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We first obtain sufficiency conditions for the oscillation of all solutions of linear partial

difference equation

aAmii e + bAm+l,n + cAmpi1 — dAm,n + PunAm—kn—t = 0.

Next, we establish a linearized oscillation result for the nonlinear partial difference equation

Am+l,n+l + Am+l,n + Am,n-H - Am,n + Pm,n f(Am—k,n—l) =0.
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1 INTRODUCTION

Partial difference equations have been posed from
various practical problems [3,8] and in the approx-
imation of solutions of partial difference equations
by finite difference methods [1,2,8]. Recently, the
qualitative analysis of partial difference equations
has received much attention, see [4-7,9,10,12].

In this paper, we first consider the linear partial
difference equation

aAm+l,/1+l + bAm+l,n + CAm,n+l

- dAm,n + Pm,nAm—k,n—l = 0, (11)

where P,,,,>00n N3, k, [ € Ng, N; = {i,i+1,...}
and i is an integer. Equation (1.1) can be regarded
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as a discrete analogue of the delay partial difference
equation

a———azu +a @-I—a %
0yOx Vox 28y

+ P(x,y)u(x — o,y —7) = 0. (1.2)

Next, we consider the nonlinear partial difference
equation

Am+1,n+1 + Am—l—l,n + Am,n+1
- Am,n + Pm,nf(Am—k,n—l) =0,

where f€ C(R, R).

The general theory of partial functional differ-
ential equations can be seen from Wu [11].

A double sequence {4,, ,} is said to be a solution
of (1.1) if it satisfies (1.1) for m>mgy, n>ny. A
solution {4,;} of (1.1) is said to be eventually
positive if A; ;> 0 for all large i and j, and eventually
negative if A; ;< 0 for alllarge i and j. It is said to be
oscillatory if it is neither eventually positive nor
eventually negative.

In Section 2, we shall obtain sufficiency condi-
tions for all solutions of (1.1) to be oscillatory.
In Section 3, we shall show a linearized oscillation
theorem for (1.3), i.e., we shall show that under
some assumptions, (1.3) has the same oscillatory
character as an associated linear equation.

(13)

2 EQUATION (1.1)

We assume that a,b,c¢,d and P, , are positive in
Eq. (1.1). Define a set E by

E={\>0|d— APy, >0, eventually}. (2.1)

THEOREM 2.1  Assume that

(1) limyy oo SUP Py > 05
(i1) for k>1>1, there exist M, N € N, such that

/
sup A H(d - >\Pm~i,n~i)

AeEm>Mn>N 0

k—
2be
x H(d APyt jni) < (a—l— )b" (2.2)

J=1

and for [ > k

k
sup Hd )\Pm in— 1

AeEm>Mn>N

i=1

-k
2b
X H(d— )\Pmﬂky,,kkw]) (a + —(/—;—) -k,

J=1

(2.3)

Then every solution of (1.1) oscillates.

Proof Suppose, to the contrary, we let {4,,,} be
an eventually positive solution. We define a subset
S of the positive numbers as follows:

S(A) = {A > 0]admiipt1 + bAmi1n
+ cApmpr1(d =APpy)Amy <0, eventually}.

From (1.1), we have

aAm+l,n+1 + bAm+l‘n + CAm,n-l»l < dAm,n~ (24)
If k>, then
ay! ay! B\
Am—k,n—/ > (L_i) Am—k+1,n > <;1) (E) Am,n~

(2.5)
If [ > k, then
an\ k a\k re\ -k
Am—k,n—l > (a) Am,n~l+k > (;l’) (2) Am,n'
(2.6)
Substituting (2.5) and (2.6) into (1.1) we obtain

aAmyinr1 + bAm-H,n + cAmpi

a
—_ dAm,n + (2) (‘_1) Pm,nAmJ, < 0 (27)
and
aAm+l,n+I + bAm-H,n + CAm,n+l
a\k reN 1=k
- dAm,n + (3) <a> Pm,nAm,n < Oa (28)
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respectively. Inequalities (2.7) and (2.8) show that
S(A) is nonempty. For A € S, we have eventually

