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Weak turbulence, similar to incoherent light, may be represented as an ensemble of quasi-
free quanta or Fourier harmonics. Unlike it, strongly turbulent state should be based on
nonlinear structures. In particular, strong plasma turbulence may be constructed of discrete
formations, viz., Langmuir solitons. Instead for ‘infrared catastrophe’ typical of the weakly
turbulent regime, one deals with the ‘relay race’ model providing the proper direction of the
energetic flux over scales from the source towards the leakage.
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INTRODUCTION

This paper is devoted to the problem of the non-
linear structures as manifestations of the strongly
turbulent behavior. Transition from the weak
(chaotic, perturbational) turbulence to the non-
linear structures is demonstrated on the basis of the
strong Langmuir turbulence. First such a model
had been proposed in [1], further results were
presented in [2,3].

In many problems of plasma physics, solid state
physics, hydrodynamics of the surface waves etc.,
the weak turbulence approach may be used. It is
based, as a rule, on the random phase approxima-
tion, thus reminding the incoherent light. The most
typical window of parameters they use to determine
the limits of its applicability, may be determined
by the ‘degree of turbulence’ W/nT where W is the
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energy density of oscillations and nT the thermal
energy density. For example, for the Langmuir
waves, the most typical plasma mode, they use the
following chain of inequalities:

1> W>> :
nT ND.

Here N> 1 is the number of particles in a sphere
of the radius equal to the Debye length rp. Only
great Np typical of the hot and/or rarefied plasmas
allow the predomination of the collective effects.
One of the important features of the weakly
turbulent regime is the ‘inverted’ energetic flux over
scales, compared to the strong, say, Kolmogorov
turbulence (see Fig. 1(a,b)). Indeed, the main pro-
cess of nonlinear dissipation within the frames of
weak (perturbational) turbulence is the stimulated
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a)

FIGURE 1

scattering of waves by particles in which the number
of quanta remains to be invariant, thus, growing
entropy results in reducing frequency of waves. In
the case of normal dispersion (typical of quasi-
steady plasmas) it is equivalent to the dynamics
presented in Fig. 1.

Meanwhile, only in very few cases of the strong
turbulence the left inequality becomes violated,
so that W~nT. For example, in hydrodynamics,
it would mean the oscillating velocity being of
the order of the acoustic velocity. Much more
typical of strongly turbulent regimes are the ef-
fects of coherence, phase correlation and, after all,
the nonlinear structures. Thus, the question arises:
can such a regime be turbulent or not? The matter
is that superposition principle breaks in essen-
tially nonlinear media (cf., e.g., steady magnets),
thus, at first sight, turbulent behavior becomes
impossible.

This is the general problem, however, the phys-
ical community started studying strong Langmuir
turbulence following, first of all, the problems of
laser fusion. The typical mechanism of the energetic
input into the plasma corona of a laser target was
collective one even for Nd lasers (A= 1.06 p) and
moreover for CO, lasers (A = 10.6 ). The collective
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Energetic flux over scales: (a) strong (hydrodynamic) turbulence, (b) weak (perturbational) turbulence.

absorption was being based on the parametric
instabilities, as a result, the main fraction of energy
put in turned out to transfer just to the Langmuir
waves. The latters, within the frames of the weakly
turbulent regime. would lose their energy in
average, little by little. Let us follow the dispersive
relation of the Langmuir waves,
w = wpe[l +3 (krp)?),  krp < 1

with quCE(47rnez/m)‘/2 being the electron plasma
frequency and r, Debye radius. One can readily
see that the overwhelming fraction of the oscilla-
tory energy remains frozen in the long-wave plasma
waves with w~ wy.. There is the only mechanism
of damping of these waves, and not so efficient
one, that is collisional damping. Let us note once
more that such a scenario turns out to be opposite
to that of the conventional Kolmogorov turbu-
lence, in which the source in the k-space corre-
sponds to the longer scales while the leakage of the
energy of oscillations is usually located in small
space scales.

