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Let C be the set of n complex vectors endowed with a norm [[. c-. Let A, B be two complex
n n matrices and - a positive integer. In the present paper we consider the nonlinear
difference equation with delay of the type

Uk+ Auk + Buk_ + Fk(uk, uk--), k 0, 1, 2

where Fk" C C C satisfies the condition

F(x,y)llc. <_ Pl xllc. + q Yllc., k O, 1,2,...,

where p and q are positive constants. In this paper, absolute stability conditions for this
equation are established.
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Let C be the set ofn complex vectors endowed with
a norm II’llCn" Let A,B be two complex n x n
matrices and - be a positive integer. Consider the
perturbed difference equation with delay

Uk+l Auk + Buk- + Fk(uk, Uk-),
k-- 0, 1,2,...,

where Fk" C x Cn C satisfies the condition

F(x, Y)[]c P[ x[ c + ql[ylIc,
k- 0, 1,2,..., (2)

where p and q are positive constants. In this paper,
we will be concerned with the stability problem of
Eq. (1) under the condition that all the zeroes of

det(zI- A z-B)

lie in the open unit disk in the complex plane C with
center at the origin, where I stands for the identity
matrix. In other words, we will assume that
the greatest modulus p(A,B;-) of the roots of
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det(A + z-’-B- zI) is less than 1. Similar problems
have been dealt with perturbed equations of the
form

Uk+l Auk +f(xk), k- O, 1,2,...,

We remark that it would have been better to replace
the last inequality by

/
1/2 0

k=l k=-7-

as early as 1929 (see, e.g. Ortega, 1973), under the
assumption that the spectral radius ofA is less than
1. For recent and related investigations, the readers
may consult Ortega (1973), Xie and Cheng (1995,
1996) and others. We remark that in case n 2, our
equation can be used to model the population
growth of two species that are under delayed
migration and interaction, see, e.g. Sandefur (1990,
Chapter 7).

There are many concepts of stability for discrete
time dynamical systems. Here we will adopt a

specific one described as follows. First, note that a
solution of (1) is a sequence {uk}kc*=_7- of vectors in
C such that it renders (1) into an identity after sub-
stitution. Given initial vectors u_7-, u_7-+l,..., u0, it
is easily seen that we can successively calculate Ua,

u2,.., according to (1) in a unique manner. An
existence and uniqueness theorem for (1) can thus
be easily formulated and proved. Next, note that
the assumption (2) implies that the zero sequence
0 {0}k_7- is a solution of (1). Let us take 12(Cn)
to be the Hilbert space of all complex sequences of
the form v {vk}kc*__0 endowed with the usual inner
product and norm

c
k=O

in the above definition, but clearly the two concepts
are equivalent and we will keep the present defi-
nition for technical reasons (to be seen below).
Our main concern in this paper is to derive a

stability criterion for the zero solution. To this end,
let us first consider the following nonhomogeneous
equation

Uk+l Auk + Buk_7- +fk, k 0, 1,2,... (3)

LEMMA Suppose Ilflll2 < oo and p(A, B; -) < 1.
Then the truncated sequence fi-{uk}k__0 of a

solution {Uk}k_7- of(3) will satisfy

o

Ilull2 Mllf [l + F Z Ilu c

for some constant F, where

M- max (zI- A z-7-B) (4)

Proof First note that the sequence {fk}k0 is of
exponential order. Thus the solution {uk}k_7- is
also of exponential order (see e.g., Gy6ri and
Ladas, 1991, Lemma 1.4.2). Let u [--, oc) C
and f: [0, oo) oc be the piecewise continuous
step functions defined by

We say that the zero solution of (1) is absolutely
Z-stable (in the class of nonlinearities (2)) if there is
a constant I’ depending only on the numbersp and q
such that for any solution u- {uk}k_7-, the trun-
cated sequence fi {uk}kO satisfies

and

u(t)--Uk, k<_t<k+l, k-0,1,2,...;

f(t)-f, k<_t<k+l, k-O, 1,2,...

