inventory holding and
backlogging cost setting, that is, 𝐻

𝑡
(𝐼) = ℎ

𝑡
𝐼+ + 𝑏

𝑡
𝐼− (ℎ
𝑡

is the linear holding cost and 𝑏
𝑡
is the linear backlogging

cost), which is widely adopted in literature, satisfies this
assumption. From this assumption, it is a direct result that
𝐿
𝑡
(𝑦, 𝑒) is jointly convex in (𝑦, 𝑒).
Now, we begin to develop the multi period dynamic

programming model for this finite horizon planning prob-
lem. Let 𝜋∗

𝑡
(𝑥
𝑡
) denote maximum expected discounted profit

when starting period 𝑡 with state 𝑥, then, the optimality
equation of this finite horizon problem is

𝜋
∗

𝑡
(𝑥
𝑡
) = 𝑐
𝑡
𝑥
𝑡
+ max
𝑦
𝑡
≥𝑥
𝑡
,𝑒
𝑡
∈[𝑒 min ,𝑒 max]

𝐽
󸀠

𝑡
(𝑦
𝑡
, 𝑒
𝑡
) , (1)

where

𝐽
󸀠

𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = 𝑝
𝑡
𝐸 [𝑒
𝑡
𝜉
𝑡
] − 𝑐
𝑡
𝑦
𝑡
− 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
)

− 𝑣
𝑡
(𝑒
𝑡
) + 𝛼𝐸 [𝜋

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)]

(2)

and 𝛼 ≤ 1 is the discount factor for future periods. In
the above formula, 𝑝

𝑡
𝐸[𝑒
𝑡
𝜉
𝑡
] is the revenue collected in this

period.Thus, we implicitly assume that we still collect money
today for the backlog demand. Without loss of generality, we
assume 𝜋

∗

𝑇+1
(𝑥
𝑇+1

) = 𝑐
𝑇+1

𝑥
𝑇+1

; that is, all demand at the end
of the planning horizon will be satisfied at the unit cost 𝑐

𝑇+1

and all leftover inventory is salvaged at this unit cost.
To ease analysis, let Π∗

𝑡
(𝑥
𝑡
) = 𝜋∗

𝑡
(𝑥
𝑡
) − 𝑐
𝑡
𝑥
𝑡
. Then,

Π∗
𝑇+1

(𝑥
𝑇+1

) = 0, and the original dynamic programming
problem can be reformulated as follows:

Π
∗

𝑡
(𝑥
𝑡
) = max
𝑦
𝑡
≥𝑥
𝑡
,𝑒
𝑡
∈[𝑒 min ,𝑒 max]

𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) , (3)

where

𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = 𝑝
𝑡
𝐸 [𝑒
𝑡
𝜉
𝑡
] − 𝑐
𝑡
𝑦
𝑡
− 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) − 𝑣
𝑡
(𝑒
𝑡
)

+ 𝛼𝑐
𝑡+1

𝐸 [𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
] + 𝛼𝐸 [Π

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)]

= (𝑝
𝑡
− 𝛼𝑐
𝑡+1

) 𝑒
𝑡
𝜇
𝑡
− (𝑐
𝑡
− 𝛼𝑐
𝑡+1

) 𝑦
𝑡
− 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
)

− 𝑣
𝑡
(𝑒
𝑡
) + 𝛼𝐸 [Π

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)] .

(4)

Thus, the inner part of the objective function, that is, 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
),

is called the profit-to-go function and is independent of the
initial inventory level 𝑥

𝑡
. The following analysis will be based

on the value function Π∗
𝑡
(𝑥) instead of 𝜋∗

𝑡
(𝑥).

Before further analyzing the optimal policy, we first define
the so-called (𝑠, 𝑆, 𝑒) policy as follows.

Definition 2. An (𝑠, 𝑆, 𝑒) policy is characterized by two stock
levels (𝑠∗

𝑡
, 𝑆∗
𝑡
) and a list sales effort 𝑒∗

𝑡
. If the inventory level is

below the stock level 𝑠∗
𝑡
, it is increased to the stock level 𝑆∗

𝑡
and

the sales effort 𝑒∗
𝑡
is exerted. If the inventory level is above the

stock level 𝑠∗
𝑡
, then, nothing is ordered but only sales effort is

exerted. In addition, the sales effort level is nondecreasing in
the initial inventory level.

