
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2013, Article ID 984960, 10 pages
http://dx.doi.org/10.1155/2013/984960

Research Article
Dynamics of a Diffusive Predator-Prey Model with
Allee Effect on Predator

Xiaoqin Wang,1 Yongli Cai,2 and Huihai Ma3

1 Faculty of Science, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China
2 School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
3 College of Electrical and Information Engineering, Shaanxi University of Science and Technology, Xi’an, Shaanxi 710021, China

Correspondence should be addressed to Xiaoqin Wang; wxiqn@163.com

Received 29 November 2012; Accepted 17 December 2012

Academic Editor: Junli Liu

Copyright © 2013 Xiaoqin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary
conditions, is discussed. Someproperties of the solutions, such as dissipation and persistence, are obtained. Local and global stability
of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns,
including holes, stripes, and spots patterns, are obtained.

1. Introduction

The Holling-Tanner prey-predator model is an important
and interesting predator-prey model in both biological and
mathematical sense [1–4]. The reaction-diffusion Holling-
Tanner prey-predator model takes the following form:

𝜕𝑢

𝜕𝑡
= 𝑟𝑢 (1 −

𝑢

𝐾
) −

𝑚
1
𝑢𝑣

𝑢 + 𝑎
1

+ 𝐷
1
Δ𝑢, 𝑥=(𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠
1
𝑣 (1 −

ℎ𝑣

𝑢
) + 𝐷

2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

(1)

where 𝑢 and 𝑣 represent population density of prey and
predator at time 𝑡, respectively. The parameters 𝑟, 𝐾, 𝑚

1
, 𝑎
1
,

𝑠
1
, and ℎ are all positive. 𝑟 stands for the intrinsic growth rate

of prey, 𝐾 is the prey carrying capacity, 𝑚
1
is the maximum

predation rate, 𝑎
1
is the self-saturation prey density, 𝑠

1
is

predator intrinsic growth rate, and ℎ is conversion rate of
prey into predator biomass. 𝐷

1
and 𝐷

2
are the diffusion

coefficients of 𝑢 and 𝑣, respectively, and we always assume
that 𝐷

1
> 0, 𝐷

2
> 0. Δ = 𝜕

2
/𝜕𝑥
2
= 𝜕
2
/𝜕𝜉
2
+ 𝜕
2
/𝜕𝜂
2 is the

usual Laplacian operator in 2-dimensional space.Ω ⊂ R2 is a
bounded domain with smooth boundary 𝜕Ω.

Set

(𝑢, 𝑣, 𝑡) = (𝐾𝑢̃, 𝐾𝑣,
𝑡̃

𝑟
) . (2)

For the sake of convenience, we still use variables 𝑢, 𝑣 instead
of 𝑢̃, 𝑣. Thus, model (1) is converted into

𝜕𝑢

𝜕𝑡
= 𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑎 + 𝑢
+ 𝑑
1
Δ𝑢, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠𝑣 (1 −

ℎ𝑣

𝑢
) + 𝑑
2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

(3)

where the new parameters are

𝑚 =
𝐾𝑚
1

𝑟
, 𝑎 =

𝑎
1

𝑟
, 𝑠 =

𝑠
1

𝑟
,

𝑑
1
=
𝐷
1

𝑟
, 𝑑

2
=
𝐷
2

𝑟
.

(4)

The dynamics of the reaction-diffusion Holling-Tanner
prey-predator model has proven quite interesting and
received intensive study by both ecologists and mathemati-
cians in many articles, see, for example, [5–10] and the
references therein. Peng and Wang [5, 6] analyzed the global
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stability of the unique positive constant steady state and
established the results for the existence and nonexistence of
positive nonconstant steady states; Wang et al. [7] studied
positive steady-state solutions and investigated the appear-
ance of sharp spatial patterns arising from the model. Shi
and coworkers [8] studied the global attractor and per-
sistence property, local and global asymptotic stability of
the unique positive constant equilibrium, and the existence
and nonexistence of nonconstant positive steady states; Li
et al. [9] considered the Turing and Hopf bifurcations of
the equilibrium solutions; Liu and Xue [10] found the model
exhibits the spotted, black-eye, and labyrinthine patterns.

On the other hand, in population dynamics, Allee effect
[11] is an ecological phenomenon caused by any mechanism
leading to a positive relationship between a component
of individual fitness and either the number or density of
conspecific [12–15]. In ecological studies, the understanding
of the influence of Allee effect plays a central role since the
Allee effect can greatly increase the likelihood of local and
global extinctions [16, 17]. As a result both ecologists and
mathematicians are interested in Allee effect in the predator-
prey model, and much progress has been seen in the study
of Allee effect, see [14, 18–27], and many more investigations
were done in recent years. But there have been few papers
discussing the impact of the Allee effect on predator in the
predator-prey models.

Based on the previous discussion, in the present paper we
adopt the reaction-diffusion Holling-Tanner prey-predator
model with Allee effect on predator.