0

I1’ 11,-< r Ilu llco.
k--

Then the Laplace transforms of the restricted
functions u[{0,o) and f exist. Let their Laplace
transforms be denoted by u* and f* respectively,
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that is,

u*(z) e-Ztu(t)dt

and

f* (z) e-Ztf t) dt,

where z is the dual complex variable. In view of
(3), we see that

u(t + l) Au(t) + Bu(t- 7-) +f(t), t>_O,

thus multiplying both sides of the above equation
by e-zt and then integrating from 0 to oc, we
obtain

eZ{u*(z)- fole-Ztu(t)dt}
{/_o )Au*(z)+ e-zB u*(z)+ e-Ztu(t) at

+if(z)

or

{eZI-A-e-=B}u*(z)

/_oe e-=u(t) dt/Be e-ztu(t) dt

Thus, in view of the assumption that p(A, B; 7-) < 1,

u*(z) {eZI A e-=B}-’

{/ox e e-ztu(t) dt

/_o+ Be e-=u(t) dt +f*(z)

for z- i0 where 0 E R. Note that

e-=u( t) dt
e-z

uo

and

[k+le-ztu(t) dt Z uke
-zt dt

k----T Jk

e_zk e_z(k+l)=’ z
Uk

for z- i0, and since for k- -7-, -7- + 1, ...,- 1,0

dO
2

0-1 (e-i0k e-i0(k+l))

_< 0-211 e-iO 12 dO

4 0.2 sin 2 0 dO

we see further that

e-itu(t) dt dO
C

_< 4 0-2 sin2 0d0 Ilullc,

and

e-itu(t) dt dO
C

_< 4 0-2 sin2 0d0 Ilu0 [cn.

In view of (5) and the above calculations, we now
have

I1.* (iO)II 2 dO

< M f* (i0)II 2 dOC

0

+ r Ilul c
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for some constant F. Finally, from Parseval’s
equality, we have

/ 1/2
Ilu(t) 2 dtc

< M Ill(t) 12 dt
o

+r Ilu On,
kz--T

which implies

c
k=0

< M IbCkll 2
C

k=O

0

+ r IluIlcn,

as required. The proof is complete.

THEOREM Suppose p(A, B; -) < and
(p + q)M < 1, where M is defined by (4). Then the
zero solution of (1) is absolutely 12-stable.
Proof Let {uk}k_ be a solution of (1). For each
nonnegative integer rn, let the sequence h(m)

(m) h(km)be de i.ed by -, or and

h(km)= 0 for k>m, and let v(m) -{ }k_ be
the unique solution determined by the conditions

v(m) u(m), k --, -- + 1,..., 0 (6)

and

v(m) Av(m) + By(m) .(m)F v(m)k+l k-7 -+- rtk k( Vk_-),

k- 0, 1,2,... (7)

Clearly, by uniqueness,

V(km) --U(km) - < k < rn +

Furthermore, if we letf (m) {fk(m)}k=O be defined
by

f(km) --h(km)Fk(V(km) (m)),vk_ k _> O,

then since

2 }1/2f(m) li/  llF (uLm ,4m )ll
k=0

C

<-(P+q)  llu m ll
k=0

/q Ilukll 2
C

thus by Lemma 1, we see that

or

2 }1/2k=O
cn

Mq+F 2
C<

M(p + q) lukl

Finally, letting m tend to oc, we see that our
desired result holds. The proof is complete.

The constant Min the above Theorem is stated in
terms of the inverse matrix of zI-A- z-B. This
is inconvenient in general. In order to obtain a more

convenient estimate, we proceed as follows. Let us

first take II’llcn to denote the Euclidean norm in the
sequel. Further, let AI(H),..., An(H) be the eigen-
values of an n x n complex matrix H including their
multiplicities. We will make use of the following
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quantity:

g(H)-- N2(H) Ak(H)
k=l

where N(H) is the Frobenius (Hilbert-Schmidt)
norm of H, i.e.

N2 (H) Trace(HH*).