d— APy, >0,

which implies that S C E. Due to the condition (i),
the set £ is bounded, and hence S(4) is bounded.
Let € S. Then, from (2.4), we have

d d
Am+1,n+1 < 'I;Am,n+1 and Am+1,n+l < EAm+l,n~

Hence we obtain

2bc
(a + 7) At int1

< adpiipel +bAmpip + cAmpti
< (d - ﬂPm,n)An1,n~

If k>, then

Ao < (a4 22 _lﬁ(d Poin i) A
mn > | d d KL m—in—i)Am—in-1|

=

and
1
Apmeip-1 < b (d— pPui—t pt) Am—i=1 p—1

1 k—1 k-1
S e S (E) H(d - l’/Pm—l—j,n~l)Am—k,n—/~

=1

Hence

Apn <[ a4+ 226 _lb’—kli[(d— Por i)
mn > d 11 P —jn—i

k—1

X H(d - /LPm—l—j,n»l)Am—k,n—/o (29)
Jj=1
Similarly, if / >k, then
2he —k . k
Am,n < <a + 7) C/\ [H(d - MPIH—I',n—f)
1—k
X H(d - HJPmJ\',n»kA_/')Am~/<,n—l~ (210)

=

Substituting (2.9) and (2.10) into (1.3) we find
respectively

aAm+1,n+1 + bAm+1,n + CAm,nJrl - dAm,n

2bC k I—k k
+ Pm,n ((l + 7) 4 <H(d - /«LPm~i,n—i)

i=1
1=k -
X H(d'— ,UPm—k,n—k—j)> Am,n <0,

J=1

for >k

(2.11)
and

aAm+l,n+1 + bAm+l,n + CAm,n+l - dAm,n
26\
+ Py (a + 7) bk l(l]_:l(d — UPp—in—i)
k-l -1
x [J@- ,,me_,‘jyn_,)) App <0, fork>1.
=1

(2.12)
Hence

aAm+1,n+1 + bAm+l,n + CAm,n—l—I

k
- (d — Pun (a + 2—25) ok

k
(IT@- wPoincd
m>Mn>N

X sup
i=1

-k -1
X (d_ /Jme—k,n—k—j)> ])Am,n <0, 1>k

J=1

(2.13)

and

aAm+l,n+l + bAm-H.n + CAm,n+1

li
— <d__ Pm,n (a_!_%) bk—l

/
X su d— puP,_in_;
sz,In)ZN [(H( #Pm-in-)

i=1

k—1 -1
X H(d - //"Pml—_/',nl>> :I>Am,n <0, k>I

J=1
(2.14)
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From (2.13) and (2.14) we obtain

) (a1
a-+— su (d— pPm—in-—i
( d) ¢ m>MIr?>N g K )

I—k —1
x (@~ upm_k,n_kﬂ.)) D €S, I>k
Jj=1
(2.15)

and

2bc !
bk l< [( d— mei —i
(a d ) m>SA]/}l£)>N 1:[( a i)
k=1 -1
x [Ja- Npm_,__,,n_,)) D €S, k>I

i1

~.

(2.16)

On the other hand, (2.2) implies that there exits
B€(0,1) such that

] k—1
sup )\H d )\Pm i,n—i H(d )‘Pm I=j,n— l)

AEEm>Mn>N 30 i—1

b !
<ﬁ< d)bk’ k>1

and (2.3) implies that there exists 5 (0, 1) such
that

-

k 1=k
A H(d - )\Pm—i,n~i) H(d - /\Pm—k,n—k—j)

i=1 J=1

2bc
ok >

Hence, for k>,

sup
AeEm>Mn>N

/ k—1
/112S/\]/-II,E)EN <H(d - ,U/mei,n—i) H(d - /J‘PI?‘I—/‘]',H*/)>

i=1 J=1

N
< (2
7 d

(2.17)

and for [>k

=

sup H (d— pPm—in—i)
m>Mn>N 5 7

,8 2bc _
u( +7> '

From (2.15) and (2.18) for /> k, (2.16) and (2.17)
for k>1, we have that u/G€S. Repeating the
above procedure, we conclude that u(1/8)" € S, r=
1,2,..., which contradicts the boundedness of S.
The proof is complete.

k‘

(d NPm Jen—k j)

i

(2.18)

From Theorem 2.1, we can derive an explicit
oscillation condition.