If we assume that the predator population is subject
to an Allee effect, taking into account zero-flux boundary
conditions, model (3) can be rewritten as
𝜕𝑢

𝜕𝑡
= 𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑎 + 𝑢
+ 𝑑
1
Δ𝑢, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝑡
= 𝑠𝑣 (

𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
) + 𝑑
2
Δ𝑣, 𝑥 = (𝜉, 𝜂) ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝜈
=
𝜕𝑣

𝜕𝜈
= 0, 𝑥 = (𝜉, 𝜂) ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ≥ 0, 𝑣 (𝑥, 0) = 𝑣

0
(𝑥) ≥ 0,

𝑥 = (𝜉, 𝜂) ∈ Ω,

(5)
where 𝑣/(𝑣 + 𝑏) is the term for the Allee effect, and 𝑏 can be
defined as theAllee effect constant.The per capita growth rate
of the predator is reduced from 𝑠 to 𝑠𝑣/(𝑣 + 𝑏) due to the
Allee effect [17, 28]. 𝜈 is the outward unit normal vector on
𝜕Ω, and the zero-flux boundary conditions mean that model
(5) is self-contained and has no population flux across the
boundary 𝜕Ω [29, 30]. The initial data 𝑢

0
(𝑥) and 𝑣

0
(𝑥) are

continuous functions onΩ.
The corresponding kinetic equation to model (5) is

𝑢̇ = 𝑢 (1 − 𝑢) −
𝑚𝑢𝑣

𝑎 + 𝑢
≜ 𝑓 (𝑢, 𝑣) ,

𝑣̇ = 𝑠𝑣 (
𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
) ≜ 𝑔 (𝑢, 𝑣) .

(6)

The plan of the paper is as follows. Section 2 is dedicated
to furnish some properties of the solutions concerning the
mathematical model used. In Section 3, the local and global
stability of the positive equilibrium of the model is consid-
ered. Section 4 is devoted to the diffusion-driven instability
(Turing effect) and illustrates the different Turing patterns by
using the numerical simulations. Finally, in Section 5, some
conclusions and discussions are given.

2. Large Time Behavior of
Solution to Model (5)

In this section, we give some properties of the solutions, and
these results will be often used later.

2.1. Dissipation

Theorem 1. For any solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) ofmodel (5)with
nonnegative initial conditions, then

lim sup
𝑡→∞

max
Ω

𝑢 (𝑥, 𝑡) ≤ 1, lim sup
𝑡→∞

max
Ω

𝑣 (𝑥, 𝑡) ≤
1

ℎ
.

(7)
Hence, for any 𝜀 > 0, the rectangle [0, 1 + 𝜀] × [0, 1/ℎ + 𝜀] is a
global attractor of model (5) in R+.

Proof. 𝑢 satisfies
𝜕𝑢

𝜕𝑡
− 𝑑
1
Δ𝑢 ≤ 𝑢 (1 − 𝑢) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω.

(8)

Let 𝑧(𝑡) be a solution of the ordinary differential equation,
𝑧̇ (𝑡) = 𝑧 (1 − 𝑢) , 𝑡 ≥ 0,

𝑧 (0) = max
Ω

𝑢 (𝑥, 0) > 0.
(9)

Then, lim
𝑡→∞

𝑧(𝑡) = 1. From the comparison principle, one
can get 𝑢(𝑥, 𝑡) ≤ 𝑧(𝑡); hence,

lim sup
𝑡→∞

max
Ω

𝑢 (𝑥, 𝑡) ≤ 1. (10)

As a result, for any 𝜀 > 0, there exists a 𝑇 > 0, such that
𝑢(𝑥, 𝑡) ≤ 1 + 𝜀 for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑇. Similarly, 𝑣 satisfies

𝜕𝑣

𝜕𝑡
− 𝑑
2
Δ𝑣 ≤ 𝑠𝑣 (1 −

ℎ𝑣

1 + 𝜀
) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑣

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑣 (𝑥, 0) = 𝑣
0
(𝑥) , 𝑥 ∈ Ω.

(11)

Thus, lim sup
𝑡→∞

max
Ω
𝑣(𝑥, 𝑡) ≤ (1 + 𝜀)/ℎ. From the

arbitrariness of 𝜀 > 0, we can get that

lim sup
𝑡→∞

max
Ω

𝑣 (𝑥, 𝑡) ≤
1

ℎ
. (12)

This ends the proof.
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2.2. Persistence

Definition 2 (see [31]). Model (5) is said to have the per-
sistence property if for any nonnegative initial data (𝑢

0
(𝑥),

𝑣
0
(𝑥)), there exists a positive constant 𝜀 = 𝜀(𝑢

0
, 𝑣
0
), such

that the corresponding solution (𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) of model (5)
satisfies

lim inf
𝑡→∞

min
Ω

𝑢 (𝑥, 𝑡) ≥ 𝜀, lim inf
𝑡→∞

min
Ω

𝑣 (𝑥, 𝑡) ≥ 𝜀. (13)

In the following, we will show that model (5) is persistent.
From the viewpoint of biology, this implies that the two
species of prey and predator will always coexist at any time
and any location of the inhabit domain, no matter what
their diffusion coefficients are, under certain conditions on
parameters.

Theorem 3. If 𝑚 < 𝑎ℎ and 2𝑏ℎ < 1 − 𝑎 +

√(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1), then model (5) has the persistence

property.

Proof. The proof is based on comparison principles. From
(12), for 0 < 𝜀 ≪ 1, it is clear that there exists a 𝑡 ≫ 1, such
that 𝑣(𝑥, 𝑡) < 1/ℎ + 𝜀 for all 𝑥 ∈ Ω and 𝑡 ≥ 𝑡

0
. Hence, 𝑢(𝑥, 𝑡)

is an upper solution of the following problem:

𝜕𝑧

𝜕𝑡
− 𝑑
1
Δ𝑧 = 𝑧

−𝑧
2
+ (1 − 𝑎) 𝑧 + 𝑎 − 𝑚(ℎ

−1
+ 𝜀)

𝑧 + 𝑎
,

𝑥 ∈ Ω, 𝑡 > 𝑡
0
,

𝜕𝑧

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑡

0
,

𝑧 (𝑥, 𝑡
0
) = 𝑢
0
(𝑥, 𝑡
0
) ≥ 0, 𝑥 ∈ Ω.

