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Correctness of initial boundary value problems and their discretizations are analyzed under
unusual second-order boundary conditions, which can be considered as natural boundary con-
ditions in strengthened Sobolev spaces and as improvements (in some cases) of the classical
Dirichlet boundary conditions. Special attention is paid to optimal perturbation estimates for
new variants of the penalty method with respect to the Dirichlet conditions.
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0. INTRODUCTION

The Dirichlet boundary conditions are of funda-
mental importance in mathematical physics and
other fields of science. They serve as a means to
isolate the problem under consideration in a given
domain f, c Rd from the outside world; in what
follows, we assume that $2 is a bounded domain
with Lipschitz piecewise smooth boundary P.

Other boundary conditions are possible. Some-
times they lead to a better description of what hap-
pens on the boundary; in the case, for example, of
an elliptic variational problem in the Sobolev space

H (f) W (f*), there is a common opinion that
the homogeneous Dirichlet conditions can be
treated in terms of the penalty method as a limit
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of natural boundary conditions of the type
(Ou/Off) + (1 + 1/c)u 0, where ff is the unit
vector of the outer normal to the boundary,
c /0 (see Courant, 1943; Babushka, 1973; 1987;
Sobolevskii, 1981; Bramble, 1981; Glowinski, 1983).
These conditions are connected with the additional
term (penalty term) F(u) (1 + 1/e)lul 2 2(I,10, -=
Ilull  cc)) in the minimized energy functional. Some-
times conditions of such a type have a good physical
sense and improve the original Dirichlet conditions

this is the case, for example, in theory of elasticity
when springs on the boundary are allowed; some-
times the new conditions are considered as very
artificial (see, for example, Glowinski (1983), where
they were applied to problems of hydrodynamics).
From the mathematical point of view, the penalty
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term might be also considered as rather weak
because of additional smoothness requirements on
the solutions for obtaining estimates of the type

It was shown recently (see D’yakonov, 1997a,b)
that such and even stronger estimates can be proved
assuming only correctness of the original problem

2if apply the penalty term/>(u) (1 + l/e)
with u >_ 1/2 and treat the arising problem in the
corresponding strengthened Sobolev space. The
case u- is the most remarkable since it even al-
lows some domains with slits and has good pers-
pectives from the computational point of view;
moreover, it often has an obvious physical sense.
For example, in theory of elastic membranes, it
corresponds to the presence of string (stiffener) on
the boundary; similar problems for plates and shells
with stiffeners are of special importance in many
applications (see Courant, 1943; D’yakonov, 1996a;
Ciarlet, 1997 and references therein); it should be
noted that S.P. Timoshenko was the first to set
them (in a pre-Hilbert space) in 1915; certain prob-
lems of hydrodynamics with surface tension can be
also set in similar strengthened Sobolev spaces (see
D’yakonov, 1997c); importance of relevant second-
order boundary conditions was also underlined in
the study of problems on unbounded domains (see
Duong and Joly, 1994; Sheen, 1993).
The goal of the present paper is a generalization

of the approach indicated above to the case of pa-
rabolic problems. Correctness of the initial bound-
ary value problems (with an emphasis on their
discretizations with respect to the time) is analyzed
by the energy method under special choice ofenergy
spaces associated with the strengthened Sobolev
spaces.

Special attention is paid to optimal perturbation
estimates for the variant of the penalty method
mentioned above (with respect to the the homo-
geneous Dirichlet conditions). The results obtained
also yield understanding of the mechanism of
splitting of the parabolic problem into separate

ones in subdomains with the homogeneous
Dirichlet conditions on the boundaries of these
subdomains.

In this paper, only real Hilbert spaces and
bounded operators are used; the normed linear
space of linear bounded operators mapping U into
F is denoted by (U;F); IILII L IU>-+F
sup#0 IILVllFIJVllb; (H) (H; H); KerL=
{v: Lv- 0} the kernel (null-space) of the operator
L; Im L--L{ U}- the image (range) of the opera-
tor L; /-the identity operator; H*-the linear
space of bounded linear functionals mapping H
into R; A*-the adjoint operator to A (H; H2)
((AIg, P)H --(u,A*v)H,, ’quEH,, vEH2); A.-the
symmetric part ofA (H),i.e.,A.,.- 2-(A + A*);
.+(H) denotes the set of linear, symmetric, and
positive definite operators in (H); H(B)--the
Hilbert space differing from H only by inner prod-
uct defined by B +(H), namely (u, V)H(B)
(u, V)B--(Bu, V)H--(Bu, v).
For nonnegative functions f(h) and g(h), f(h)

g(h) implies that there exist positive constants 0
and l such that og(h)<f(h)< g(h); we also
make use of this notation for norms, quadratic
functionals and operators, e.g., L I L
+(H). For simplicity, we consider only 2 c R2;
the space variables are denoted by x and x2 with
X__[X X2]; [U]2 2