At first sight, that means the resulting accumula-
tion of the wave energy in a plasma corona, that
is so-called condensation of plasmons. In fact,
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nonlinear effects join the game, first of all, modify-
ing the dispersion law:

3 W
W = Wpe 1+5(krD)2—5n—T , (1)

where S~ 1 and W is the energy density of the
plasma waves. It is interesting to compare (1) with
the relativistic form of the energy of a nonrelativis-
tic particle:

£ =mc? +£ + Ulr) (2)
N 2m '

Weak turbulence is nothing but the perturbation
theory based on the zero level representation of the
oscillating field as an ensemble of the noninteract-
ing waves (quasi-free plasmons). Let us note that,
usual particles in (2) remain almost free and their
energy may be estimated as p*/2m only if U<
p?/2m. It is no use to compare their potential
energy with mc?. Respectively, the validity of the
weak turbulence theory for Langmuir plasmons
should be estimated as

W < nT(krp)®. 3)

If this inequality becomes violated, intermode
coupling turns out to be strong even on the level of
zero order approximation. Although such a turbu-
lence is not strong in the sense of separation of
oscillating and random particle motion, the quasi-
particles have to be built on the base of the
renormalized theory. Thus, in fact, the parameter
of expansion while constructing the weak turbu-
lence theory has to be not W/nT but W/[nT(krp)?.
First, it was established by Vedenov and Rudakov,
1965 (see, e.g., [2,3]). In particular, it was shown
that, as a result of violation of (3) inequality, the
specific modulational instability had to start
resulting in the localization of plasmons in some
clots or drops. In other words, instead of a homo-
geneous weak turbulence, nonlinear structures
would arise.

BASIC EQUATIONS. LANGMUIR SOLITON

What does occur after weakly turbulent treatment
becomes broken? It looks not incredible that we can
proceed something like the quasiparticle formal-
ism. However, the quasiparticles themselves have to
be chosen of the new form and with some new
properties. Plane wave (or another linear approach)
does not fit more. Of course, Fourier expansion
may be used in any case. But in general we have to
study plane wave ensemble including fast varying
phases, not only spectral intensities. To escape the
violation of the main basic property of the sta-
tionarity of numbers of particles in each initial and
final state we should search for a new kind of
quasiparticles. Let us remind that modulational
instability results in the localization of the oscilla-
tory field, in other words, chaotic turbulence tends
to the transformation into the nonlinear structures.
Thus, it seems reasonable to start from the non-
linear equations in the x-space without using the
Fourier transform. To separate oscillating and
slow evolution of all the physical parameters, the
following substitution is useful to use:

Elr,t) = L[E(r, 1) exp(—iwpet) +cc]  (4)
with f(r, t) being the complex amplitude and ¢ the
‘slow’ time, i.e., 0/0f < wype. The nonlinear dynam-
ics turns out to obey Zakharov equations [4]:

div [21‘2)—1;: + 3wperh VAivE — wpe‘;—”E} =0, (5
> o ) |EP
(W—CSV )5n—V T6mAl.” (6)

where 6n is the density perturbation, ¢s = \/ T/ M;
ion acoustic velocity, all other terms are conven-
tional. We keep the operator ‘div’ in the LHS of (5)
since two first terms are the potential vectors but the
third. To keep the correct space symmetry we have
to keep ‘div’ but only in the 1-D case. In the linear
approximation, the systems (5) and (6) become
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splitted resulting in the independed acoustic motion
with immaterial HF pressure in the RHS of (6), and
linear dispersion of Langmuir waves, in accordance
with (1).

For simplicity, only 1-D case will be considered in
this paper. It is useful to note that 3-D dynamics is
essentially different (see [2,4]).

Let us assume a very slow motion when both
electrons and ions are permitted to be described by
the Boltzmann distribution:

ed PHF ed
ne = N €Xp T_W = nj = Ny €Xp —7 ,

2
Pyr ~ % < nT,
where @ is the potential of the charge separation.
Thus, HF pressure repells the electrons, they, in
turn, pull out the ions, as a result, the self-consistent
density well becomes formed in which the oscillat-
ing field is ‘locked’. It is just the result of the
modulational instability. Then one can exclude ®:

|E*

b =P 2 on; ~ — .
¢ w/2n0 = bmix o qon o

Together with (5), it results immediately in the
nonlinear Schrodinger equation (NSE),

ia—E—Fgw r @—i—w ﬁ = (7)
Ot 2 PP Hx2 0 M; T

This equation has been studied well enough. It is
known that it has the infinite set of integrals of
motion. In particular, it means that no turbulence is
permitted to exist within the framework of (7) but
only the entirely determinate nonlinear dynamics.
We have, not to forget, however, that (7) is not more
than the quasi-steady or essentially subsonic model
of the Langmuir dynamics. It is interesting to note
that essentially subsonic limit of Egs. (5) and (6) is
the same NSE. Meanwhile, in one point this system
is opposite to (7) since it includes hydrodynamic
description (6) of the background (i.e., ions) which
is opposite limit with respect to the Boltzmann
distribution. Respectively, the same effect of the
field localization follows from (5) and (6) but