(14)

Let 𝜔(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑤

−𝑤
2
+ (1 − 𝑎)𝑤 + 𝑎 − 𝑚(ℎ

−1
+ 𝜀)

𝑤 + 𝑎
, 𝑡 > 𝑡

0
,

𝑤 (𝑡
0
) = min
Ω

𝑢
0
(𝑥, 𝑡
0
) ≥ 0.

(15)

Since 𝑚 < 𝑎ℎ, then lim
𝑡→∞

𝑤(𝑡) = (1 − 𝑎 +

√(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1))/2. By comparison, it follows that

lim
𝑡→∞

𝑧(𝑥, 𝑡) = (1 − 𝑎 + √(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1))/2. This

implies that

lim inf
𝑡→∞

min
Ω

𝑢 (𝑥, 𝑡) ≥

1 − 𝑎 + √(1 − 𝑎)
2
+ 4 (𝑎 − 𝑚ℎ−1)

2
≜ 𝛼.

(16)

Hence, 𝑢(𝑥, 𝑡) > 𝛼 − 𝜀 for 𝑡 > 𝑡
0
and 𝑥 ∈ Ω.

Similarly, by the second equation in model (5), we have
that 𝑣(𝑥, 𝑡) is an upper solution of problem

𝜕𝑧

𝜕𝑡
− 𝑑
2
Δ𝑧 = 𝑠𝑧

−ℎ𝑧
2
+ (𝛼 − 𝜀 − 𝑏ℎ) 𝑧

(𝛼 − 𝜀) (𝑣 + 𝑏)
, 𝑥 ∈ Ω, 𝑡 > 𝑡

0
,

𝜕𝑧

𝜕𝜈
= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 𝑡

0
,

𝑧 (𝑥, 𝑡
0
) = 𝐼
0
(𝑥) ≥ 0, 𝑥 ∈ Ω.

(17)

Let 𝑣(𝑡) be the unique positive solution to the following
problem:

𝑑𝑤

𝑑𝑡
= 𝑠𝑤

−ℎ𝑤
2
+ (𝛼 − 𝜀 − 𝑏ℎ)𝑤

(𝛼 − 𝜀) (𝑤 + 𝑏)
, 𝑡 > 𝑡

0
,

𝑤 (𝑡
0
) = min
Ω

𝑣
0
(𝑥, 𝑡
0
) ≥ 0.

(18)

Since 2𝑏ℎ < 1 − 𝑎 + √(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1), there exists a

𝜀 > 0, such that 𝑏ℎ < 𝛼 − 𝜀. Hence, we have lim
𝑡→∞

𝑤(𝑡) =

(1−𝑎+√(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1)−2𝑏ℎ)/2ℎ for the arbitrariness

of 𝜀, and an application of the comparison principle gives

lim inf
𝑡→∞

min
Ω

𝑣 (𝑥, 𝑡)≥

1 − 𝑎 + √(1 − 𝑎)
2
+ 4 (𝑎 − 𝑚ℎ−1) − 2𝑏ℎ

2ℎ

≜ 𝛽.

(19)

The proof is complete.

3. Stability

In this section, we will devote consideration to the stability of
the positive equilibrium for model (5).

Clearly, model (5) has a unique positive equilibrium 𝐸
∗
=

(𝑢
∗
, 𝑣
∗
), where 𝑢∗ = ℎ(𝑏 + 𝑣∗) and

𝑣
∗
=
ℎ − 𝑚 − 𝑎ℎ − 2𝑏ℎ

2

2ℎ2

+

√(ℎ − 𝑚 − 𝑎ℎ − 2𝑏ℎ2)
2

+ 4ℎ2 (𝑎 + 𝑏ℎ) (1 − 𝑏ℎ)

2ℎ2
,

(20)

with 𝑏ℎ < 1.
For the sake of simplicity, we rewrite model (5) as the

vectorial form

w
𝑡
= 𝐷Δw +H (w) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕w
𝜕𝜈

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

w (𝑥, 0) = (𝑢
0
(𝑥) , 𝑣

0
(𝑥))
𝑇
, 𝑥 ∈ Ω,

(21)
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where w = (𝑢, 𝑣)
𝑇, 𝐷 = diag(𝑑

1
, 𝑑
2
), and

H (w) = (
𝑢 (1 − 𝑢) −

𝑚𝑢𝑣

𝑢 + 𝑎

𝑠𝑣 (
𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
)

) . (22)

Let 0 = 𝜇
0
< 𝜇
1
< 𝜇
2
< ⋅ ⋅ ⋅ be the eigenvalues of the

operatorΔ onΩwith the zero-flux boundary conditions. And
set

X = {w ∈ [𝐻
2
(Ω)]
2

| 𝜕
𝜈
w = 0 on 𝜕Ω} ,

𝐸 (𝜇) = {𝜙 | −Δ𝜙 = 𝜇𝜙 in Ω, 𝜕
𝜈
𝜙 = 0 on 𝜕Ω} ,

with 𝜇 ∈ R
1
,

(23)

{𝜙
𝑖𝑗
| 𝑗 = 1, . . . , dim𝐸(𝜇

𝑖
)} is an orthonormal basis of 𝐸(𝜇

𝑖
),

and X
𝑖𝑗
= {c𝜙
𝑖𝑗
| c ∈ R2}, then

X =

∞

⨁

𝑖=1

X
𝑖
, (24)

where X
𝑖
= ⨁

dim𝐸(𝜇𝑖)
𝑗=1

X
𝑖𝑗
.