0, ]]u "the time variable isL2(f)’
1-- X0 [0, T]; . [X0, X1, X2] e Qr f x [0, T];
D,u Ou/Ox,s,,s 0, 1,2; [Vu] [(Dlb/)2 -- (D2tA)2]I/2;
(H, V)I," (DlU, DlV)o,a+(D2u, D2v)o,a; lull,fz

1/2Vul 2 1)0,s"

0.1. Variational Problems with Linear
Constraints and Corresponding
Problems with Strongly Saddle Operators

We briefly recall the most important facts related
to variational problems with linear constraints

(see, Brezzi, 1974; D’yakonov, 1996a and references
therein) in a given Hilbert space H. The variational



DIRICHLET BOUNDARY CONDITIONS 271

problem is to find

ul arg min [/2(vl) 21(vl)]
E V

with a quadratic functional/2(vl) Ilv1112/41 and lin-
ear functional E Hi; the space V1 of admissible
functions consists of functions vl such that L2,1v
0 for a given L2,1 (H1;H2) that is V1 Ker L2,1.
The standard penalty method for (0.1) consists in

setting a sequence of unconstrained problems

ul,c arg min [/2(v,) + l/gilL2 1/111/2 21(Vl)]
vl EH1

(0.2)

with the penalty parameter e -- /0.
The classical Lagrange approach (the Lagrange

multiplier method) to the problem (0.1) is to replace
it by the problem

Lu
L2,1 0 u2

a Hilbert space H-H1 x H2, where the addi-
tional function u2 plays the role of the Lagrangian
multiplier,

L* (0.4)Ll,1 I1, Ll,2 2,1"

The modern formulation of problems (0.3), (0.4)
(saddle-point problems arising from Lagrangian
multipliers) and more general ones of type

[ LI,1 L1,2Lcuc L2,1 -eI2

(see (0.2)) is based on the use of special types of
operators L2,1 which can be described as normally
invertible operators (operators with Im L2,1--H2);
equations with them are called everywhere solvable
(see Krein, 1971). They correspond to a particular
and very well known case of normally solvable
operators (see Krein, 1971; Rempel and Schulze,
1985; Trenogin, 1980; D’yakonov, 1996a and refer-
ences therein) which are defined as operators with

ImL2,1 being subspaces in H2 (operators with
closed images); if L2,1 is a normally solvable
operator, then H is an orthogonal sum of Ker L2,1
and Im L,, i.e.,

H1 Ker L2,1 @ Im L1,2. (0.6)

A normally invertible operator L2,1 yields a one-
to-one mapping of the Hilbert space ImL,2
(orthogonal complement in H1 to Ker L2,) into H2
(see (0.6)) and by the Banach theorem this map-
ping is invertible and the corresponding inverse

L2,1(-1) L,I is such that

]lL,l 0--1 < c. (0.7)

We note that the well-known inf-sup condition,

(L2,1Ul,U2)H2 > 0- > O,inf sup
/A2H2/./lHl ]l///1 IIHl II/A2 IH2

is often used instead of (0.7); (0.8) can be written in
the form

82, Vu H (0.9)

(see D’yakonov, 1996a; Girault and Raviart, 1986;
Pironneeau, 1989 and references therein) which im-
plies (0.6). It is also worth noting that (0.7) yields
inclusions

spL2,1L, C [0-2, ilL2,ll2],
sp L,L2, \0 < [0-2, I{L2, [12],

where spA denotes the spectrum of A (see
D’yakonov, 1986); for L2, associated with the
divergence operators, first results (in pre-Hilbert
spaces) about such spectrums were obtained in
Cosserat (1898).
The operator L in (0.5) with e > 0 and a normally

invertible operator L2,1 is called a strongly saddle
operator. For such operators, it was proved (see
D’yakonov, 1983; 1996a) that L is invertible and

