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Theories of stellar evolution and stellar explosion are based on results of numerical simulations
and even qualitative results are not available to get analytically. Supernovae are the last stage
in the evolution of massive stars, following the onset of instability, collapse and formation
of a neutron star. Formation of a neutron star is accompanied by a huge amount of energy,
approximately 20% of the rest mass energy of the star, but almost all this energy is released in
the form of weakly interacting and hardly registrated neutrino. About 0.1% of the released
neutrino energy would be enough for producing a supernovae explosion, but even transfor-
mation of such a small part of the neutrino energy into the kinetic energy of matter meets
serious problems. Two variants are investigated for obtaining explosion. The first one is based
on development of convective instability, and more effective heating of the outer layers by a
neutrino flux.

The second model is based on transformation of a rotational energy of a rapidly rotating
neutron star with its envelope into the energy of explosion due to action of a magnetic field asa
transformation mechanism. Calculations in this model in 1- and 2-dimensions give a stable
value of transformation of the rotational energy into the energy of explosion on the level of few
percents. This occurrance to be enough for explanation of the energy release in supernova ex-
plosion. The last model gives a direct demonstration of nonlinear interaction between hydro-
dynamical and hydromagnetic systems. At first a field is amplified by differential rotation, then
thisenhanced field leads to transformation of the rotational energy into the energy of explosion.
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1 INTRODUCTION

A first understanding of the evolution of the
Sun appeared after numerical calculations of
Martin Schwarzschild made by in 1941 (see [31]).
Twenty-five years later first numerical calculations
of supernovae (SN) explosion have been performed
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[14], revealing qualitative as well as quantitative
features of this explosion: prevailing role of neu-
trino energy losses and big sensitivity to the physical
input parameters.

A SN explosion is the end of the life of most
massive stars with M > 8 M. The flash itself results
either from the thermal instability development in
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degenerate core, or from gravitational and partly
nuclear energy release during collapse which leads
to the neutron star formation. The rotation and
magnetic field may play an important role in con-
version of gravitational energy into energy of
observable flash. A small part of stars (the most
massive ones) seems to end their life with collapse
and black hole formation. The collapse in this case
may be “silent” and not lead to SN explosion. The
physical processes accompanying SN explosions
are: nuclear reactions, neutrino processes, convec-
tion; equation of state of matter in wide region of
parameters, where effects of degeneracy and relati-
vistic corrections are important, is described in the
book [7]. Despite many efforts, the SN theory is far
from complete even in spherically symmetrical
approximation by reason of serious numeric and
fundamental difficulties related to nonstationary
convection, neutrino transport and equation of
state for matter of a density above the nuclear.

2 NUMERICAL CALCULATIONS OF SN
IN THE HYDRODYNAMICAL MODEL

Iron cores with mass Mg, >1.4M. lose their
stability through the iron dissociation which
directly leads to a rapid collapse. The iron core
forms in stars with initial mass M; > 10M, while
for M > 13M, all stages of nuclear burning proceed
smoothly. As all evolutionary calculations yield
significant uncertainty in the relationship Mg.(M)),
the stability loss due to the iron dissociation is
certain for single stars with M; > 13 +3M,,
Hydrodynamical calculations of iron core col-
lapse have been first performed in [14], and soon
after in [5,18]. Hydrodynamical equations have
been solved and, massive stellar cores (M >2M)
on the boundary of hydrodynamical stability have
been taken for initial conditions. These studies take
into account formation of electron and muon
neutrinos during collapse, the role of neutrino in

the envelope heating and probable ejection, and the
effect of burning of thermonuclear fuel 12C, %0
remaining around the iron core. It has been noted
in [10] that the reflection of infalling matter from
the surface of stable neutron star and formation of a
shock wave (bounce) may also be important for
producing SN explosion. Numerous calculations to
date (see reviews [11,16,17,36,37]) have revealed
sensitivity of the results to the equation of state of
nuclear matter, quantity of remaining thermo-
nuclear fuel, treatment of convection. The results
are strongly influenced by adopted methods for
including neutrinos at transparent and opaque
stages. Calculations including neutrino processes
in a self-consistent way over the entire star were first
performed by Nadyozhin [26,27]. It was shown that
neutrinos are strongly damping the matter inflow,
preventing the bounce, and their heating of matter
(neutrino deposition) is not enough for a formation
of a strong shock and explosion. The mean energies
of neutrinos arising in collapse are ~ 10MeV."
Inclusion of thermonuclear burning of oxygen in
the envelope, muon- and tau-neutrinos, momentum
transfer from neutrinos to nuclei caused by coher-
ent scattering due to neutral currents does almost
not alter the results.