COROLLARY 2.1 In addition to (i) of Theorem 2.1,
assume that, for k> I,

-1
hm inf P,,, = P > d*! ((a 226) b 1)

kk

X m (2.19)

and for [ >k,

mn—00

lim inf P, , = P > d'" ((a

+ g?f kbl—k h
d

! (2.20)

X e
(1 + I)H-l
Then the conclusion of Theorem 2.1 holds.

Proof We see that

dk+ 1 kk

max Ad—AP)f=—"—"__
( ) P(1+k)l+k

d/P>)>0

Hence (2.19) and (2.20) imply that (2.2) and (2.3)
hold. By Theorem 2.1, every solution of (1.1)
oscillates. The proof is complete.

Remark Obviously, Theorem 2.1 is true for
a=0. Hence Theorem 2.1 includes Theorem 2.3 in
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[9] as a special case. From (2.4) we have

b
d\"*/d
() (@
PAIZAN
<< 5) () Ao

Let € S. Then

d d\*
Am,n < —Am—l,n <0< (Z) Am—k,n

d MPm ln)Am—l,n

AN

d ﬂpm ln)Am—k,n

(AN

(o

2
) (1
)

IA

o
;
() () -

X H d /,Lmek,nfj)Am—k,n—/'
j=1

d :u'Pm kpn— 1>Am—k,n—1
/

Substituting the above inequality into (1.1) we
obtain

AA i1 g1 + DA 0 + A pi
k
+ Pm,nbkcl {H(d — pPm_in)

i=1

—dAm

/ -1
X H(d - /’LPm~k,n-j)] Am,n <0.
J=1

Hence
aAm+]‘n+1 + bAm—H,n + CAm,n+l

k
— (d — Pm‘”bkcl[ sup H(d - ,UPm—i,n)
m>M.n>N

/ —1
X H(d_ /1'Pln—k,n—_/'):| )Am,n < 01
J=1

which implies that

k
bkc’[ su d— uP,,_;
mZM,If?ZN,'I:I]( PPrm—in)

! -1
3§ () e

J=1

We are ready to state the following proposition.

THEOREM 2.2 In addition to (1) of Theorem 2.1,
further assume that (i)’ there exist M, N € N\ such
that

k
sup A H(d — APpyin)

AeEm>Mn>N i—1

!
< [[(@ = APwicay) < b (2.21)
J=1

Then every solution of (1.1) oscillates.

Since

PLaaad (k + [)k+1

max ANd—- APyt =2 " T/
( ) p(1 + k4 1)

d/qg> >0

and (2.21), we have the following result.

COROLLARY 2.2 [n addition to (1) of Theorem 2.1,
assume that

4! +k+l(k + l)k+l

lim infP,,=P> el +k + l)1+k+l’

m,n—00

(2.22)

Then every solution of (1.1) is oscillatory.

Example 2.1
equation

Consider the partial difference

Am+1,n+l + (:‘Am+1 n+ Am,n-H

1 + e
- Amn +—F Am—2,n72 =0.

(2.23)

It is easy to see that (2.23) satisfies the conditions
of Corollary 2.1, so every solution of this equation
is oscillatory. In fact, 4,,,=(—e¢)""" is such a
solution.
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3 EQUATION (1.3)

We consider (1.3) together with the associate linear
equation

Am+l,n+1 + Am+1,n + Am,n+1 _Am,n +PAm—k,n—l =0,
(3.1)
where p >0, k and / are positive integers.
For (3.1), the following result is known [12].
LEMMA 3.1 Every solution of (3.1) oscillates if

and only if its characteristic equation

MoAXN+p—1+prF T =0 (3.2)

has no positive roots.

LEMMA 3.2  Assume that every solution (3.1)
oscillates. Then there exists €9 € (0, p) such that for
each € €[0, gg] every solution of the equation

Am+1,n+l + Am-H,n + Am,n+1 - Am,n

+(p—&)Amrkn-1=0 (3.3)

also oscillates.