When 𝑠
∗

𝑡
= 𝑆∗
𝑡
(≡ 𝑦∗
𝑡
), this policy is reduced the so-called

base stock list sales effort policy, which is similar to the base
stock list price policy proposed by Federgruen and Heching
[5]. As we will show in the following analysis, when there is
no setup cost for procurement, that is, the model (1), a base
stock list sales effort policy is optimal, while when there is a
fixed setup cost for each procurement, the (𝑠, 𝑆, 𝑒) policy is
optimal.

2.1. Analysis of the Finite Horizon Model. Before we derive
the optimal policy, we first present the following result on the
properties of the value function and the profit-to-go function.

Theorem 3. For any 𝑡 = 1, 2, . . . , 𝑇, the function 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is

jointly concave in 𝑦
𝑡
and 𝑒
𝑡
. Moreover, the function Π∗

𝑡
(𝑥
𝑡
) is

concave and nondecreasing in 𝑥
𝑡
.

Proof. The proof will be done by induction. It is easy to verify
𝐽
𝑇
(⋅, ⋅) is jointly concave. Now, by assuming 𝐽

𝑡+1
(𝑦
𝑡+1

, 𝑒
𝑡+1

) is
jointly concave in𝑦

𝑡+1
and 𝑒
𝑡+1

, wewill show that the property
holds even for 𝐽

𝑡
(𝑦
𝑡
, 𝑒
𝑡
), which is given by

𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = (𝑝

𝑡
− 𝛼𝑐
𝑡+1

) 𝑒
𝑡
𝜇
𝑡
− (𝑐
𝑡
− 𝛼𝑐
𝑡+1

) 𝑦
𝑡
− 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
)

− 𝑣
𝑡
(𝑒
𝑡
) + 𝛼𝐸 [Π

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)] .

(5)

It is straightforward to verify that (𝑝
𝑡
− 𝛼𝑐
𝑡+1

)𝑒
𝑡
𝜇
𝑡
is jointly

concave in 𝑝
𝑡
and 𝑒
𝑡
. For 𝐸[Π∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)], let 𝜆 ∈ [0, 1] and

consider two pairs (𝑦(1)
𝑡

, 𝑒(1)
𝑡

) and (𝑦(2)
𝑡

, 𝑒(2)
𝑡

), then, we get

Π
∗

𝑡+1
[𝜆𝑦
(1)

𝑡
+ (1 − 𝜆) 𝑦

(2)
− (𝜆𝑒
(1)

𝑡
+ (1 − 𝜆) 𝑒

(2)

𝑡
) 𝜉
𝑡
]

= Π
∗

𝑡+1
[𝜆 (𝑦
(1)

− 𝑒
(1)

𝑡
𝜉
𝑡
) + (1 − 𝜆) (𝑦

(2)

𝑡
− 𝑒
(2)

𝑡
𝜉
𝑡
)]

≥ 𝜆Π
∗

𝑡+1
[𝑦
(1)

− 𝑒
(1)

𝑡
𝜉
𝑡
] + (1 − 𝜆)Π

∗

𝑡+1
(𝑦
(2)

𝑡
− 𝑒
(2)

𝑡
𝜉
𝑡
) .

(6)

The above inequality holds since Π∗
𝑡+1

(⋅) is concave. This
implies that 𝐸[Π∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)] is jointly concave in 𝑦

𝑡
and 𝑒
𝑡
.

As the other terms of 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) are jointly concave in 𝑦

𝑡
and

𝑒
𝑡
, then 𝐽

𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is jointly concave in 𝑦

𝑡
and 𝑒
𝑡
. The concavity

and monotonicity of Π∗
𝑡
(⋅) is immediate.

This theorem indicates the concavity of the value function
and the existence of the optimal solution to themaximization
problem.Thus, we can define the values (𝑦∗

𝑡
, 𝑒∗
𝑡
) and 𝑒∗(𝑥) as

follows:

(𝑦
∗

𝑡
, 𝑒
∗

𝑡
) = arg max

(𝑦
𝑡
,𝑒
𝑡
)

{𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
)} ,

𝑒
∗
(𝑥) = argmax

𝑒
𝑡

{𝐽
𝑡
(𝑥, 𝑒
𝑡
)} .

(7)
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Then, the above theorem shows that whenever the inventory
level is less than 𝑦∗

𝑡
, the retailer should order to bring the

inventory up to 𝑦∗
𝑡
and exert sales effort 𝑒∗

𝑡
. However, to show

that the optimal policy is a base stock list sales effort policy, we
still need to show that the optimal sales effort is increasing in
the initial inventory level. This will be stated by the following
theorem.