2.1 Neutrino Convection in Collapsing
Stellar Cores: 2D and 3D Calculations

Neutrino flux is formed in the neutrino opaque core
and goes out freely over the neutrinosphere, where
the optical depth to the neutrino absorption is
about unity. Huge temperature and lepton concen-
tration gradients are developed in the vicinity of the
neutrinosphere, leading to convective instability.
Convective motions in the neutrinosphere might
bring hot material outward and increase the mean
energy and flux of escaping neutrinos whose
deposition could initiate an explosion.

An unstable lepton and entropy profiles, formed
after ~10ms of the creation of shock wave and

fIn [23], the mean energies of electron neutrinos equal 14 MeV electron antineutrinos, 15 MeV, other neutrino species (v,,, 7., v+, U7),
32MeV. The total energy of emitted neutrinos ~ 6 x 10°*erg is distributed almost equally between these six types of particles.
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bounce of the core, can drive a violent Reyleigh—
Taylor-like overturn studied in [I12]. Coupling
2-D hydrodynamics treated by precise-parabolic
method (PPM), with independent 1-D neutrino
transport was used. The explosion was obtained
in this model, while without neutrino transport, or
with account of convection in 1-D hydrodynamical
model the explosion did not happen. Extended
calculations in similar model with 2-D neutrino
transport have been presented in [13]. Here convec-
tion becomes so violent, that spherical and even
plane symmetry of the core are strongly broken,
neutrino emission and mass ejection goes aniso-
tropically, inducing the explosion with ejection of
few tens of high entropy clumps, and giving a kick
to a neutron star, which by estimations can reach a
speed of ~500 km/s.

3-D simulations of convection in the shocked
matter of the SN core have been done in [32],
assuming that the neutrino radiation from the proto
neutron star is radial, but axisymmetric. The
asphericity of the neutrino flux was connected
with rapid rotation of the protoneutron star. The
formation of high-entropy hot bubbles and jet-like
explosion was obtained as a result, but explosion
energy problem was not considered.

PPM method was used in 2-D calculations [19,20]
of neutrino-driven SN with convective overturn
and accretion. The effects of convection obtained
here are less pronounced than in [13], while power-
ful explosion is obtained in a certain, although
rather narrow, window of core v fluxes in which 1-
D models do not explode. The maximum attainable
velocities of the kick are estimated to be around
200 km/s.

Extensive 2-D study of SN explosion following
the collapse of cores of two massive stars (15 and
25M ) have been performed in[15]. The calculations
begin at the onset of core collapse and stop several
hundred milliseconds after the bounce, at which time
successful explosion of appropriate magnitude has
been obtained. The explosion is powered by the
heating of the envelope due to neutrino emitted by
the protoneutron star. This heating generates strong
convection outside the neutrinosphere which was

demonstrated to be critical to the explosion. Con-
vection leads to violation of radiative equilibrium
between neutrino emission and absorption. Thus
explosions become quite insensitive to the physical
input parameters, such as neutrino cross-section or
nuclear equation of state parameter.

Smooth particle hydrodynamics (SPH) code was
used for 2-D calculations with spherically sym-
metric gravity and realistic equation of state. 2-D
explicit code for neutrino transport was developed
with account of most important processes of neu-
trino emission, absorption and scattering. A pecu-
liar characterictic of neutrino processes in SN is
that dominant process which leads to neutrino trap-
ping does not affect the neutrino spectrum, because
elastic scattering between nucleons and neutrinos
happens almost without the energy exchange. That
leads to the situation, where the optical depth can
be large without thermalizing the fields. As a
result, local thermodynamic equilibrium cannot be
assumed.