IIL - II K, (0.10)
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where the constant K can be chosen uniformly for
all e > 0. This implies that problem (0.5) (or (0.3)) is
correctly posed and the first component of its solu-
tion coincides with the solution of problem (0.2)
(or (0.1)). Moreover (0.10) implies, for all param-
eters indicated, that

for a given c0 > 0.
Thanks to an understanding of the role of (0.8)

and its grid analogs in the theory of progective-grid
(finite element) methods and iterative processes,
it now seems reasonable to regard problems (0.5)
as basic and, instead of problems (0.2) and more
general ones involving a large parameter l/c, to
work with corresponding problems (0.5) (see, e.g.,
D’yakonov, 1996a).
The results indicated hold for more general prob-

lems of type

ILl,1 L1,2 [Ul,eLeue L2,1 -cL2,2 u2,e

with L2,2 _> 0. Moreover, the corresponding correct-
ness and perturbation theorems (see (0.10) and
(0.11)) can be obtained for problems of type (0.12)
involving nonsymmetric operators LI,1 and L2,2
with their symmetric parts Ll,l,s and Lz,2,, respec-
tively. It suffices to assume that L,I, /2+ (H1) and

L2,2,, > 0 (see D’yakonov, 1996a).

0.2. Strengthened Sobolev Spaces and
Perturbation of the Dirichlet Conditions

The most significant feature of the problems we

study here is that they involve setting in strength-
ened Sobolev spaces Gl,m(t2; F) =_ G,m (F Oft, m >
1/2) instead of the classical Sobolev space W21 (ft)
H (ft)(see D’yakonov, 1996a; 1997a,b,c,d; Ciarlet,
1997 and references therein). In the case of smooth
F we define Gl,m as a subset of functions in HI(Q)
such that their traces on F belong to W[(F), so we

may define the norm by

ivll2 2 2 (0.13)al,m IIv I1,Ut -- IITrr vii w/(r)

(similar spaces defined in terms of Fourier trans-
formations of the corresponding extended func-
tions were considered in Vishik, 1970). We
emphasize that the trace operator Tr Trr is un-
derstood in the standard way as an element of
/2(HI(Q);L2(F’)). If P is not smooth but consists
of several smooth arcs F; then (0.13) should be
replaced by

(0.14)

This space Gl,m is a Hilbert space and traces of its
elements on F can be considered as continuous func-
tions (almost everywhere, see D’yakonov, 1997c,d).
The most important case of (0.13) and (0.14) is
connected with m- when

Ilvll 2 (0.15)GI,1- IIFII1,Q -+- ly ,F’
v 12,r I[Trr;vll 2Hl(Ii)," (0,16)

this Hilbert space of traces will be denoted by
G2([[’) G2 and we prefer to write G1 instead of Gl,.
The fundamental for the result of our analysis is
connected with consideration of restriction of the
operator Tr e (H (f2); Lz(F)) to our space G (we
denote it by the same symbol); this restriction (see
D’yakonov, 1997b) is such that

Tr /2(G1; G2), ImTr G. (0.17)

To specify applications of the approach indicated
to the homogeneous Dirichlet conditions, we start
by indicating that H (ft) W (ft) can be consid-
ered as a subspace V1 of our strengthened Sobolev
space Gl,l(ft; F) G1 c Hl(ft) (see (0.15)-(0.17)).
Hence, the original variational problem

//1 arg min [I2(F1) 2/(Vl)], (0.18)
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with

I(v) [Ivll,f, H(2) (0.19)

can be easily reformulated as problem (0.1) in the
space V1 c G with

where H Gl,(f; Y), H2- H(V), bl,l(Ul; Vl) is

symmetric,

bl,l(Vl’Y1) 2(Vl) ]v1112Hi
b2,2(H2; F2) ("2, P2)H2,

(1.2)

/2(Vl) --I20(Vl) @ IIVl 2 2

(0.20)
/91,2(/32; Vl) b2,1(F1; H2) (Wr v,, u2),,p,

VVl E HI, Vu2 H2. (1.3)

or even

Vl 12 2 (0 21)1,Y IlVl I[GI

Now, on the basis of (1.1)-(1.3) and as a typical
example of nonstationary problems, we consider a
sequence of stationary problems

The second example is connnected with the origi-
nal problem (see (0.18)) under a more general than
(0.19) condition of type

(0.22)

Then (0.20) holds.
Finally, under (0.22) it is possible to take a sub-

space G( c G in the role of H in (0.1) and deal
with (0.21). This is the case if elements of G are
such that (v, 1)0,r 0 (see D’yakonov, 1997a,b).