Theorem 4. For any 𝑡 = 1, 2, . . . , 𝑇,

(1) the optimal sales effort 𝑒
∗

𝑡
(𝑥) is increasing in 𝑥 with

𝑒∗
𝑡
(𝑥) ≥ 𝑒∗

𝑡
;

(2) a base stock list sales effort with base stock 𝑦∗
𝑡
and 𝑒∗
𝑡
is

optimal.

Proof. (1) We first show that 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is supermodular. Since

the sumof supermodular function is supermodular, it suffices
to establish supermodularity for each term of 𝐽

𝑡
(𝑦
𝑡
, 𝑒
𝑡
).

Because 𝜕2(𝑝
𝑡

− 𝛼𝑐
𝑡+1

)𝑒
𝑡
𝜇
𝑡
/𝜕𝑦
𝑡
𝜕𝑒
𝑡

≥ 0, then,
𝑝
𝑡
𝐸[min(𝑦

𝑡
, 𝑒
𝑡
𝜉
𝑡
)] is supermodular. Consider −𝐿

𝑡
(𝑦
𝑡
, 𝑒
𝑡
) =

−𝐸[𝐻
𝑡
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)],

−
𝜕2𝐻
𝑡
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)

𝜕𝑦
𝑡
𝜕𝑒
𝑡

= 𝐻
󸀠󸀠
𝜉
𝑡
≥ 0. (8)

So, (𝜕2 − 𝐿
𝑡
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
))/𝜕𝑦
𝑡
𝜕𝑒
𝑡
≥ 0; thus, 𝐿

𝑡
(⋅, ⋅) is supermod-

ular.
To show 𝐸[Π

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)] is supermodular, fix 𝜉

𝑡
and

consider an arbitrary pair of inventory level (𝑦(1)
𝑡

, 𝑦(2)
𝑡

) and
any pair of sales effort levels (𝑒(1)

𝑡
, 𝑒(2)
𝑡

) with 𝑦(1)
𝑡

≥ 𝑦(2)
𝑡

and
𝑒(1)
𝑡

≥ 𝑒(2)
𝑡
. By the concavity and monotonicity of Π∗

𝑡
(⋅),

Π
∗

𝑡
(𝑦
(1)

− 𝑒
(1)

𝜉
𝑡
) − Π
∗

𝑡
(𝑦
(2)

− 𝑒
(1)

𝜉
𝑡
)

≥ Π
∗

𝑡
(𝑦
(1)

− 𝑒
(2)

𝜉
𝑡
) − Π
∗

𝑡
(𝑦
(2)

− 𝑒
(2)

𝜉
𝑡
) ,

(9)

that is,Π∗
𝑡
(𝑦(1)−𝑒(1)𝜉

𝑡
)+Π∗
𝑡
(𝑦(2)−𝑒(2)𝜉

𝑡
) ≥ Π∗
𝑡
(𝑦(2)−𝑒(1)𝜉

𝑡
)+

Π∗
𝑡
(𝑦(1) − 𝑒(2)𝜉

𝑡
), because concave function has decreasing

difference.Then, 𝐸[Π∗
𝑡+1

(𝑦
𝑡
−𝑒
𝑡
𝜉
𝑡
)] is supermodular in 𝑦

𝑡
and

𝑒
𝑡
.
The other terms of 𝐽

𝑡
(𝑦
𝑡
, 𝑒
𝑡
) are supermodular obviously.

Thus, we obtain that 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is supermodular. Then, by

Theorem 2.3 in Vives [17], 𝑒∗
𝑡
(𝑥) is increasing in 𝑥.

(2) Immediate from part (1) andTheorem 3.

Federgruen andHeching [5] show that the optimal selling
price 𝑝∗(𝑥) is nonincreasing in 𝑥; that is, when the beginning
inventory is too high, the retailer will choose a lower price to
achieve a higher demand. Our result has the similar principle:
when the beginning inventory is too high, the retailer will
exert more sales effort in order for high demand.

Remark 5. We can see from the proofs that the structure
of the optimal policy does not depend on the terminal
value 𝜋

∗

𝑇+1
(𝑥) = 𝑐

𝑇+1
𝑥. It only requires that Π∗

𝑇+1
(𝑥) =

𝜋∗
𝑇+1

(𝑥) − 𝑐
𝑇+1

𝑥 is concave and decreasing in 𝑥. For example,
when all unsatisfied demand is lost and all leftover inventory

is salvaged at zero, that is, the terminal value 𝜋
∗

𝑇+1
(𝑥) =

𝛾min{𝑥, 0} in which 𝛾 > max
𝑡
𝑝
𝑡
is the shortage cost, we have

𝑐
𝑇+1

= 𝛾 and Π∗
𝑇+1

(𝑥) = 𝛾min{−𝑥, 0}, which is also concave
and nonincreasing in 𝑥.Thus, the results still hold. Moreover,
in the case of 𝜋∗

𝑇+1
(𝑥) = 𝑐

𝑇+1
𝑥, we can prove that the myopic

policy is optimal when the system parameters are stationary.