The main features common to all 2-D simula-
tions made in [15] are following. After an initial
period of dynamical infall lasting a few hundred
milliseconds, the central density becomes super-
nuclear, the core hardens and a bounce shock is
launched. Within a few milliseconds this shock
stalls due to energy losses at a radius ~150 km. At
this point 2-D calculations begin to differ greatly
from 1-D computations because of the onset of
hydrodynamical instabilities. Most important to
the SN is the neutrino-driven convection that lasts
for over 100ms until a successful explosion is
achieved.

Investigations of collapse and explosion of
rotating cores have shown that the explosion
proceeds in the same manner as in the nonrotating
case, except the rotation has a strong influence on
the shape of the convective patterns that develope
above the protoneutron star. As was pointed in [15],
the most wanting aspect of the calculations remains
in neutrino physics, because of the obvious diffi-
culties of radiation transport in multidimensions.
The basic flux-limited approximation leaves much
to be desired in nearly optically thin regions, and
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also nonelastic neutrino nucleus interactions have
been ignored, which could play an important role in
the explosion. As was indicated in [15], at a time
~200ms SPH model ceased to adequately resolve
the atmosphere above the neutron star and simula-
tions had to be stopped. The fact the this time is
close to the time of the formation of the successful
explosion shock makes it desirable to check more
carefully the role of numerical effects in these
calculations. Another variant of 2-D calculations
with similar input physics, but different numerical
scheme and initial conditions, have been performed
in [25], and no explosion was obtained in presence
of the neutrino-driven convection.

3 NUMERICAL SIMULATIONS OF THE
MAGNETOROTATIONAL MODEL OF
SUPERNOVAE EXPLOSION

When all the above mechanisms of explosion prove
to be inefficient, the magnetic field may convert the
rotational energy of a neutron star resulting from
collapse into kinetic energy of the envelope and thus
ensures a SN explosion. A magnetorotational
model of explosion has been suggested in [6].}
Numerical calculations for this model have been
made to cylindrical approximation in [1,10], spheri-
cally symmetric approximation in [24] and in a
simplified 2-D formulation in [30]. The results of
these calculations are in qualitative agreement and
give a conversion of ~ 3% of the rotational energy
into kinetic energy of the outburst. For E., =
103 erg we have the energy Eii, = 3 x 10°! erg suffi-
cient to account for a SN explosion.

3.1 Qualitative Description of
Magnetorotational Explosion

When a rapidly rotating presupernova collapses, it
leads to formation of a rapidly rotating neutron star
surrounded by a differentially rotating envelope in
which the centrifugal forces are comparable with

gravitational ones. The differential rotation twists
the lines of magnetic force, thereby causing the
magnetic field with initial energy ey <eg to
increase linearly in time. When the energy of the
field in the envelope approaches ey ~eg, the
magnetic pressure pushes the material outward.
The arising wave of compression propagates over
medium with falling density, gets enhanced and
transforms into shock to result in a powerful
explosion. As the compression wave and subse-
quent shock move outward, their energy keeps
increasing, maintained by rotational energy sup-
plied by magnetic field. The magnetic field serves
also to transfer to outer layers an essential part of
the total angular momentum. Calculations of
collapse for rotating star with a strong initial
magnetic field have been done in [21]. The obtained
picture of an explosion in the form of outbursts
lined up along the dipole axis differs from the
magnetorotational explosion where the major part
of the outburst occurs in the equatorial plane. It is
connected also with a choice of the initial magnetic
field configuration, having maximum in the enve-
lope, and zero radial component at the equator. The
initial magnetic fields in [21] exceed 3—4 orders of
magnitude of the really observed ones.

3.2 Basic Equations of 2-D Model

The equations of magnetohydrodynamics (MHD)
with gravitation in cylindrical Eulerian system
(r,p,z) at an infinite conductivity and axial
symmetry 0/0p =0 read [7]

ey e, D0 T
ot Vr or & oz r
1oP 0O 1 :
e L
vy, O, Oy vy _ 1 7
ot " or s 0z ro Uz By = JrBz).
(2)

tObservations of radio emission at a relatively early period of the flash, roughly one year after the light peak, provide an indirect
evidence for an essential role played by the magnetic field in supernova explosion [35].
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P=Pp,T), E=EpT), f.=f(p,T). (14)
Here Equations (1)—(3) are the equations of motion
with magnetic fields, (4) is the continuity equa-
tion, (5)—(7) are the “frozen-in” field equations

(0Bt = rot(¥ x B)), (8) is the equation for a field
with no divergence (divB = 0), (9)—(11) are the
equation for field generation by electric currents
(with no term for displacement currents, rot B =
(47/c)j), (12) is the Poisson’s equation, (13) is the
energy equation, ¥(v.,v,,v.) is the velocity,
E(B,, B,,B.) is the magnetic field strength,
f( JrsJsJz) 18 the current density, ¢ is the velocity of
light, ¢ is the gravitational potential.