Proof By Lemma 3.1, it is sufficient to prove
that

MANp—14+(p—e)X*u'=0 (34
has no positive roots. Obviously, (3.4) has no

positive roots in the region A+ A+ pu—1>0.
Let

FOup) = A+ A +p—1+px .

Since (3.2) has no positive roots, so F(A, u)>0
for (A, 1) € (0, 00) x (0, 00). Thus

AE(},I,{LOF()\’M) =m>0.

Let

G(s,t)=st+s+1t—1 +%ps’/"r’/,

0 € (0, p/2) and g * T <m/2, where

o<acm{()" 9" 0)")

For0<A<a,0<p<a, we have
MiAA+p—14+(p—e)XFu!
S A+ AFp—1 +52’-x’m-1
> —1 +§a‘("+1) > 0.
For A > a, > «, we have
MiAXN+p—1+@—e)\Fu!
> F(\ p) — oA !

> m — goa” K > % > 0.

ForO<A>a, p>a, Ap+ A+ p <1, we have
MiAA+p—1p—e\Fu™!
>/\u+>\+u—1+]§))\’k,u"
> 1 —%a"k > 0.

Similarly, for A>a, O<pu<a, Ap+A+p<l, we
have

MeAA+p—1+(p—e)dFul>o0.
We have proved that (3.4) has no positive roots.
We are ready to state the following result.

THEOREM 3.1 Assume that

(i) limy, o0 inf Py, , =P >0,
(i) fe C(R,R), xf(x)>0 as x#0, lim, of(x)/

x=1.

Then every solution of (3.1) oscillates implies that
every solution of (1.3) oscillates.

Proof If not, let 4,,,>0, m>my, n>ny be a
solution (1.3). Then A4,,, is decreasing in m and n,
and hence limp -0 Amy =0, liMy—oo Ay =0
and lim,,_,c A,,, = 0. Let

5 S(Am—tn1)
P/M,n = Pm,n—L,l_~

Am‘k,n—l
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Then limy, ;.o inf Py, = P. For each e€(0, ¢,
there exist M and N such that P,, > p — ¢, for
m> M, n> N. Therefore

Am+1,n+1 + Am+1,n + Am,n+l - Am,n
+(p_€)Am~k,n—lS07 szs nZN

Summing it in # from n (> N) to co, we have

[e.9] o0
E At ip1 + E Amy1i — Amp
i=n i=n

+(p—¢) ZAm—k,i—l <0.

i=n

We rewrite the last inequality in the form

00 0
ZAm+l,i+l + Z Am+1,i + Am+l,n - Am,n

i=n i=n+1

P 5) ZAm—k,i——l < 0.

Summing it in m from m (> M) to oo, we obtain

o o0 o0
Z Ajy1,i +Z Z Ajyr,i

Jyi=m,n Jj=m i=n+1
o0
- Am,n + (P - 6) Z Aj—k,i—l S 0.
Jii=mpn
Hence

mn = Z A}+lt+l +Z Z Aj+ll

Jyi=mn J=m i=n+1

p—e) Z Ajki-1-

Ji=m,n

(3.5)

Define a set of real double sequences

X: {{Bm,"}|0 S Bm,n S 17
m>M-—k,n>N-—1[}

and an operator T on X by

1 (&)
7 |2 Y AuBy
m,n

Jri=m+1,n+1

(TB)m,n = +(p—e¢) Z Ajji—iBi—ki-1],
Jri=m,n

m>M, n>N,
1, otherwise.

(3.6)

In view of (3.5), it is easy to see that TX C X.
Define a set of sequences {B(m’?,,}, r=20,1,2,... as
follows:

BO, =1,  BY =B, r=12...

mn mn
In view of (3.5), we have

o> B0D >

mn = ’

B > B >

m,n mn—

form>M-—k, n>N-—1

Hence lim,_ Bf,',?,, = By, exists, for m>M —k,
n> N —[. From (3.6),

L2 Y
2
Am*" Jri=m+1,n+1
o0
+(p—¢) Z Aj-ri-1Bj-k,i-1|,
Jyi=myn
m>M, n> N,
1, otherwise.