There are a number of properties of g(H) which
are useful, see Gil’ (1995, Section 1.2). Here we note
that

g(H) <_ ViN(H* H), (8)

g(Hei+zI)-g(H), R, zC, (9)

and that if H is normal, i.e. HH*=H*H, then
g(H) 0. Furthermore, for some particular
matrices, the corresponding g can be easily calcu-
lated. For example, ifH-- (ho) is a triangular matrix
such that hi# 0 for <j < _< n, then

h; l
<_i<j<n

To facilitate descriptions, we will adopt the
convention that 0!- l, 0- and empty sums are
zero. We will also make use of the following
notations. The binomial coefficient C] is given by

Cj j!(i-j)!’
0 <_j <_ i,

as usual, but we will also adopt the convention that

C} 0 whenj < 0 orj > i. We will define

")/n,i
(n 1) i’ i-- 0, 1,2,...,n- 1,

and ")In, i--0 if < 0 or > n- 1. Note that 7n,o-
and

%2, (n- 2)(n- 3)... (n- i)
(n 1) i-li!

--< i-"

Finally, we let po(A + z--B zI) be the smallest
modulus of the eigenvalues of the matrix A +
z--B- zI, and let

",/,,,z:g k(A + z--B)
A0 max po+ (A + z-B- zl)Izl=l k=0

(10)

The quantities g(A + z--B), po(A + z--B- zI) and
hence A0 are more manageable than the quantity M.
Indeed, in view of (8) and (9),

g(A + z-B)

<_ /-{N(A* A) / N(--B z--B)}

<_ /lx{N(A* A) + 21zI--N(B)},

so that

n-1

A0 _<
p0k+l(A / z--B_ zI)k=0

(11)

We may also show that

M_< Ao.

In fact, if H is a linear operator on Cn, then the
following estimate is true (see Gil’, 1995, p. 5)"

n-1

IlN (g)llcn
k=0

where d(H, A) is the distance between the spectrum
or(H) of H and the complex number A. Hence for
any invertible matrix H,

n-1
7n,k (12)IIg-allco _< Zgk(H)pko+l(H),

k=0
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where po(H) is the smallest modulus of the
eigenvalues of H. Relation (12) yields

]](A + z--B- zI)- IIc 
n--1

9’n,k<- Zgk(A + z--B- ZI) po+l(A + z--B zI)k=0

for regular z, so that, in view of (9),

M- max ]I(A + z-O zI)- c

n- k(A z-B zI+< max
p0+Izl= (A + z-B- zI)

n- gk(A + z-B)fn, A0=max,= p+llzl= (A + z-B- zI)

as desired.
As a consequence, we see that if p(A, B; 7-)< 1,

and (p + q)A0 < or (p + q)A1 < 1, where A0 and A1
are defined by (10) and (11) respectively, then the
zero solution of (1) is absolutely/e-stable.
We now consider a specific example to illustrate

our previous results. Let 7-= 1, A be the 2 2
identity matrix and B be the diffusion matrix with
real parameter #:

2 -1)B-# -1 2

Then the "characteristic matrix" zI- A z-B is
equal to

z # z2--z--2#

which has eigenvalues

2(z3 z zu), - (Z Z
2

and its determinant

2det(A + z-lB- zI) -5{(z + 2#- z 2)

has roots

1/2 / 1/2v/1 +4#.

Thus for 1/12 _< # < 0,

p(A, B; 7-)
max{11/2+1/2x/1 + 121, 11/2+/- x/1 + 4zl} (0,1)

and

po(A + z-B- zI)
minmin{l(1 #)z- l, I(1 3#)z- 11}.

For instance, when #--0.05,

po(A / z--B- zI)
minmin{I 1.05z- 11, ll.15z-
0.0025.

Furthermore, since the matrix I/ z--B is normal,
we have g(I+ z--B) O. Thus, if 12 < # < 0
and

p+q <_ Ao

minlzl= min(l(1 -/z)z l, I(1 3/z)z ll}’

then the two interacting species model

2
Uk+--uk--# -1

k- 0, 1,2,...,

_1)2
uk- / Fk(uk, uk-),

is absolutely la-stable.
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