Under assumption of a plane symmetry the set of
equations (1)—(14) is solved for a star of mass M at
the following boundary conditions:

(a) P=p=T=B,=0 on the outer boundary,
(b) vv=j,=B,=0 atr=0,

(¢) vo=j,=B,=0 atr=0, (15)
(d) v.=0, —aaj—zz or j,=0, %% or B,=0
at z=0.

The dissipative processes are neglected in calcula-
tions, the neutrino emission is allowed for by f,, an
artificial viscosity is used for shock calculations.
The introduction of artificial viscosity in [2], where
a Lagrangian coordinate system is used, implies
replacing P in the equations of motion (1)—(3) and
energy (13) by

P+w=P—vdivi=P—v L(rv,) O ’
roor 0z

(16)

where v is the viscosity coefficient. The distribu-
tions p(F), T(7), B(F) are specified at initial time,
and the last of them should satisfy the condition of
the absence of magnetic charges (8) and yields finite
values of j{7) throughout the star, in accordance
with (9)—(11). Surface and linear currents arising
from singularities in j{7) are usually ignored in
calculations. If the equality (8) does hold at the
beginning, it will remain valid with time provided
that only Equations (5)—(7) are used to determine
the field.



272 G.S. BISNOVATYI-KOGAN

3.3 1-D Cylindrical Approximation

A cylinder uniform along the z-axis with
v.=B.=j,=j,=0is considered in a 1-D formula-
tion. It means that in a real star the motion along
the z-axis is neglected. The basic equations with the
Lagrangian independent variable

s:/ p'r" dr’ (17)
0
become [1,10]

o1\ o0 or dp v,
5t'<—>—‘5§(”vr), '6';—\’” o (18)

p r
v, v, 9P 1 9 .,

o "o smas B e (19
0 rB, 0
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r

Here M, is the mass per radian of a unit length of a
core with a uniform solid-body rotation, g is a
gravitational acceleration. An approximate equa-
tion of state in the form

3.09 x 10"2p%3(1 4 1.59 x 1073p!/3)
J(143.18 x 1073p!/3)?
+ 6.5 x 10*0* +aT*/3 4+ pRT

for p <3 x10°gem™3,
2.04 x 107 + 6.5 x 10*p? + aT*/3 + pRT
for p >3 x 10°%gcm™3,

(24)

(4.635 x 10"2p*3) /(1 + 3.18 x 1073p!/3)
4 4
+6.5x 10*p+aT*/p+3RT

for p < 3 x 10°gem ™3,
519 x 1077 /p +2.41 x 108 (p — 3 x 10%) /p

4 4
+6.5x10% +aT*/p+3RT

for p>> 3 x 10°gem ™
(25)

has been used in [1,10]. The equation allows
approximately for the transition from nonrelati-
vistic to relativistic electrons occurring at a strong
degeneration. The electron pressure has been taken
to be constant after the onset of neutronization.
Neutrino losses due to URCA-processes has been
taken into account.

Atinitial time ¢ = 0 it has been adopted 7=0, and
the density distribution has been specified in the
form [1]

p(s,0) = aexp[—b(r — Ro)’]; a,b = const. (26)

Here Ry= R(0,¢) is the core radius; M is the
envelope mass per unit length per radian. It is
adopted v,(s,0)=0, B_(s,0)=0, and the boundary
conditions (15a). Also specified are the constant
A from (21) and the initial distribution v(s,0)
from the radial equilibrium equation (19) with dv,/
ot=0

2 (5,0 :
V;D(SO)) —r(s,0) 0 P(s.0) +2(5) = 0. (27

The angular momentum of the system core+
envelope is assumed to conserve throughout the
calculations; the relation for this conservation,
owing to the continuity of v, on the core boundary,
is written in the form of the boundary condition