1. DISCRETIZED IN TIME PARABOLIC
PROBLEMS

1.1. Original Basic Parabolic Problems
in Strengthened Sobolev Spaces

For consideration of nonstationary problems, it
is convenient to rewrite the related stationary
problems (0.2) and (0.5) using bilinear forms br,l,
defined and bounded on Hz Hr and connected
with the operators Lr,! by the standard equalities
br,(v; vr)=(L,v,v), r[1,2], l[1,2]. Then (0.5)
in case of (0.1), (0.18)-(0.20) is just the problem of
finding u E H such that

bl,l(Ul; Vl) q- bl,2(u2; Vl) /l(Vl),

b2,1 (Ul; v2) cb2,2(u2; v2) 0, VV2 H2,
(1.1)

n+l refers to arbitrarywherer T/n,1+ H, v
elements of H,., r 1,2, n 0,..., n* 1.

It is well known that if we take here H
H0 (f) W (f) and c-0, then (1.4) corresponds
to the well-known implicit semidiscretization with
respect to of a parabolic equation Dou + Lu =f
with the homogeneous Dirichlet conditions on the
lateral surface of the cylinder QT f x [0, T] (spa-
tial variables remain continuous). Thus (1.4) with

H- G,(2; F) can be treated as a perturbation of
the nonstationary problem with the homogeneous
Dirichlet conditions. We concentrate on these prob-
lems to attain the desired similarity with the sta-
tionary ones and avoid introduction of new spaces
that arise in dealing with continuous and cor-

respond to special strengthening of the Sobolev
space H(Q,).

1.2. A Priori Estimates and Correctness

Hereafter, H and H2 are Hilbert spaces, and the
original problem (see (1.4) with fixed n) is formu-
lated in the Hilbert space H-H x H2 as the
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operator equation

m0[u+1 u]/7. + LI,lU+1 + L1,2u2

with

Vul c H1, VVl c (1.6)

(f"+, vl)i4, ln+(vl), Vv HI, and u -0 (this
can be assumed without loss of generality). Note
that Mo (H1;H1) and M-M*> 0; moreover,

THEOREM 1.1 Let HI-- G,l(f;P), Hz--HI(E),
and operator L in (0.3) with c >_ 0 be a strongly sad-
dle operator in the space H-H1 H2. Then

1/7.Mo + LI,1 L1,2 1L2,1 -cI2 (1.7)

with Mo from (1.6) is also a strongly saddle oper-
ator in the space H.

Proof Since Mo ,(H1; HI) and M M* > 0,
we conclude that [1/7.M0 + LI,1] -I. Therefore,
L from (1.7) has the desired properties.

Theorem 1.1 implies that problem (1.5) and even
more general problem

(1.8)

with f2 H2, n- 1,..., k <_ n*- T/-, has a unique
solution (here and elsewhere, we prefer to write

Oou instead of [uff u-l]/7..
Note also that problem (1.5) with e>0 is

reduced to

M00u+1 + LI,1 -+--Ll,zL2 lUuff+l +l /ln+l
(1.9)

this type of problem is often used in the study
of the Stokes problems (see D’yakonov, 1996a;
Kobelkov, 1994; Sobolevskii and Vasil’ev, 1978).
THEOREM 1.2 Let the conditions of Theorem 1.1
be satisfied. Then, for the solution of (1.5), the a

priori estimate

k k

u, (t )ll 2 2

n=l n=l

k

HI
n=l

(1.10)

holds, where tk--k7. <_ T and K is independent of
k<n* ande>O.

Proof By (1.5), we have

k-1

( bt+l +17"Z (MOz/+l .{+1). nt (LI.1 .tA )H.
n=0

k-1

--(b/ff+l, b/+l)H2) TZ(f?+l,bl+l)H,.
n=0

(1.11)

For the first term on the left-hand side of (1.11),
we have

k-1

TZ(MoOoU+1. b/{+ )Hi
n=0

k-1
kl 2--Z((b/+1 --b/) b/+l)M0_

n=0

(recall that u -0). Therefore, the left-hand side
of (1.11) is easily estimated from below as

k k

H + llu ll /o / lu2 IIg=,
n=l n=l

where LI.1 _> 511. 5>0. The right-hand side of
(1.11) is estimated from above as

k-1

TZ(f+I,bl+I)H
n=0

Tgk-1 k-1

S -1- Ilfln-l-12
n=0
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(recall the evident inequality (f, u) _< 5/211.112 +
1/(2)[Ifll 2, V6 > 0). These two estimates obtained

(in combination with (1.11)) lead directly to

(1.10).

THEOREM 1.3 Let the conditions of Theorem 1.1

be satisfied and suppose that

(f(, ul )H, (g, U )Mo, Vu H, n _< n*.