The linearization of model (5) at the positive equilibrium
𝐸
∗
= (𝑢
∗
, 𝑣
∗
) can be expressed by

w
𝑡
= £ (w) = 𝐷Δw + 𝐽w, (25)

where

𝐽 = (

−𝑢
∗
+

𝑚𝑢
∗
𝑣
∗

(𝑎 + 𝑢∗)
2

−
𝑚𝑢
∗

𝑎 + 𝑢∗

𝑠ℎ𝑣
∗2

𝑢∗
2

−
𝑠𝑣
∗2

(𝑣∗ + 𝑏)
2

) ≜ (
𝐽
11

𝐽
12

𝐽
21

𝐽
22

) . (26)

From [32], it is known that if all the eigenvalues of the
operator £ have negative real parts, then 𝐸

∗
= (𝑢
∗
, 𝑣
∗
) is

asymptotically stable; if there is an eigenvalue with positive
real part, then 𝐸∗ = (𝑢∗, 𝑣∗) is unstable; if all the eigenvalues
have nonpositive real parts while some eigenvalues have zero
real part, then the stability of 𝐸∗ = (𝑢

∗
, 𝑣
∗
) cannot be

determined by the linearization.
For each 𝑖 ≥ 0, X

𝑖
is invariant under the operator £ and

𝜆 is an eigenvalue of £ if and only if 𝜆 is an eigenvalue of the
matrix 𝐴

𝑖
= −𝜇
𝑖
𝐷 + 𝐽
(𝑢,𝑣)

for some 𝑖 ≥ 0.
So, the local stability of the positive equilibrium 𝐸

∗
=

(𝑢
∗
, 𝑣
∗
) can be analyzed as follows.

Theorem 4. Assume that 𝑠 > 𝑢
∗
(𝑣
∗
+ 𝑏)
2
(𝑚𝑣
∗
− (𝑎 +

𝑢
∗
)
2
)/𝑣
∗2
(𝑎 + 𝑢

∗
)
2 and the first eigenvalue 𝜇

1
subject to the

zero-flux boundary conditions satisfies

𝜇
1
> max

{

{

{

0,
𝑢
∗
(𝑚𝑣
∗
− (𝑎 + 𝑢

∗
)
2

)

𝑑
1
(𝑎 + 𝑢∗)

2
−

𝑠𝑣
∗2

𝑑
2
(𝑣∗ + 𝑏)

2

}

}

}

.

(27)

Then, the positive equilibrium 𝐸
∗

= (𝑢
∗
, 𝑣
∗
) is uniformly

asymptotically stable.

Proof. The stability of the positive equilibrium 𝐸
∗
= (𝑢
∗
, 𝑣
∗
)

is reduced to consider the characteristic equation

det (𝜆𝐼 − 𝐴
𝑖
) = 𝜆
2
− tr (𝐴

𝑖
) 𝜆 + det (𝐴

𝑖
) , (28)

with

tr (𝐴
𝑖
) = −𝜇

𝑖
(𝑑
1
+ 𝑑
2
) + tr (𝐽) ,

det (𝐴
𝑖
) = 𝑑
1
𝑑
2
𝜇
2

𝑖
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
) 𝜇
𝑖
+ det (𝐽) .

(29)

In view of 𝑠 > 𝑢∗(𝑣∗ + 𝑏)2(𝑚𝑣∗ − (𝑎 + 𝑢∗)2)/𝑣∗(𝑎 + 𝑢∗)2,
it follows that

tr (𝐽) = 𝑚𝑢
∗
𝑣
∗

(𝑎 + 𝑢∗)
2
− 𝑢
∗
−

𝑠𝑣
∗2

(𝑣∗ + 𝑏)
2
< 0. (30)

Remark that for any 𝑖 ≥ 0, we have tr(𝐴
𝑖
) < 0.

In view of the relation 𝑢∗ = ℎ(𝑣
∗
+ 𝑏), one can calculate

that

det (𝐽) = −
𝑠𝑣
∗2

(𝑣∗ + 𝑏)
2
(−𝑢
∗
+

𝑚𝑢
∗
𝑣
∗

(𝑎 + 𝑢∗)
2
) +

𝑚𝑢
∗

𝑎 + 𝑢∗

𝑠ℎ𝑣
∗2

𝑢∗
2

= (𝑠𝑣
∗2

(ℎ
3
𝑣
∗2

+ (2𝑎ℎ
2
+ 2𝑏ℎ

3
) 𝑣
∗
+ 𝑏
2
ℎ
3

+ 2𝑎𝑏ℎ
2
+ 𝑎
2
ℎ + 𝑏ℎ𝑚 + 𝑎𝑚))

× ((𝑣
∗
+ 𝑏) (𝑎 + ℎ𝑣

∗
+ ℎ)
2

)
−1

> 0.