My Oh

—2—5§_h:0 ats =0, h=rB,. (28)
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3.4 Calculational Results in 1-D

The problem was calculated numerically in the
region

1>0, 0<s<M (Ry<r<R(). (29
The basic dimensionless parameters of the problem
are

A2 _ M,
e (Vo = v27GMy), f==2 (30)

The solution in [1] was obtained for =1, a=
102,10 %10 8. In order to introduce dimension-
less quantities, all the variables are taken in the
form F = FyF with the following scale variables Fy:

vo= Vo, ro=Ro, fto=Ro/Vo,
hy = A, po=M/R,
Po=MV3/R3, Ey= V3, (31)

Qo= Vo/Ro (2 =v,/r),
so=M, To=V}/10°R, fu=Vi/Ro;
with Ry = 10® cm, 27M, = 0.5 x 107°M®

Decreasing the parameter o causes the timescales
of processes to increase as o~ 2. As a—0, it is
convenient to introduce the dimensionless func-
tions

“1)2

Iy = ta]/Z’ Via = VX 5

ho = ha'2, " fuo = foa ™', (32)

having the same relationships between them for all
small .. For other functions F, = F. The results of
numerical calculations are presented in Figs. 1-4
from [1].

Propagation of a slow (v < v4 = By/4mp) MHD
shock over the envelope may be seen in Figs. 1
and 2. The region of the sharp temperature peak
beyond the discontinuity front is the major source
of neutrino emission. It is clear from Fig. 4 that the
relationships between the variables (32) are little

sensitive to decreasing «. The timescale growth
proportional to o~ 2 is caused by an increase
~a "2 in the number of turns of magnetic lines
required for achieving the condition for the onset of
runaway ey ~ €g. Figure 3 illustates an increase in
the number of turns with decreasing « for the same
time ¢,,. Figure 4 demonstrates the conversion of the
rotational energy into other energy forms.

Estimates based on the inclusion of the spherical
gravitation potential of a real star and results of
numerical computations give for the mass and
energy of the shed material

Mg ~0.13Mo, e~ 0.0350  (33)

Q =40—2
10 oL =40

-92}

FIGURE 1 Thedistribution over the dimensionless parameter
s of the angular velocity §2 normalized to the maximum dimen-
sionless value Q* = 1 at various times for & =0.01. All curves are
labeled by corresponding times ¢,,, from [1].

a=1"2
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—

S

[~

i
10 s

FIGURE 2 The distribution over the dimensionless parameter
s of the temperature 7" normalized to the maximum dimension-
less value 7* = 64.6 at various times for « =0.01. All curves are
labeled by corresponding times ¢, from [1].
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FIGURE 3 The shape of lines of magnetic force in a region
nearby the core at time ¢,=7 for a=0.01 (dashed line) and
a=10"* (solid line), from [1].

FIGURE 4 Variations with ¢, of the rotational E,, radial
kinetic E,, internal thermal E., magnetis Ey energies, of the
neutrino energy losses E, for a=0.01 (solid line) and ov=10~*
(dashed line). All the quantities are normalized to the maximum
rotational energy E% = 10*erg/cm per unit cylinder length,
from [1].

which is valid only for small «; for a=10"2 we
have e, = 0.08¢,,. The major part of the envelope
joins the core and rotates as a rigid body together
with it. The angular velocity of the resulting model
is ~0.1V/Ry, i.e. decreases by ~ 10 times relative
to the initial velocity. Most of the initial rotational
energy escapes in the form of neutrino emission,
while most of the angular momentum is taken off by
the ejected envelope. The parameter « has little

effect on the integral neutrino flux

t M to M
0, = / / fodsdt = / / foadsdt,.
0o Jo o Jo

An interesting result of calculations is a possible
stage of magnetorotational oscillations of the core—
envelope system, during which the angular veloc-
ity changes its sign. The angular velocity of the
resulting core may be opposite to the initial angular
velocity.

3.5 Results of 2-D Calculations

The attempt to obtain magnetorotational explosion
(MRE) in realistic 2-D picture has been done in [3].
The simpifled problem was solved for initially
uniform and rigidly rotating gas cloud and initial
values of internal, rotational and magnetic energies
taken as

Eino =0.1, Eroto = 0.04,
| Egro | Egrol

Emagl
|Einl |

=0.05.