3. Extension

So far, we have established analytical results associated with
the sales efforts demand, inwhich the ordering cost is propor-
tional to the order quantity and the order size is continuous
in the sense that the retailer can order any quantity he/she
wishes. However, in practice, the placement of an order
always incurs additional transaction cost other than the cost
of the product, for example, the cost of paper work, the cost of
transhipment, and so forth. These transaction costs, or setup
cost, are not neglectable in most times. Moreover, in some
cases, there may be some constraints on the order amount
the retailer should order for each transaction; for example,
each order should bemultiple of certain fixed amount. In this
section, we extend our analysis to the combination of sales
effort and inventory management with fixed order cost and
batch orders.

3.1. Combining Sales Effort and Inventory Control with Setup
Cost. Now, we first extend the analysis in the last section
to the case where there is a setup cost for each order;
that is, when we replenish the inventory, we need to pay
the fixed order cost besides variable order cost. Keeping
other notations unchanged, let 𝑘

𝑡
be fixed order cost at the

beginning of period 𝑡. Then, when the order-up-to level 𝑦
𝑡
>

𝑥
𝑡
, a cost 𝑘

𝑡
occurs in addition to the variable cost, and

when 𝑦
𝑡

≤ 𝑥
𝑡
, no procurement cost occurs. To make the

problem tractable, we need the following assumption on the
relationship between 𝑘

𝑡
, 𝑡 = 1, 2, . . . , 𝑇.

Assumption 6. For each period 0 ≤ 𝑡 ≤ 𝑇, 𝑘
𝑡
≥ 𝛼𝑘
𝑡+1

.

This assumption means that the discounted setup cost in
future periods is less than the current setup cost. The case
when the setup costs are constant among periods satisfies this
assumption.

Then, we can formulate this problem as follows:

𝜋
∗

𝑡
(𝑥
𝑡
) = 𝑐
𝑡
𝑥
𝑡
+ max
𝑦
𝑡
≥𝑥
𝑡
,𝑒
𝑡
∈[𝑒 min ,𝑒 max]

− 𝑘
𝑡
𝛿 (𝑦
𝑡
− 𝑥
𝑡
) + 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) ,

(10)

where

𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = 𝑝
𝑡
𝐸 [𝑒
𝑡
𝜉
𝑡
] − 𝑐
𝑡
𝑦
𝑡
− 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
)

− 𝑣
𝑡
(𝑒
𝑡
) + 𝛼𝐸 [𝜋

∗

𝑡+1
(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
)] .

(11)

With the definition of𝐾-convex widely studied in traditional
inventory literature (see, e.g., Scarf [18] and Veinott [19]), we
can get the following results associating with the properties
of the value function and the resulting optimal policy.
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Theorem 7. (a) For 𝑡 = 1, 2, . . . , 𝑇, 𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is continuous in

(𝑦
𝑡
, 𝑒
𝑡
) and lim

|𝑦|→∞
𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = −∞ for any 𝑒

𝑡
∈ [𝑒min, 𝑒max].

Hence, for any fixed 𝑦
𝑡
, there is a finite best sales effort 𝑒∗

𝑡
(𝑦
𝑡
).

(b) For 𝑡 = 1, 2, . . . , 𝑇, both 𝐽
𝑡
(𝑦
𝑡
, 𝑒∗
𝑡
(𝑦
𝑡
)) and 𝜋∗

𝑡
(𝑥
𝑡
) are

k
𝑡
-concave.
(c) For 𝑡 = 1, 2, . . . , 𝑇, there exist 𝑠

𝑡
and 𝑆
𝑡
with 𝑠

𝑡
≤ 𝑆
𝑡
such

that it is optimal to order 𝑆
𝑡
− 𝑥
𝑡
and exert sales effort 𝑒∗

𝑡
(𝑆
𝑡
)

when 𝑥
𝑡

< 𝑠
𝑡
; otherwise, do not order and exert sales effort

𝑒∗
𝑡
(𝑥
𝑡
).