FIGURE 2 Langmuir soliton.

conditioned by the different mechanism. To wit,
the ion well in this case is the consequence not of the
potential hill but of the potential well through
which ions are flowing faster and én <0 follows
from the continuity of the ion flux. Both cases are
presented in Fig. 2. Let us turn to the exact solution
describing this effect of localization.

Fundamental object in the strong Langmuir
turbulence is called Langmuir soliton (Rudakov,
1972, see, e.g., [2,3]). It can be obtained analytically
starting from Eqs. (5) and (6). We will search for
this solution in a form of travelling wave:

E(x,1) = E(x — vst) expli(kx — éwt)],

bw =w — wpe, Exoioo — 0. (8)

Here v; is the soliton velocity (not acoustic velocity
¢s), the frequency shift dw includes both dispersive
and nonlinear effects. Space modulation (k) is
inevitable if v, # 0, as it will be seen below.

It is convenient, for simplicity, to start with
substitution of (8) in NSE which turns out to be
splitted in two:

3 3
_wpeV%)E& + <6w — Ewpek2V2D> E

2
|E
+Wpe 327_[_1‘41E‘— (9)
Vs E¢ + 3kwperh Eg = 0. (10)

where £ = x — v, (10) immediately results in

A (k)
Ok

Vg = Skwper]z) =
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and that is just the argument for the space
modulation. Indeed, the nonlinear wave velocity
turns out to be equal to the group velocity of the
Langmuir waves, hence, vs# 0=k #0. The
difference within the brackets in the LHS of (9)
is the nonlinear shift of the frequency while the
total shift may be presented in the form

Ow = 3rh(k* — k),

where ko will be found while solving (9), together
with E(¢) dependence:

E() EE()
E——20 =0 12
cosh ko¢ 0T 4T (12)

This is the only nonlinear formation stable with
respect to the modulational instability, and conse-
quently, the final result of this instability. Unlike
KDYV solitons, it includes HF modulation and
depends on two free parameters, viz., E, and v
(or k). If, instead of NSE, one solves the full system
of Zakharov equations (5) and (6), exact solu-
tions will be slightly different from (12) due to
the ‘relativistic’ effects:

Eo
=
cosh k¢’

ko =

E=Xx—wt, bw= %r]z)(k2 — k),

eE()
V24(1 — VSZ/C%)T.

(13)

It is interesting to consider the Fourier spectrum
of the Langmuir soliton. Funnily enough, it turns
out to be presented by the same function cosh ~':

+00
Ey
E(x, 1) = /
(x. ) Re/_oo A ey cosh (k' /2ko)

x expli(k’ + k)x — i(w + k'vs)1]
+00
= Re/ dq E, expli(gx — Qqt)], (14)
T
ecosh(r(q — k)/2ko)’
Qg = wpe + bw + (g — k)vs.

E, =V6y/1 —v2/c?

Fourier spectra of both standing and travelling
Langmuir solitons are drawn in Fig. 3. At least two

FIGURE 3 Fourier spectra of both immovable (solid line)
and travelling (dotted line) Langmuir solitons.

of their interesting properties should be pointed out:

(1) The amplitude of the spectral distribution in
the k-space does not depend of E, but only
the spectral width. This is the evident conse-
quence of the fundamental relation kq o< Ey.

(2) (924 —%)/(g — ¢') = vs. Thisis a manifestation
of the nature of the fundamental nonlinear
processes involved into the problem:

[—=1l+s, 1+1—(s)—[+1

Thus, the low-frequency component of the
Langmuir soliton (see én in Fig. 3) is the commom
beat of all the HF harmonics.