(34)

Here the index “0” is related to the initial state of
the collapse, index “1” is related to the quasi-
stationary state, which the rotating cloud without
magnetic field reaches in the process of collapse.
The magnetic field was included into calculations
in the point “1”. This simplifies the calculations of
the collapse and may be justified for a realistic case
of the neutron star with FEu..1/Ein < 1, that it
does not influence the process of the collapse. The
dynamical action of the magnetic field begins to be
important only after its considerable amplification
in the process of twisting, which takes time much
longer than the time of the collapse and establish-
ing of the quasi-stationary state. The quadrupole
component of the magnetic field is expected to be
the most important for MRE, because it has large
radial component near the equator, which is
amplified by the field twisting. In order to avoid
a central singularity a regular field of the similar
topology was chosen instead of the quadrupole in
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the form (in nondimensional variables)

Hyy = F,(0.5r,0.52 — 2.5) — F,(0.5r,0.5z + 2.5),
Hy =0,
H.i = F.(0.5r,0.52 — 2.5) — F.(0.5r,0.5z + 2.5),

2rz 213z

Filr2) = k((zz +1)7 (21 1)5)’ (33

F(r,z) =k ! -~ a .
(224172 (2+1)*

Nondimensional variables in the Equations (1)—
(14) have been used with a factor

Hy=+/Py= p(l)/2ro/to (36)

for the magnetic field components. The value
k=0.43 adjusts the energy relation (34). The
numerical method is based on the generalization
of the implicit Lagrangian code to the case with a
magnetic field [3]. On the outer boundary a
nonzero value of the pressure Poy =10~ P, was
kept, which have not influenced the MRE process,
but solved some numerical problems. At r=0 it
was assumed

v, =vs=B,=Bsy=(VxB),=(VxB), =0
(37)

and at z=0

IV xB),
=0 (38)

v, =B, =
was taken. The results of computations are pre-
sented in Figs. 5-8. The quasi-stationary state in
Fig. 5 is presented at the moment very close to ¢; =
23.920, when the magnetic field (35) was included
into computations. The magnetic field configura-
tion (practically initial) at almost the same time is
presented in Fig. 6. Azimuthal component of the
magnetic field increases until it becomes important
for a dynamical influence. Magnetic pressure
pushes out the matter, mainly in the equatorial
plane, which expands and part of it (about 2.4%)
is flying away to the infinity, carring away about

0.5% of the rotational energy of the configuration,
formed after the collapse. Density contours and
velocity fields, showing the development of the
outburst, are given Figs. 7 and 8.

TIME= 23.929313
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FIGURE 5 Triangular grid at +=23.929313, from [3].
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FIGURE 6 Magnetic field patterns at = 23.94, from [3].



276

G.S. BISNOVATYI-KOGAN

Velocity field, time= 32.634180
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FIGURE 7 Velocity field in the meredional section of the cloud at 1=32.634, from [4].

COSEQUENCES OF A MIRROR
SYMMETRY BREAKING OF THE
MAGNETIC FIELD DURING
COLLAPSE OF A ROTATING
STAR AND NEUTRON STAR
FORMATION

Observation of the pulsars moving at the velocities
up to 500 km/s [22] is a challenge to the theory of the
neutron star formation. The plausible explanation
for the birth of rapidly moving pulsars seems to
be the suggestion of the kick at the birth from the
asymmetric explosion. Make estimations for the
strength of the kick produced by the asymmetric
neutrino emission during the collapse. The
asymmetry of the neutrino pulse, is produced by
the asymmetry of the magnetic field distribution,
formed during the collapse and differential rotation.

Consider rapidly and differentially rotating new
born neutron star with the dipole poloidal and
symmetric toroidal fields. A field amplification
during the differential rotation leads to the forma-
tion of an additional toroidal field from the poloi-

dal one. This field, made from the dipole poloidal
one by twisting, is antisymmetric with respect to the
symmetry plane. The sum of the initial symmetric
with the induced antisymmetric toroidal fields has
no plane symmetry.

In absence of dissipative processes the neutron
star returns to the state of rigid rotation loosing
the induced toroidal field and restoring mirror
symmetry of the matter distribution. Formation
of asymmetric toroidal field distribution is followed
by MRE, which is asymmetric, leading to neutron
star recoil and star acceleration [9]. The neutron
star acceleration happens also [8] due to depen-
dence of the cross-section of week interactions on
the magnetic field.