Proof. Wewill prove this theoremby induction.Assumeparts
(a), (b), and (c) hold for 𝑡 + 1. Then, as it is easy to check that
𝐽
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) is continuous, there is an optimal sales effort 𝑒∗

𝑡
(𝑦
𝑡
)

for any fixed 𝑦
𝑡
.

We now focus on part (b). We will show that both
𝐽
𝑡
(𝑦
𝑡
.𝑒∗(𝑦
𝑡
)) and 𝜋∗(𝑥

𝑡
) are 𝑘

𝑡
-concave.

For any 𝑦 ≤ 𝑦󸀠 and 𝜆 ∈ [0, 1], we have 𝜋∗
𝑡+1

is 𝑘
𝑡+1

-
concave. Then,

𝜋
∗

𝑡+1
(𝜆 (𝑦 − 𝑒

∗

𝑡
(𝑦) 𝜉
𝑡
) + (1 − 𝜆) (𝑦

󸀠
− 𝑒
∗

𝑡
(𝑦
󸀠
) 𝜉
𝑡
))

≥ 𝜆𝜋
∗

𝑡+1
(𝑦 − 𝑒

∗

𝑡
(𝑦) 𝜉
𝑡
)

+ (1 − 𝜆) 𝜋
∗

𝑡+1
(𝑦
󸀠
− 𝑒
∗

𝑡
(𝑦
󸀠
) 𝜉
𝑡
) − (1 − 𝜆) 𝑘

𝑡+1
.

(12)

Because 𝐻
𝑡
is convex, and 𝑝

𝑡
𝐸[𝑒
𝑡
𝜉
𝑡
] − 𝐿
𝑡
(𝑦
𝑡
, 𝑒
𝑡
) = 𝑝

𝑡
𝑒
𝑡
𝜇
𝑡
−

𝐸𝐻(𝑦
𝑡
− 𝑒
𝑡
𝜉
𝑡
) := 𝐿+(𝑦

𝑡
, 𝑒
𝑡
), it is easy to verify that 𝐿+(⋅, ⋅) is

jointly concave. Then,

𝐿
+
(𝜆𝑦 + (1 − 𝜆) 𝑦

󸀠
, 𝜆𝑒
∗
(𝑦) + (1 − 𝜆) 𝑒

∗
(𝑦
󸀠
))

≥ 𝜆𝐿
+
(𝑦, 𝑒
∗
(𝑦)) + (1 − 𝜆) 𝐿

+
(𝑦
󸀠
, 𝑒
∗
(𝑦
󸀠
)) .

(13)

Because 𝑣(⋅) is convex, then

𝑣 (𝜆𝑒
∗

𝑡
(𝑦) + (1 − 𝜆) 𝑒

∗
(𝑦
󸀠
))

≥ 𝜆𝑣 (𝑒
∗
(𝑦)) + (1 − 𝜆) 𝑣 (𝑒

∗
(𝑦
󸀠
)) .

(14)

Thus, we have proved that

𝐽
𝑡
(𝜆𝑦 + (1 − 𝜆) 𝑦

󸀠
, 𝜆𝑒
∗

𝑡
(𝑦) + (1 − 𝜆) 𝑒

∗

𝑡
(𝑦
󸀠
))

≥ 𝜆𝐽
𝑡
(𝑦, 𝑒
∗

𝑡
(𝑦))+(1−𝜆) 𝐽

𝑡
(𝑦
󸀠
, 𝑒
∗

𝑡
(𝑦
󸀠
)) − (1 − 𝜆) 𝛼𝑘

𝑡+1
.

(15)

Because 𝑒∗(𝜆𝑦 + (1 − 𝜆)𝑦󸀠) is the best sales effort for
inventory level 𝜆𝑦 + (1 − 𝜆)𝑦󸀠, then

𝐽
𝑡
(𝜆𝑦 + (1 − 𝜆) 𝑦

󸀠
, 𝑒
∗

𝑡
(𝜆𝑦 + (1 − 𝜆) (𝑦

󸀠
)))

≥ 𝐽
𝑡
(𝜆𝑦 + (1 − 𝜆) 𝑦

󸀠
, 𝜆𝑒
∗

𝑡
(𝑦) + (1 − 𝜆) 𝑒

∗

𝑡
(𝑦
󸀠
)) .