(31)

Recall that 𝜇
1
> max{0, 𝑢∗(𝑚𝑣∗ − (𝑎 + 𝑢∗)2)/𝑑

1
(𝑎 + 𝑢

∗
)
2
−

𝑠𝑣
∗2
/𝑑
2
(𝑣
∗
+ 𝑏)
2
}, we conclude that

det (𝐴
𝑖
) = 𝜇
𝑖
(𝑑
1
𝑑
2
𝜇
𝑖
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
)) + det (𝐽)

> 𝜇
𝑖
(𝑑
1
𝑑
2
𝜇
1
− (𝐽
11
𝑑
2
+ 𝐽
22
𝑑
1
)) + det (𝐽)

> 0

(32)

for all 𝑖 ≥ 0.
Therefore, the eigenvalues of the matrix −𝜇

𝑖
𝐷 + 𝐽 have

negative real parts. It thus follows from the Routh-Hurwitz
criterion that, for each 𝑖 ≥ 0, the two roots 𝜆

𝑖1
and 𝜆

𝑖2
of

det(𝜆𝐼 − 𝐴
𝑖
) = 0 all have negative real parts.

In the following, we prove that there exists 𝛿 > 0 such that

Re {𝜆
𝑖1
} ≤ −𝛿, Re {𝜆

𝑖2
} ≤ −𝛿. (33)

Let 𝜆 = 𝜇
𝑖
𝜉, then

𝜑
𝑖
(𝜆) ≜ 𝜇

2

𝑖
𝜉
2
− tr (𝐴

𝑖
) 𝜇
𝑖
𝜉 + det (𝐴

𝑖
) . (34)

Since 𝜇
𝑖
→ ∞ as 𝑖 → ∞, it follows that

lim
𝑖→∞

𝜑
𝑖
(𝜆)

𝜇2
𝑖

= 𝜉
2
+ (𝑑
1
+ 𝑑
2
) 𝜉 + 𝑑

1
𝑑
2
. (35)

By the Routh-Hurwitz criterion, it follows that the two
roots 𝜉

1
, 𝜉
2
of 𝜑
𝑖
(𝜆) = 0 all have negative real parts. Thus,
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there exists a positive constant 𝑑 = min{𝑑
1
, 𝑑
2
}, such that

Re{𝜉
1
},Re{𝜉

2
} ≤ −𝑑. By continuity, we see that there exists

𝑖
0
such that the two roots 𝜉

𝑖1
, 𝜉
𝑖2
of 𝜑
𝑖
(𝜆) = 0 satisfy Re{𝜉

𝑖1
} ≤

−𝑑/2, Re{𝜉
𝑖2
} ≤ −𝑑/2, for all 𝑖 ≥ 𝑖

0
. In turn, Re{𝜆

𝑖1
},Re{𝜆

𝑖2
} ≤

−𝜇
𝑖
𝑑/2 ≤ −𝑑/2, for all 𝑖 ≥ 𝑖

0
. Let

−𝛿 = max
1≤𝑖≤𝑖0

{Re {𝜆
𝑖1
} ,Re {𝜆

𝑖2
}} . (36)

Then 𝛿 > 0 and (33) holds for 𝛿 = min{𝛿, 𝑑/2}.
Consequently, the spectrum of £, which consists of

eigenvalues, lies in {Re 𝜆 ≤ −𝛿}. In the sense of [32], we
obtain that the positive constant steady-state solution 𝐸∗ =
(𝑢
∗
, 𝑢
∗
+ 𝑘
2
) of model (5) is uniformly asymptotically stable.

This ends the proof.

In the following, we shall prove that the positive equilib-
rium 𝐸

∗
= (𝑢
∗
, 𝑣
∗
) of model (5) is globally asymptotically

stable.

Theorem 5. Suppose that 𝑏ℎ < 1, 𝑚 < 𝑎ℎ, and 2𝑏ℎ < 1 −

𝑎 + √(1 − 𝑎)
2
+ 4(𝑎 − 𝑚ℎ−1). The positive equilibrium 𝐸

∗
=

(𝑢
∗
, 𝑣
∗
) of model (5) is globally asymptotically stable, if

(a1) 𝑚ℎ−1 < (𝑎 + 𝑢∗)(𝑎 + 𝛼),

(a2) 𝑚2 + 1/𝛼2 < (4𝑢
∗
/ℎ𝑣
∗
)(ℎ(𝑎 + 𝑢

∗
) − 𝑏(𝑎 + 𝑢

∗
)/(𝑣
∗
+

𝑏)(𝛽 + 𝑏) − 𝑚/𝛼(𝑎 + 𝛼)),

where

𝛼 =

1 − 𝑎 + √(1 − 𝑎)
2
+ 4 (𝑎 − 𝑚ℎ−1)

2
,

𝛽 =

1 − 𝑎 + √(1 − 𝑎)
2
+ 4 (𝑎 − 𝑚𝑝ℎ−1) − 2𝑏ℎ

2ℎ
.

(37)

Proof. We adopt the Lyapunov function

𝑉 (𝑡) = ∫
Ω

[𝑉
1
(𝑢 (𝑥, 𝑡)) + 𝑉

2
(𝑣 (𝑥, 𝑡))] 𝑑𝑥, (38)

where 𝑉
1
(𝑢) = (𝑢

∗
+ 𝑎) ∫

𝑢

𝑢
∗
((𝜉 − 𝑢

∗
)/𝜉)𝑑𝜉, 𝑉

2
(𝑣) =

(𝑢
∗
/ℎ𝑠𝑣
∗
) ∫
𝑣

𝑣
∗
((𝜂 − 𝑣

∗
)/𝜂)𝑑𝜂. It can be easily verified that the

function𝑉(𝑡) is zero at the positive equilibrium𝐸
∗
= (𝑢
∗
, 𝑣
∗
)

and is positive for all other positive values of 𝑢 and 𝑣.
Then,

𝑑𝑉

𝑑𝑡
= ∫
Ω

(
(𝑢
∗
+ 𝑎) (𝑢 − 𝑢

∗
)