SOLITON MODEL OF THE STRONG
LANGMUIR TURBULENCE

First of all, let us emphasize that, unlike NSE, not
the infinite number of integrals of motion may be
introduced for Zakharov equations (5) and (6) but
only three, to wit, the number of quanta:

1 +00 )
Iy |E|” dx, (15)

4mwpe J -0

the integral of momentum 7, and the dispersive
fraction of the oscillatory energy (like £ — mc? for
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the particles):
I =& — wpelo. (16)

As a result, Egs. (5) and (6) are not completely
integrable and the turbulent behavior is allowed
within the frames of the model based on (5) and (6).

Equations (5) and (6) can describe both modula-
tional instability and essentially nonlinear dynam-
ics. As the modulational instability is conditioned
by the level of turbulence high enough, W/nT >
(krp)?, one could expect its final result to be, at
least, W/nT ~ (korp)* where kg is an effective wave
number corresponding to some typical scale of
localization, L ~ kg '. If W— nT due to the pump-
ing (laser or particle beam or something else),
effective damping process joins the game, that is
Landau damping since korp — 1 providing the
dissipation. Thus, the flux of energy in the k-space
becomes inverted with respect to the weak turbu-
lence, and all the turbulent scenario acquires the
typical features of the Kolmogorov-like turbulence.

As it has been noticed above, to represent any
turbulent behavior, the superposition principle has
to be provided by the model being used. From this
point, Langmuir solitons are looking rather attrac-
tive to play the role of new quasiparticles since these
coalescenes are restricted in space with exponential
accuracy, hence, the superposition principle can be
satisfied with the same accuracy. Besides, except of
the amplitude, each soliton has one more free
parameter, i.e., velocity, that allows to form real
chaotic behavior of the resulting field. In addition,
solitons of different amplitudes, have also different
width, thus, one of them seems to be something like
quasiclassical well for another, as a result, these
solitons may pass free one through another, like
KDYV solitons do. After all, unlike any other wave
formation, soliton is stable with respect to the
modulational instability.

Following Egs. (12) and (13), to wit, ko(Ey) de-
pendence, one readily can see that self consistent
relation W/nT ~ (korp)? is true for any particular
soliton. Taken as averaged in space, (W)/nT may
even essentially less than ({(ko)rp)?, thus, to differ

weak turbulence from the strong one, it is useful to
follow the direction of the energy flux in the k-space.

The fundamental assumption was made in [1]
that this flux in the strongly turbulent regime was
provided by the soliton fusion ‘two in one’ in which
only solitons with close amplitudes could take part.
Indeed, integral of motion [, allows this process
(and return process as well since [y Ep). In turn,
integral of motion I, allows the process of fusion
but forbids the process of decay, ‘one in two’. As for
the close amplitudes, this assumption was made to
escape the multi-soliton collapse, based on the idea
of quasiclassical approach mentioned above. Both
assumptions were confirmed later in the ‘computer
experiment’ carried out by Degtyarev et al. [5].
Its results added only one but essential circum-
stance to the model concerning the important role
of the acoustic waves (background noises) in the
dynamics of multi-soliton systems. The qualitative
picture of the coalescence ‘two in one’ following
from these simulations is presented in Fig. 4.

Let us put W to be the average density of the
turbulent state and L — the length of the 1-D
turbulent plasma system. Then let us introduce the
set of the fundamental states in assumption that
in each state the turbulent energy is distributed
between N identical solitons so that N is the param-
eter of state. Their amplitude may be determined
by using the equality

Ny

WL = NE(N) =5 E(NNT. (17)

The maximal number of solitons in a state is re-
stricted by the condition of close packing N ..~
koL, which yields

1 /"L
Nopagx 2 ——= | —] —. 18
(L
The minimal number of solitons is conditioned
by the Debye scale, or, if there exists suprathermal
‘tail’ of electrons, by some Kkgmax < ral which
determines the cut off the turbulent spectrum:

1 WL -1

Nnin =~ —“‘__“(kOmaer) (19)
'p
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FIGURE 4 Three stages of the process of fusion of two
Langmuir solitons.