(16)

Therefore, 𝐽
𝑡
(𝑦
𝑡
, 𝑒∗
𝑡
(𝑦
𝑡
)) is 𝛼𝑘

𝑡+1
-concave, so it is also 𝑘

𝑡
-

concave, because of Assumption 6.
Thus, there exist 𝑠

𝑡
< 𝑆
𝑡
, such that 𝑆

𝑡
maximizes 𝐽

𝑡
(𝑦
𝑡
,

𝑒∗(𝑦
𝑡
)) and 𝑠

𝑡
is the smallest value of 𝑦, such that

𝐽
𝑡
(𝑆
𝑡
, 𝑒∗
𝑡
(𝑆
𝑡
)) = 𝐽
𝑡
(𝑦, 𝑒∗
𝑡
(𝑦)) − 𝑘

𝑡
, and

𝜋
∗

𝑡
(𝑥
𝑡
) = {

−𝑘 + 𝐽
𝑡
(𝑆
𝑡
, 𝑒∗
𝑡
(𝑆
𝑡
)) + 𝑐
𝑡
𝑥 if 𝑥 ≤ 𝑠

𝑡
,

𝐽
𝑡
(𝑥
𝑡
, 𝑒∗
𝑡
(𝑥
𝑡
)) + 𝑐
𝑡
𝑥 if 𝑥 ≥ 𝑠

𝑡
.

(17)

The 𝑘
𝑡
-concavity of 𝜋∗

𝑡
(𝑥
𝑡
) can be checked directly from

𝑘
𝑡
-concavity of 𝐽

𝑡
(𝑦
𝑡
, 𝑒∗
𝑡
(𝑦
𝑡
)); see Zipkin [20] for a proof.

3.2. Combining Sales Effort and Batch Ordering. In this
section, we will extend the analysis of the last section to
the case where each order is in batch size. That is, orders
must be placed in multiples of some standard batch size
𝑞, for example, a case, a barrel, or a truck load. To make
the problem tractable, we assume the cost parameters are
stationary, because even for a general inventory problem,
a (𝑟,𝑁𝑞) policy is not optimal when the parameters are
nonstationary. Let 𝑐

1
= 𝑐
2

= ⋅ ⋅ ⋅ = 𝑐
𝑇+1

= 𝑐, 𝑝
1

= 𝑝
2

= ⋅ ⋅ ⋅ =

𝑝
𝑇+1

= 𝑝, and 𝐿
1
(⋅, ⋅) = 𝐿

2
(⋅, ⋅) = ⋅ ⋅ ⋅ = 𝐿

𝑇+1
(⋅, ⋅) = 𝐿(⋅, ⋅).

Therefore, for any policy Θ, the total discounted expected
profit for this finite horizon dynamic programming problem
is

𝜋
(𝑇)

(𝑥
0
| Θ) =

𝑡=𝑇

∑
𝑡=0

𝛼
𝑡
[−𝑐 (𝑦

𝑡
− 𝑥
𝑡
) + 𝑝𝐸 [𝑒

𝑡
𝜉
𝑡
]

−𝐿 (𝑦
𝑡
, 𝑒
𝑡
) − 𝑣 (𝑒

𝑡
)] + 𝛼

𝑇+1
𝑐𝑥
𝑇+1

= 𝑐𝑥
0
+

𝑡=𝑇

∑
𝑡=1

𝛼
𝑡
[− (1 − 𝛼) 𝑐𝑦

𝑡
+ (𝑝 − 𝛼𝑐) 𝑒

𝑡
𝜇
𝑡

−𝐿 (𝑦
𝑡
, 𝑒
𝑡
) − 𝑣 (𝑒

𝑡
)]

= 𝑐𝑥
0
+

𝑡=𝑇

∑
𝑡=1

𝐶
+
(𝑦
𝑡
, 𝑒
𝑡
) ,

(18)

where 𝑥
0
is initial inventory and

𝐶
+
(𝑦, 𝑒) = − (1 − 𝛼) 𝑐𝑦 + (𝑝 − 𝛼𝑐) 𝑒𝜇 − 𝐿 (𝑦, 𝑒) − 𝑣 (𝑒) .

(19)

Then, we can get the following result for the joint optimal
inventory and sales effort policy when each order is in batch
size.

Theorem 8. (1) 𝐶+(𝑦, 𝑒) is jointly concave in 𝑦 and 𝑒.
(2) 𝐶+(𝑦, 𝑒) is continuous in 𝑦 and 𝑒 and

lim
|𝑦|→∞

(𝐶+(𝑦, 𝑒)) = −∞ for any fixed 𝑒 ∈ [𝑒min, 𝑒max].
Hence, for any fixed 𝑦, 𝐶+(𝑦, 𝑒) has a finite maximizer,
denoted by 𝑒∗(𝑦), which is increasing in 𝑦, and 𝐶+(𝑦, 𝑒∗(𝑦)) is
concave in 𝑦.