𝑢

𝜕𝑢

𝜕𝑡
+
𝑢
∗
(𝑣 − 𝑣

∗
)

ℎ𝑠𝑣∗𝑣

𝜕𝑣

𝜕𝑡
) 𝑑𝑥

= ∫
Ω

( (𝑢
∗
+ 𝑎) (𝑢 − 𝑢

∗
) (1 − 𝑢 −

𝑚𝑣

𝑎 + 𝑢
)

+
𝑢
∗
(𝑣 − 𝑣

∗
)

ℎ𝑣∗
(

𝑣

𝑣 + 𝑏
−
ℎ𝑣

𝑢
))𝑑𝑥

+∫
Ω

(
𝑑
1
(𝑢
∗
+ 𝑎) (𝑢 − 𝑢

∗
)

𝑢
Δ𝑢+

𝑑
2
𝑢
∗
(𝑣 − 𝑣

∗
)

ℎ𝑠𝑣∗𝑣
Δ𝑣)𝑑𝑥

= − ∫
Ω

(𝑎 + 𝑢
∗
−

𝑚𝑣

𝑎 + 𝑢
) (𝑢 − 𝑢

∗
)
2

𝑑𝑥

− ∫
Ω

𝑢
∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
) (𝑣 − 𝑣

∗
)
2

𝑑𝑥

+ ∫
Ω

(
1

𝑢
− 𝑚) (𝑢 − 𝑢

∗
) (𝑣 − 𝑣

∗
) 𝑑𝑥

− ∫
Ω

(
𝑑
1
𝑢
∗
(𝑎 + 𝑢

∗
)

𝑢2
|∇𝑢|
2
+
𝑑
2
𝑢
∗

ℎ𝑠𝑣2
|∇𝑣|
2
)𝑑𝑥

= 𝑀 − ∫
Ω

(
𝑑
1
𝑢
∗
(𝑎 + 𝑢

∗
)

𝑢2
|∇𝑢|
2
+
𝑑
2
𝑢
∗

ℎ𝑠𝑣2
|∇𝑣|
2
)𝑑𝑥,

(39)

where

𝑀(𝑢, 𝑣) = − ∫
Ω

(𝑎 + 𝑢
∗
−

𝑚𝑣

𝑎 + 𝑢
) (𝑢 − 𝑢

∗
)
2

𝑑𝑥

− ∫
Ω

𝑢
∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
) (𝑣 − 𝑣

∗
)
2

𝑑𝑥

+ ∫
Ω

(
1

𝑢
− 𝑚) (𝑢 − 𝑢

∗
) (𝑣 − 𝑣

∗
) 𝑑𝑥.

(40)

It is obvious that 𝑑𝑉/𝑑𝑡 < 0 if𝑀(𝑢, 𝑣) is negative definite.
𝑀(𝑢, 𝑣) can be expressed in a quadratic form −𝑋𝐵𝑋

𝑇,
where

𝑋 = (𝑢 − 𝑢
∗
, 𝑣 − 𝑣

∗
) ,

𝐵 = (

𝑎 + 𝑢
∗
−

𝑚𝑣

𝑎 + 𝑢

𝑚

2
−

1

2𝑢

𝑚

2
−

1

2𝑢

𝑢
∗

ℎ𝑣∗
(
ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
)

) .

(41)

𝑀(𝑢, 𝑣) is negative definite if the symmetric matrices 𝐵 is
positive. It can be easily shown that the symmetric matrix 𝐵
is positive definite if the following conditions are true:

(i) 𝑎 + 𝑢∗ − 𝑚𝑣/(𝑎 + 𝑢) > 0,

(ii) Φ(𝑢, 𝑣) ≜ (𝑢∗/ℎ𝑣∗)(𝑎+𝑢∗−𝑚𝑣/(𝑎+𝑢))(ℎ/𝑢−𝑏/(𝑣∗+
𝑏)(𝑣 + 𝑏)) − (1/4)(𝑚 − 1/𝑢)

2
> 0.

Proof of (i). ApplyingTheorems 1 and 3, we get

𝑎 + 𝑢
∗
−

𝑚𝑣

𝑎 + 𝑢
> 𝑎 + 𝑢

∗
−
𝑚ℎ
−1

𝑎 + 𝛼

=
(𝑎 + 𝑢

∗
) (𝑎 + 𝛼) − 𝑚ℎ

−1

𝑎 + 𝛼
.

(42)

Therefore, if (a1) holds, then 𝑎 + 𝑢∗ − 𝑚𝑣/(𝑎 + 𝑢) > 0 for all
𝑡 ≥ 0.
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Proof of (ii). Consider

Φ (𝑢, 𝑣) =
𝑢
∗

ℎ𝑣∗
(𝑎 + 𝑢

∗
−

𝑚𝑣

𝑎 + 𝑢
)(

ℎ

𝑢
−

𝑏

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
)

−
1

4
(𝑚 −

1

𝑢
)

2

>
𝑢
∗

ℎ𝑣∗
(
ℎ (𝑎 + 𝑢

∗
)

𝑢
−

𝑏 (𝑎 + 𝑢
∗
)

(𝑣∗ + 𝑏) (𝑣 + 𝑏)
−

ℎ𝑚𝑣

𝑢 (𝑎 + 𝑢)
)

−
𝑚
2

4
−

1

4𝑢2

>
𝑢
∗

ℎ𝑣∗
(ℎ (𝑎 + 𝑢

∗
) −

𝑏 (𝑎 + 𝑢
∗
)

(𝑣∗ + 𝑏) (𝛽 + 𝑏)
−

𝑚

𝛼 (𝑎 + 𝛼)
)

−
𝑚
2

4
−

1

4𝛼2
.