(1.12)

The right-hand side of (1.14) is estimated from
above as

k k

’T-(fln, 00U)HI "[-(g,oU)M
n=l n=l

<- TZ- (IIOou{IMo + IlgllMo)
n=l

(see (1.12)). Thus, (1.14)-(1.16) lead to

Then, for the solution of (1.9), the a priori estimate

holds, where the constant K is independent ofk <_ n*
and 6‘ > O.

Proof By (1.9), we have

k-1

n=0

+ (Ll,U+,o,+)i4)
k-1

T
b/+ (0b/+l

6" n=O

k-1

TZ(f+I,OoU+’)H1. (1.14)
n=0

The terms in (1.14) involving Ll,1 and L2,1 can be
estimated from below in the following manner:

k

n=l

n=l

By (1.17) and standard inequalities in theory of dif-
ference methods (see Ashyralaev and Sobolevskii,
1994; D’yakonov, 1972; Mitchell and Griffiths,
1980; Thomee, 1997), (1.13) follows.

THEOaEM 1.4 Let the conditions of Theorem 1.3
be satisfied. Then, for the solution of (1.9), the
a priori estimate

k k

n=l n=l

holds, where the constant K is independent ofk n*
and > O.

Proof In accordance with (1.9), we observe that

L,,2L2,u (f Moou Ll,,U). (1.19)

By (0.9) and (1.6), we deduce from (1.19)

Therefore, the left-hand side of (1.18) is estimated
from above as

k

n=l



276 E. D’YAKONOV

(see (1.20)). After that, it suffices to apply the
a priori estimates obtained.
Now we indicate a priori estimates for problem

(1.5) with e 0.

THEOREM 1.5 Let the conditions of Theorem 1.1
be satisfi’ed. Then, for the solution of (1.5) with
e- 0, the a priori estimates

(1.21)

(1.22)

hold, where the constant K is independent ofk < n*.

Proof Observe that the second equation in sys-
tem (1.5)can be rewritten as L2,10u’+l --0.
Hence (1.5) implies that

(1.23)

(see (1.14)). After that the same reasoning as the
Proof of Theorem 1.3 leads from (1.23) to (1.21).
To prove (1.22), it suffices to rewrite the first
equation in system (1.5) as

L1,2u+l f+l MooU,+l Ll,lu,+l

and apply evident inequality

Uff+1 < IIfn+ II/-/, + IIoMo"f’+’ IIH,
H/ IIL, (1.24)

(see (1.20)) in combination with (0.9) and (1.21).

1.3. A Priori Estimates and Correctness
for More General Problems

We return now to problem (1.8) in general setting
(without the requirement that all f2 0 (see prob-
lem (1.5))"

OoMou + Ll,lu + L1,2u2 --fln,
L2,1u gu f2.

It will also be useful to rewrite it in terms of

k k

U1 7-Z u, U2k r u, (1.27)
n=O n=0

k k

F1 rf, F2k rZf (1.28)
n=0 n=0

(with ui -f,.o O, i- 1,2) as

Mou q- LI,1U + L1,2U F,
L2,1U CU F,

(1.29)

n- 1,..., k <_ n*- T/r. It is evident that (1.26) and
(1.30) are equivalent. Observe also that Mou
$0M0 7{’, ’ 0 7{’, u’ 0

k

Ull 2H < TrZ IHinl 2Hi,
n=0

k

lull 2 <ZrllMo /2i M0"
n:0

i- 1,2,

(1.31)

THEOREM 1.6 Let the conditions of Theorem 1.3
be satisfied. Then, for the solution of (1.25) and

(1.26), the a priori estimates

82
k

/ r (I &u[’ 2 2 2
Mo -4- lug’ IN "Jr- e[lU2 g2) < KF,

n=l

(1.32)
k

"r Ilu 2142 <_ KFk (1.33)
n=O
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hold, where

k k

IOof I1.Mo
n--1 n=l

(1.34)

the constant K is independent ofk <_ n* and c >_ O.