(3) The optimal policy is in a (𝑟,𝑁𝑞, 𝑒) type; that is, if the
inventory at the beginning of each period is lower than 𝑟, then
order minimum multiple of 𝑞, such that the inventory level 𝑦
after ordering is greater than 𝑟, and exert sales effort 𝑒

∗(𝑦);
otherwise, do not order and exert sales effort 𝑒∗(𝑥).

Proof. (1) RecallingTheorem 3, 𝐶+(𝑦, 𝑒) is jointly concave in
𝑦 and 𝑒.
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Table 1: Basic parameter settings.
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Figure 1: An illustration of the optimal policies with respect to unit cost.

(2) From part (a), for any fixed 𝑦, there is an optimal sales
effort 𝑒∗(𝑦). For the monotony of 𝑒∗(𝑦), consider the cross-
derivative of 𝐶+(𝑦, 𝑒),

𝜕2𝐶+ (𝑦, 𝑒)

𝜕𝑦𝜕𝑒
=

𝜕
2 (𝑝 − 𝛼𝑐) 𝑒𝜇

𝜕𝑦𝜕𝑒
−

𝜕
2𝐿 (𝑦, 𝑒)

𝜕𝑦𝜕𝑒

= 𝜇 + 𝐸 [𝐻
󸀠󸀠
(𝑦 − 𝑒𝜉) 𝜉] ≥ 0.

(20)

Thus, 𝐶+(𝑦, 𝑒) is supermodular in 𝑦 and 𝑒. So, 𝑒∗(𝑦) is
increasing in 𝑦.

For the concavity of 𝐶+(𝑦, 𝑒∗(𝑦)), we consider

𝐶
+
(𝛼𝑦
1
+ (1 − 𝛼) 𝑦

2
, 𝑒
∗
(𝛼𝑦
1
+ (1 − 𝛼) 𝑦

2
))

≥ 𝐶
+
(𝛼𝑦
1
+ (1 − 𝛼) 𝑦

2
, 𝛼𝑒
∗
(𝑦
1
) + (1 − 𝛼) 𝑒

∗
(𝑦
2
))

≥ 𝛼𝐶
+
(𝑦
1
, 𝑒
∗
(𝑦
1
)) + (1 − 𝛼) 𝐶

+
(𝑦
2
, 𝑒
∗
(𝑦
2
)) .

(21)

The first inequality holds, because 𝑒∗(𝛼𝑦
1
+ (1 − 𝛼)𝑦

2
) is

the best sales effort for inventory level 𝛼𝑦
1
+ (1 − 𝛼)𝑦

2
; the

second inequality holds, because of 𝐶+(𝑦, 𝑒)’s joint concavity.
(3) Let 𝑦∗ = arg max𝐶+(𝑦, 𝑒∗(𝑦)), and choose 𝑟, such

that 𝐶+(𝑟, 𝑒∗(𝑟)) = 𝐶+(𝑟 + 𝑞, 𝑒∗(𝑟 + 𝑞)) and 𝑟 ≤ 𝑦∗ ≤ 𝑟 + 𝑞.
Denote the (𝑟,𝑁𝑞, 𝑒) policy by Θ∗. For any other policy Θ,
under the same demand sample path, we have 𝑦∗

𝑡
= 𝑦
𝑡
or

|𝑦∗
𝑡

− 𝑦
𝑡
| ≥ 𝑞 for any 1 ≤ 𝑡 ≤ 𝑇. Then, 𝐶+(𝑦∗

𝑡
, 𝑝∗(𝑦∗

𝑡
)) ≥

𝐶+(𝑦
𝑡
, 𝑝∗(𝑦

𝑡
)) for any 1 ≤ 𝑡 ≤ 𝑇. Thus, 𝜋(𝑇)(𝑥

0
| Θ∗) ≥

𝜋(𝑇)(𝑥
0
| Θ). Finally, Θ∗ is an optimal policy.

4. Numerical Study

In this section, basing on model (1), we report a numerical
study conducted to attain qualitative insights into the struc-
ture of optimal policies and their sensitivity with respect to

several parameters. Among the major questions investigated,
we focus in particular on how the optimal decisions vary
against system parameters, that is, the demand uncertainty,
the unit cost, and the sales effort cost.