(43)

Consequently, if (a2) holds,Φ(𝑢, 𝑣) > 0.
Hence, 𝐸∗ is globally asymptotically stable for model (5)

following the well-known theorem of Lyapunov stability.

4. Diffusion-Driven Instability: Turing Effect

In this section, we will investigate Turing instability and
bifurcation for ourmodel problem.Wewill also study pattern
formation of the predator-prey solutions.

4.1. Turing Instability. Mathematically speaking, an equilib-
rium is Turing instability (diffusion-driven instability) means
that it is an asymptotically stable equilibriumofmodel (6) but
is unstablewith respect to the solutions of diffusionmodel (5).
In this subsection, we mainly focus on the emergency of the
Turing instability of the positive equilibrium 𝐸

∗
= (𝑢
∗
, 𝑣
∗
).

Now, the conditions for the positive equilibrium to be
stable for the ODE are given by

det (𝐽) = 𝐽
11
𝐽
22
− 𝐽
12
𝐽
21
> 0, tr (𝐽) = 𝐽

11
+ 𝐽
22
< 0.

(44)

Hence,𝐴
𝑖
(the matrix𝐴

𝑖
= −𝜇
𝑖
𝐷+ 𝐽) has an eigenvalue with

a positive real part, then it must be a real value and the other
eigenvaluemust be a negative real one. A necessary condition
for the Turing instability of model (5) is

𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 0, (45)

Otherwise, det(𝐴
𝑖
) > 0 for all eigenvalues 𝜇

𝑖
of the operator

Δ since det(𝐽) > 0. For the Turing instability, we must have
det(𝐴

𝑖
) < 0 for some 𝜇

𝑖
. And we notice that det(𝐴

𝑖
) achieves

its minimum

min
𝜇𝑖

det (𝐴
𝑖
) =

4𝑑
1
𝑑
2
det (𝐽) − (𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

4𝑑
1
𝑑
2

(46)

at the critical value 𝜇∗ > 0 when

𝜇
∗
=
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22

2𝑑
1
𝑑
2

. (47)

However, the inequality min
𝜇𝑖
det(𝐴

𝑖
) < 0 is necessary

but not sufficient for the Turing instability in the bounded
domain Ω. The possible eigenvalues 𝜇

𝑖
are discrete. In this

case, det(𝐴
𝑖
) = 0 has two positive roots 𝑘

1
and 𝑘
2

𝑘
1
=
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
− √(𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

− 4𝑑
1
𝑑
2
det (𝐽)

2𝑑
1
𝑑
2

,

𝑘
2
=
𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
+ √(𝑑

2
𝐽
11
+ 𝑑
1
𝐽
22
)
2

− 4𝑑
1
𝑑
2
det (𝐽)

2𝑑
1
𝑑
2

,

(48)

so if we can find some 𝜇
𝑖
such that 𝑘

1
< 𝜇
𝑖
< 𝑘
2
, then

det(𝐴
𝑖
) < 0, and the positive equilibrium 𝐸

∗
= (𝑢
∗
, 𝑣
∗
) of

model (5) is unstable.
Summarizing the previous analysis and calculations, we

have the following results.

Theorem 6. Assume that the positive equilibrium 𝐸
∗

=

(𝑢
∗
, 𝑣
∗
) exists. If the following conditions are true:

(i) 𝐽
11
+ 𝐽
22
< 0, that is,

𝑠 >
𝑢
∗
(𝑣
∗
+ 𝑏)
2

(𝑚𝑣
∗
− (𝑎 + 𝑢

∗
)
2

)

𝑣∗
2
(𝑎 + 𝑢∗)

2
, (49)

(ii) 𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 0, that is,

𝑠 <
𝑑
2
𝑢
∗
(𝑣
∗
+ 𝑏)
2

(𝑚𝑣
∗
− (𝑎 + 𝑢

∗
)
2

)

𝑑
1
𝑣∗
2
(𝑎 + 𝑢∗)

2
, (50)

(iii) 𝑑
2
𝐽
11
+ 𝑑
1
𝐽
22
> 2√det(𝐷) det(𝐽), that is,

𝑑
2
𝑢
∗
(𝑚𝑣
∗
− (𝑎 + 𝑢

∗
)
2

)

(𝑎 + 𝑢∗)
2

−
𝑑
1
𝑠𝑣
∗2

(𝑣∗ + 𝑏)
2

> 2√𝑑
1
𝑑
2
det (𝐽),

(51)

then the positive equilibrium 𝐸
∗ of model (5) is Turing

unstable if 0 < 𝑘
1
< 𝜇
𝑖
< 𝑘
2
for some 𝜇

𝑖
.

In Figure 1, we show the Turing bifurcation diagram for
model (5) with parameters 𝑚 = 0.1, 𝑎 = 0.003, ℎ =

0.066, 𝑑
1
= 0.015, and 𝑑

2
= 1 in 𝑏-𝑠 parameters plane.

The Turing bifurcation breaks spatial symmetry, leading to
the formation of patterns that are stationary in time and
oscillatory in space [33]. Below the Turing bifurcation curve,
the solution of the model is unstable, and Turing instability
emerges, that is, Turing patterns emerge. This domain is
called the “Turing space.”We will focus on the Turing pattern
formation in this domain.