A;iBj,;

Clearly, B,,,>0 for m>M—k, n>N—1[. Let

Xmn=AmnBmn Then x,,>0 for m>M—k,

n>N-—1[and
o0 o
DD IE TRA ) 3 yr v
J=m+1 i=n+1 J=m i=n
Hence

o0
Xm+lpn — Xmpn = -2 E Xm+1,i — (P
i=n+1

o0
—¢€) E Xm—ie,ivt
i=n

or

Xmpn = § Xpm1,i + § Xm1,i +

i=n+1

00
- 5) § Xm—k,i—1+
i=n
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Then we have

Xmn+l — Xmpn = —Xm+1n+l — Xmt1pn
——(P - 5)xmAk,n~l =0,

which implies that (3.3) has a positive solution
{Xmn}. By Lemma 3.2, (3.1) has a positive
solution, which is a contradiction. The proof is
complete.

THEOREM 3.2 Assume that

(i) 0<P,, <P,
(i) there exists h >0 such that f(x) is nondecresing
and 0 < f(x)/x <1, for 0 < |x| <h.

If (3.1) has a positive solution, then (1.3) also has a

positive solution.

Proof 1If (3.1) has a positive solution, by Lemma
3.1,

MAA+p—1+pFu =0

has a positive root (A, u) with 0 <A <1, 0<pu<1
and that {N"u"} is a positive solution of (3.1).
Choose a > 0 such that

Ay =aN"y" < h, form>—k,n—I

{A4,,,} 1s a positive solution of (3.1) and satisfies
fAmn) <A, by condition (ii). Similar to
Theorem 3.1, summing (3.1) we get

00 0 00
Am,n =2 Z Z Aj,i +PZ ZAj—k,i—la

J=m+1i=n+1 J=m i=n

m>0, n>0.

Hence

e oo
Am,n >2 Z Z A‘I',"

J=m1i=n+1

+ Z i P./J f(Aj_/\v),'_/).

J=m i=n

(3.7)

Define
X= {{Bm,n} |O S Bm,n S 1am _>_ _k:n 2 _l}

and an operator 7 on X by

1 o0 o0
|2 D> 4By
m.n

i Jj=m+1 i=n+1

00 o8
AN P f(Aj ki By |

Jj=m i=n
m>0, n>0,
1, otherwise.

(TBuy) =

In view of (3.7), TX C X. Similar to Theorem 3.1,
we can prove that there exists {B,,,} € X such
that (TB),,,=Bm, for m>0,n>0. Let x,,,=
Ay B >0,m>0,n>0. Then

(e8] [e°] o0 o0
Xon =2 ) Y x> P (Nki-i).
j=m+1 i=n+1 J=m i=n

(3.8)

Similar to the proof of Theorem 3.1, (3.8) implies
that {x,, .} is a positive solution of (1.3). The proof
is complete.

From Theorems 3.1 and 3.2 we obtain

COROLLARY 3.1  Assume that P,,,=P >0, (ii) of
Theorem 3.1 and (ii) of Theorem 3.2 hold. Then
every solution of (1.3) oscillates if and only if every
solution of (3.1) oscillates.

Consider (1.3) together with the equation

An1+l,n+1 + Am+l,n + Am,n+1

- Am,n + qm,nf(Am—k,rhl) = 0, (39)
where f'€ C(R,R), xf(x) >0 as x#0.

We have the comparison theorem as follows:

THEOREM 3.3 Assume that p,, , > qm., >0 for all
large m, n and that every solution of (3.9) oscillates.
Then every solution of (1.3) oscillates.

Proof Suppose to the contrary, {A4,.,} 1s a
positive solution, of (1.3). Summing (1.3), we
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obtain
00 o 0o 00
Ann =2 Z D At ZZP],:’f (Aj k1)
J=m+1i=n+1 Jj=m i=n
x 0 00 00
=2 Z Z i+ Z @i f(Ajki-1)s
J=m+1 i=n+1 Jj=m i=n

from which and using the method in the proof
of Theorem 3.2, we obtain a positive solution of
(3.9). This contradiction proves the theorem.
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