Before conducting the numerical studies, we first setup
the configuration of the basic model. The single period
inventory holding and backlogging cost setting is 𝐻

𝑡
(𝐼) =

ℎ
𝑡
𝐼+ + 𝑏

𝑡
𝐼−. The system is assumed to run in a stationary

setting under a planning horizon with 5 periods, that is, 𝑇 =

5, ℎ
1

= ⋅ ⋅ ⋅ ℎ
𝑇

= ℎ, 𝑝
1

= ⋅ ⋅ ⋅ 𝑝
𝑇

= 𝑝, 𝑐
1

= ⋅ ⋅ ⋅ 𝑐
𝑇

= 𝑐, and
𝑏
1
= ⋅ ⋅ ⋅ 𝑏

𝑇
= 𝑏.The sales effort cost function 𝑣(𝑒) = 𝑎

1
(𝑒−1)
2
+

𝑎
2
(𝑒 − 1) for 6 ≥ 𝑒 ≥ 1, in which 𝑎

1
measures the diseconomy

of scale of the sales effort level. This sales effort function is
sufficient for us to study the impact of cost parameters in our
problem as we can approximate other forms of functions by a
quadratic function as a direct result of Taylor expansion.This
setting appears in several literature references, for example,
Taylor [21]. The random part of the demand, 𝜉, is assumed to
follow a normal distribution, which is a typical setting both
in practice and academy.The values of the system parameters
are provided in Table 1.

Figures 1(a) and 1(b) illustrate that both the optimal base
stock level and the sales effort level decrease as the unit cost
increases.This is rather intuitive as the high unit cost reduces
the retailer’s motivation to order more, which results in less
sales effort exerted.

Figures 2(a) and 2(b) illustrate a similar pattern for the
sales effort cost parameters 𝑎

1
. However, the undermining

reason is different. In this case, the high sales effort cost
reduces the incentives to stimulate demand, which results in
the low base stock level.

Figures 3(a) and 3(b) illustrate the effect of demand
uncertainty on the optimal policies. Interestingly, it shows
that when the demand uncertainty becomes large, the opti-
mal order-up-to level is large too. The reason is that when
the shortage penalty is high, given the inventory level, large
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Figure 2: An illustration of the optimal policies with respect to sales effort cost.
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Figure 3: An illustration of the optimal policies with respect to demand uncertainty.

demand uncertainty will result in high penalty cost, which
induce the retailer to order more to avoid such shortage.
However, the numerical results show that the optimal sales
effort level is decreasing in the demand uncertainty. This is
because, when the demand has a multiplicative form with
the sales effort level, high sales effort level also induces high
variance of the demand distribution, although it increases
the expected demand; that is, the cost caused by additional
demand variance is larger than the profits made by additional
expected demand.

5. Conclusion

In this paper, we study joint inventory and sales effort
management of a retailer in a broad context and investigate
optimal policies for a single item, periodic-review system.
The retailer decides on the order replenishment and sales
effort level jointly in each period, in which the demand
has a multiplicative form with the sales effort level. His
objective is to find a joint optimal inventory replenishment
and sales effort policy to maximize the discounted profit over
a finite horizon. We consider three cases depending on the
cost structure and the constrains on order quantity: linear
ordering cost without setup cost, linear ordering cost with

setup cost, and batch size for each ordering. Through our
analysis, we find that a base stock list sales effort policy, an
(𝑠, 𝑆, 𝑒) policy, and a (𝑟,𝑁𝑞, 𝑒) policy are optimal for these
three cases, respectively.Numerical studies show that the base
stock level and the optimal sales effort level are decreasing
with the unit cost and the diseconomy of scale for the sales
effort. However, although the base stock level is increasing in
the demand uncertainty, the corresponding sales effort level
is decreasing, which implies that the cost caused by additional
demand variance is larger than the profits made by additional
expected demand.

Several extensions based on ourmodel can be analyzed in
future research. First, models should be developed to address
the joint consideration on the price, sales effort, and inventory
decisions. In our paper, we assume that the selling price
is exogenously determined and provide some reasonable
arguments. However, in practices, both the price change and
the sales effort are exerted, especially in the B2C e-commence
industry. In this case, why does the retailer take both actions?
what is the joint effect of pricing and sales effort decisions on
the optimal inventory decisions? Second, the financial state of
the retailer and its effect on the optimal decisions should be
considered. In our analysis, we implicitly assume the retailer
has enough cash on hand to make procurement and sales
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effort decisions. However, in practice, the working capital is
always limited. In this case, how should the retailer allocate
these limited resources between marketing and inventory?
The effect of financial states on the optimal policy is worth
investigation.
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