4.2. Pattern Formation. In this section, we perform extensive
numerical simulations of the spatially extended model (5) in
two dimensional space, and the qualitative results are shown
here. All our numerical simulations employ the zero-flux
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Figure 1: Turing bifurcation diagram for model (5) using 𝑏 and 𝑠 as parameters. Other parameters are taken as: 𝑚 = 0.1, 𝑎 = 0.003, ℎ =

0.066, 𝑑
1
= 0.015, 𝑑

2
= 1.

boundary conditions with a system size of 100 × 100. Other
parameters are set as 𝑎 = 0.03, 𝑚 = 0.1, ℎ = 0.066, 𝑑

1
=

0.015, and 𝑑
1
= 1.

The numerical integration of model (5) is performed
by using a finite difference approximation for the spatial
derivatives and an explicit Euler method for the time inte-
gration [34, 35] with a time stepsize of 1/1000 and the space
stepsize of ℎ = 1/10. The initial condition is always a
small amplitude random perturbation around the positive
equilibrium 𝐸

∗
= (𝑢
∗
, 𝑣
∗
). After the initial period during

which the perturbation spreads, either the model goes into a
time dependent state, or to an essentially steady-state solution
(time independent).

In the numerical simulations, different types of dynamics
are observed, and it is found that the distributions of predator
and prey are always of the same type. Consequently, we can
restrict our analysis of pattern formation to one distribution.
In this section, we show the distribution of prey 𝑢, for
instance. We have taken some snapshots with red (blue)
corresponding to the high (low) value of prey 𝑢.

Figure 2 shows the evolution process of the holes pattern
of prey for the parameters (𝑏, 𝑠) = (3.6, 0.9) at 0, 1×105, 2×105
and 3 × 105 iterations. In this case, one can see that for model
(5), the random perturbations lead to the formation of stripes
holes (cf. Figure 2(b)), and the later random perturbations
make these stripes decay ending with the holes pattern (cf.
Figure 2(d))—the prey are isolated zones with low population
density.

Figure 3 shows the process of spatial pattern formation of
prey for the parameters (𝑏, 𝑠) = (0.8, 2) at 0, 0.5×105, 1.5×105,
and 3 × 105 iterations. The random perturbations lead to the
formation of stripe-holes patterns (cf. Figure 3(b)), and the
later random perturbations make these holes decay, ending

with a time-independent stripe pattern (cf. Figure 3(d))—
the prey are interlaced stripes of high and low population
densities.

Figure 4 shows the process of spot pattern formation of
prey for (𝑏, 𝑠) = (0.8, 10) at 0, 2×105, 5×105, and 1×106 iter-
ations. There is a competition exhibited between stripes and
spots. The pattern takes a long time to settle down, starting
with a homogeneous state 𝐸∗(cf. Figure 4(a)), and the ran-
dom perturbations lead to the formation of stripes and spots
(cf. Figure 4(b)), ending with spots only (cf. Figure 4(d))—
the prey are isolated zones with high population density.

Ecologically speaking, spots pattern shows that the prey
population is driven by predators to a high level in those
regions, while holes pattern shows that the prey population
is driven by predators to a very low level in those regions.

5. Conclusions and Remarks

In this paper, we have studied the dynamics of a reaction-
diffusion Holling-Tanner prey-predator model where the
predator population is subject to Allee effect under the
zero-flux boundary conditions. The value of this study lies
in threefolds. First, it investigates qualitative properties of
solutions to this reaction-diffusion model. Second, it gives
local and global stability of the positive equilibrium of the
model. Third, it rigorously proves the Turing instability
and illustrates three categories of Turing patterns close to
the onset Turing bifurcation, which shows that the model
dynamics exhibits complex pattern replication.

It is seen that if Allee effect constant 𝑏 is low, then
the persistence of the model is guaranteed. It is interesting
to notice that, from the result of Theorem 5, the condition
for global stability of 𝐸∗ = (𝑢

∗
, 𝑣
∗
) is independent of the

diffusion coefficients 𝑑
𝑖
(𝑖 = 1, 2). So, it can be said that
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Figure 2: Holes pattern formation for model (5) by taking (𝑏, 𝑠) = (3.6, 0.9). Iterations: (a) 0; (b) 1 × 105; (c) 2 × 105; (d) 3 × 105.
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Figure 3: Stripes pattern formation for model (5) by taking (𝑏, 𝑠) = (0.8, 2). Iterations: (a) 0; (b) 0.5 × 105; (c) 1.5 × 105; (d) 3 × 105.
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Figure 4: Spots pattern formation for model (5) by taking (𝑏, 𝑠) = (0.8, 10). Iterations: (a) 0; (b) 2 × 105; (c) 5 × 105; (d) 1 × 106.

when the conditions on the parameters are satisfied, 𝐸∗ =

(𝑢
∗
, 𝑣
∗
) is stabilized under arbitrary spatially inhomogeneous

perturbation. A very interesting observation can be made
from the result of the numerical simulations. It indicates that
the spatial model dynamics exhibits a diffusion-controlled
formation growth not only to holes (cf. Figure 1) and stripes
(cf. Figure 2) but also to spots replication (cf. Figure 3).

Comparing Figures 1 and 3, we can conclude that the
model exhibits holes and spots Turing patterns due to Allee
effect constant 𝑏. It is believed that the observations made in
this investigation related to Allee effect on predator popula-
tion remind us of the importance of the Allee effect. There-
fore, if the prey or the predator to be protected is subject to an
Allee effect, themeasures taken should take this into account.
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