In the magnetic field electrons occupy discrete
energy (Landau) levels for motion in the plane
perpendicular to the field, with energy difference

B
AELZhe .

MeC

(39)

When this difference is of the order of the energy
of beta decay A the decay probability begins to
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FIGURE 8 Density contours and velocity field at t=46.11, from [3].

depend on the value of B. The critical magnetic
field corresponds to

2,3
msc

~44x%x 10" Gs.
(40)

By = A

2
Aep, = Amec”, p

The probability of the neutron decay in the strong
magnetic field was calculated in [29]

WnB = Wy

cr

B\?2
1+0.17(73-> +} for B <« B.;
(41)
and

Wap = W,0.77 (Bﬁ) for B> B,  (42)

cr

with W, is the probability for nonmagnetic case,
see [7]. In strongly relativistic plasma with Fermi
energy €, or kT larger than A > mec® we should
use in (40) a maximum between A = epe/(mecz) and
A= kT/(mec?).

After a collapse of rapidly rotating star the
neutron star rotates at the period P about 1ms.
Differential rotation leads to the linear amplifica-
tion of the toroidal field

B¢=B¢0+BP(I/P). (43)

The time of the neutrino emission is several tens of
seconds [28]. After 20s the induced toroidal
magnetic field will be about 2x 10*B,, corre-
sponding to 10'*~10"" G for B,=10""-10"Gs,
observed in the pulsars. Adopting the initial
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toroidal field Bgo=(10-10%)B,=10">-10"°, we
may estimate an asymmetry of the neutrino pulse.
For symmetric B, and dipole poloidal field the
difference AB, between the magnetic field’s
absolute values in two hemispheres increases, until
it reaches the value 2B,. It remains constant later,
while the relative difference

AB,

bp = ——t
5 By, + By

(44)

decreases. The main neutrino flux is formed in the
region where the mean free path of the neutrino is

smaller than the stellar radius. The quantity /,

having the meaning of the neutrino mean free path
is connected with the neutrino opacity &, as

wy = 1/(lrp)- (45)

Calculations of the spherically symmetrical col-
lapse [28] have shown that during the phase of the
main neutrino emission a hot neutron star consists
of the quasi-uniform quasi-isothermal core with the
temperature 7;, whose mass increases with time,
and the region between the neutrinosphere and the
isothermal core, where the temperature smoothly
decreases in about 10 times, while the density,
which finally drops about 6 times, decreases non-
monotonically. Neutrino flux is forming in this
region, containing about one half of the neutron
star mass. We suggest for simplicity a power-law
dependences for the temperature and /r:

r=1,(%)", 1T=~1—:1T,.(5>". (46)

Kp ri

The neutrinosphere with the radius r, is deter-
mined approximately by the relation

//f,,pdr:/ %1::1. (47)

Using (46) outside the neutrinosphere we get from
(47) the relation

v 1/(n—1)
=) 4
’ ’<<n_1>zT,) (48)

Finally we get the temperature of the neutrino-
sphere T, and the neutrino luminosity L,

_ m/(n—1)

ri

7 l6macT? .
L, = dnr}H, = gm—"ot (n — Doy

(4m-2)/(n—1)
X r? (li> . (50)

r

To estimate the anisotropy of the neutrino flux we
compare two stars with the same radius and
temperature of the core r; and 7; and different
opacities. Let /7, is different and constant in two
hemispheres, and each one is radiating according
to (50). The anisotropy of the flux

Ly L

b=
Y

(51)
here L,,L _ are luminosities in the different

hemispheres, calculated using (50). For small
difference between hemispheres

AL 4m -2 Alg,
_L_I’l—l ZT,.