In a result, the turbulent state may be presented
in the form of expansion over fundamental states.
Let us define P(N) as the probability of (V) state:

An(N)
P(N) = ———= 2
(N =252, (20)
where An(N) is the number of solitons of the
amplitude Eo(N) in the real state. Hence, P(N) is

also the fraction of the total energy provided by
these solitons as & o Ej:

AE(N) = Ey(N)P(N). 1)

As a rule, in the computer simulations they fol-
low the energetic spectrum in the k-space (the same
had been studied in the kolmogorov model). Well,
let us calculate the spectral intensity W) depending
on the P(N) distribution. For this purpose the
expansion (14) will be used. In the turbulent state,
all the solitons have to be placed randomly, with
random phases. Thus, the squares of their harmonic
amplitudes are allowed to be summarized:

1272 [ N(max) 3T2Nk
W, = dN NP(N)cosh™2 .
L /N(min) (N) cos ( WL )

(22)

Roughly, for simplicity, cosh ~*(x) may be esti-
mated by the step function O(1 — |x|) which cuts
off the integration at

Ny

1

1 reN2WL
3(7) < o

Thus, the final result may be presented as

1272 [NO)
W, = P(N).
k=70 /N(min) dN NP(N) (23)

In many cases, spectra of strong Langmuir turbu-

lence obtained in simulations may be well approxi-
mated by the function

)
W/( o k 5
which in our representation corresponds to

P(N) = const, (24)

thus being an analog of the Rayleigh—Jeans dis-
tribution. (In a weakly turbulent regime, i.e., in the
Fourier representation, this distribution degener-
ates to Wy =const=2T7/r.)

Our representation may be without difficulties
translated into more usual treatment, operating not
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with the probability P(N) but with the averaged
number of solitons of the given amplitude per unit
length, i.e., with the soliton distribution function:

dN
F(Ey) = P(N)N—-. 2
(E9) = PIVIN 5 5)
Particularly, ‘Rayleigh—Jeans distribution’ given
by (24) becomes transformed into the following:

F(Ey) o< Ey°. (26)

NUMERICAL SIMULATIONS

Basic assumptions of [1] were confirmed in [5].
Besides, some additional features of this ‘relay race’
turbulent model were revealed. In a whole, only
rather few fundamental problems of such a non-
linear physics may be solved analytically. It can be
very important in the subsequent construction of
theoretical ‘images’ of real dynamics, however, most
results upto-date have been obtained by the simula-
tions. In the paper [5] real turbulence had been
studied, based on the energetic flux over scales. It
was shown that not only radiation of the ion-acous-
tic waves was typical of this turbulence, not less
important was the soliton fission by the acoustic
quanta radiated by the fusion of more intensive
solitons. The real spectra of strong Langmuir
turbulence were calculated, in fact very similar to
(24,26).

In many later papers not the turbulent behavior
was being studied but a kind of thermodynamics
which was thermodynamics of waves only, without
their thermodynamical equilibrium with particles.
In principle, it is different problem, however, it can
be easier posed and more carefully modelled in
simulations. Resulting tendency may be expanded
onto the turbulent regime since the fundamental
interactions are the same in both cases. The most
interesting are the papers [6—8] which demonstrate
‘dew’ effect in the strong Langmuir turbulence. As
the drops of water interact in a closed volume via
the vapor, solitons with the HF filling (‘solitons of

envelope’) interact via the weakly turbulent spec-
trum. The well known result of thermodynamics is
either the total evaporation of all the drops or their
condensation in the only drop being in dynamic
equilibrium with the vapor. Also solitons either
become converted into the weakly turbulent ensem-
ble or tend to the formation of the only soliton of
higher amplitude being in dynamic equilibrium
with the weak turbulence. This result was obtained
numerically in [6—8], it implicitly cofirms the basic
concept of the soliton model of turbulence [1].

CONCLUSION

Thus, it has been shown that strong turbulence of
the plasma waves combines two basic properties of
the nonlinear dynamics, viz., turbulent behavior
and nonlinear structures. The latters can be mod-
elled in one dimension by specific two-parametric
solitons with HF modulation. Perhaps, this model
can be expanded, in principle, onto some other
nonlinear dynamics based on the interaction of
individual objects with some individual properties
resulting in the chaotic behavior that, in turn,
results in some macroscopic dynamics. This dynam-
ics includes the irreversible processes and may be
contemplated, in a whole, as the complicated
dynamical dissipative structure.
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