5L (52)

Here n> 1, when m :% the neutrino fluxes in both
hemispheres are equal because smaller opacity and
larger neutrinosphere temperature 7, from (49) is
compensated by smaller neutrinosphere radius r,
from (48). The equation of motion of the neutron
star with the mass M,

dvy, L,—L_

ALk
" ds ¢

Lo+l = %L,,(t). (53)

For the power distributions it follows from (50)
that

Ly=A1fy 20, (54)

As an example consider the dependence on B in
the form (41) and (42). Making interpolation
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between two asymptotic forms we get dependence

1 1+ (B/Bs)’
It ~ =g, 2 3
w 1 +0.17(B/Bs)” + 0.77(B/Bc)
= [y, F=D/Gm=2)(py, (55)

The time dependence of the average value of B in
each hemisphere can be found from (43) with

By = =By,  Byor = Byo-. (56)
By B, we mean a radial component of the poloidal
field taking part in amplification of By. The time
dependence of L, is taken from the spherically
symmetric calculations of the collapse.

For (4m —2)/(n —1)=1 and in condition when
the neutron star is accelerated at B>> B, we have
F. = B./0.77B.. Equation of motion (53) may be
written as

dn _20,[B.] - |B |
ds ™ C |B+I+IB*|

M, (57)

with the linear functions for B.. Take constant
L,,:0.1Mncz/20s. With these simplifications, the
final velocity of the neutron star v, follows as a
result of the solution of (57) in the form

2 LV PB¢0 20S|Bp|
of = — . In[ ———1] ). 5
T T Mye |Bp| <05+H<P Byo (58)

For P=10"3s we obtain

2¢ P 20s 1
an—;l—o‘z——OSX(OS“i‘hl(?;))
4
zlk—snjx<0.5+ln2>< 10 )

(59)

For the value x = By/|B,| ranging between 20 and
10°, we have v, between 140 and 3000 km/s, what
can explain the nature of the most rapidly moving
pulsars. The formula (59) can be applied when
B¢0>>Bc and x> 1.

The acceleration of the collapsing star by aniso-
tripic neutrino emission can happen even when the

star collapses to the black hole, the efficiency of
acceleration decreases with increasing of mass. We
may expect black holes of stellar origin moving
rapidly, like radiopulsars, and they may be found
high over the galactic disk. This is observed among
the soft X-ray novae — most probable candidates
for black holes in the galaxy.

5 DISCUSSION

2-D calculations of the magnetorotational model
of explosion give encouraging results, showing a
sufficiently high efficiency of transformation of the
rotational energy into the energy of explosion to
explain SN events with a formation of neutron
stars. There is a question, however, will this
conclusion remain valid in the real case where
instabilities connected with deviations of an axial
symmetry would be able to develop. The answer
could be obtained from 3-D calculations, which are
still not available. Qualitative estimations show
that 3-D perturbations should not change drasti-
cally the results of 2-D calculations. Usually, the
development of MHD perturbations happens,
when magnetic pressure is larger then the gaseous
one. In these situation the dynamical processes in
the star, connected with hydrodynamical motion
and formation of the shock wave, are developing
more rapidly than possible instabilities, which
increment is usually less than the characteristic time
of shock wave formation and propagation. Another
process which was not included in calculations is
connected with final resistivity and magnetic field
dissipation. Without instabilities dissipation is
extremely slow because of very high conductivity
of high density and high temperature plasma. Even
in the case of development of small scale 3-D
instabilities there is a mechanism of their nonlinear
suppression, because increase of temperature dim-
inishes the ratio of the magnetic to gas pressure and
damps the instability.

These qualitative speculations should be checked
by 3-D calculations, what seem to be a very difficult
task even for modern supercomputers. It is
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connected with a necessity to use a Lagrangian
numerical scheme for obtaining a reliable result in
the problem of collapse and explosion in MHD, for
which 3-D generalization is very nontrivial. To geta
reliable result in Eulerian schemes the number of
grid point should be increased to that extends which
exceed not only modern but also nearest future
computer abilities. Another shortcoming of Euler-
ian scheme lay in strong restriction of the time step.
In the magnetorotational model the problem has
two very different time scales, connected with a
hydrodynamical wave propagation and much long-
er time of the magnetic field amplification, and the
time step is connected with a smaller characteristic
time. In this situation for realistic values of the
initial magnetic field the necessary number of time
steps would be so large, that even sufficiently
powerful computer would not be able to give a
reliable result because of the loss of a precision of
any modern numerical scheme when the number of
time steps exceed ~ 10°. So, the only way to make a
step to 3-D calculations of magnetorotational
model is to develop an appropriate method based
on a Lagrangian scheme of computing.
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