Proof Restriction (1.26) implies that L2,1Oou-
Oof:. Hence,

(c:,Oou,u:).: (Oou:,:)n: (Oof[,:)n:.
(.35)

Combining (1.25) and (1.35), we see that

k

x - (llS0uUII 20 + (L,0 uU, OouU).
n=l

4- e/2l}u2kll 2
H2

k

n=l

-(- ", ).)-r.0o2 u+

(1.36)

The left-hand side of (1.36) can be easily esti-
mated as

2
HI"

n=l

(.sv)
The first term on the right-hand side of (1.36)

presents no problems since we can make use of
inequality

(g 80U,)Mo < 1/4 II00uUII 2 2
Mo + IIg IIMo" (1.38)

The second term on the right-hand side of (1.36) is

k

Z-- TZ n 2)H2(00f2 ,U
n=l

k

Oof2 IIg Ilu2
n=l

where []ulIH is estimated from above via (1.24) and
(0.9). Thus,

k

( 2 (2) 2

n=l

+ ilfl]2 2 )., + IluU I., (1.39)

with a t > 0 and small enough a > 0. Combination
of (1.38) and (1.39) yields the desired estimate for Y
in (1.36) and a basic consequence of (1.36) and
(1.37), which leads to (1.32) and (1.34). Inequality
(1.33) follows from (1.25) and (1.32) (see the Proof
of (1.22)).

THEOREM 1.7 Let the conditions of Theorem 1.3
be satisfied. Then, for the solution of (1.29) and
(1.26), the a priori estimates

k

7- llunl12 2 2
Mo / gll., / }1 gffll H2 < KFk, (1.40)ZII 111

n=l

k

7-Z f 12H2 _< Kk (1.41)

hold, where

k k

p r(i fill2 2
n, + IIgTII + IIf2Mo

n=l n=l

(1.42)

the constant K is independent ofk <_ n* and e >_ O.

Proof This is just a repeat of the Proof of
Theorem 1.6, with obvious modifications con-
nected with the use of (1.27)-(1.31) to obtain

(1.40)-(1.42) from (1.32)-(1.34).
Note that all results obtained can be easily for-

mulated for other Hilbert spaces H1 and H2. What
is of importance is that M0 E (H1;H), M--
M*> 0 and that Theorem 1.1 applies; hence elas-
ticity and hydrodynamics problems with L2,1- div
can be mentioned as examples (see D’yakonov,
1996a and references therein). We note also that
the case M0 I1 is allowed. Instead of I2, we can
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deal with

L2,2 G Z2(H2;H2), L2,2 L,2 _> 0; (1.43)

then C[]U2][ 2 in our estimates should be replaced byH2
llu2112L2,2 c(L2,2u2, U2)H2. For example, the choice

HI al,1 (; r; r0); H2 H (r; 1-’0)
2 2IlURIIg, l"210,r0 (1.44)

is of a special importance when we wish to preserve
the homogeneous Dirichlet conditions on E0 c E;
here 0- f’0 is a union of several arcs; HI([’; f’0)
is a subspace of HI(I) whose elements vanish on 0
and GI,I(;I;f’0) corresponds to a subspace of
Gl,l(f;I) with elements having traces in H2 (see
D’yakonov, 1997b). Note finally that more general
problems with nonsymmetric operators are possible
(see (0.12)).

1.4. Nonstationary Boundary Conditions

Instead of the conditions L2,1u- gL2,2u--f in
(1.5) and (1.26), new conditions,

L2,100u OoL2,2u2 f2, (1.45)

are considered here (see (1.43) and (1.44)) with u:
0 for simplicity of exposition. (The original para-
bolic problems in strengthened Sobolev spaces with
nonstationary boundary conditions of type (1.45)
might be of special importance in competition with
the homogeneous Dirichlet conditions on E0.)

THEOREM 1.8 Let the conditions of Theorem 1.3
be satisfied. Then, for the solution of (1.25) and
(1.45), the a priori estimates

Ilu(ll 2

(1.46)
k- Ilu ll 2H2 < KFk (1.47)

n=0

hold, where

k

n=l

the constant K is independent ofk <_ n* and >_ O.

Proof It is easy to see that the corresponding
analog of Theorem 1.1 holds. Thus the solution of
(1.25) and (1.45) exists and is unique. To prove
(1.46) and (1.47) we apply the Proof of Theorem
1.6. Observe that (1.35) should be replaced by

(L2,1ou, U)H2 (oU, U)L2,2 (fff,

no Oo.f is needed here. This enables us to apply
the Proof of Theorem 1.6 with slight alterations.

Note also that the case of conditions

L2,1)ou cL2,2u ff (1.48)

is analogous to the considered one.

THEOREM 1.9 Let the conditions of Theorem 1.3
be satisfied. Then, for the solution of (1.25) and
(1.48), the a priori estimate

k k

II0ull 2
,o + Ilull + IlulH1

n=l n=l

k

n=0

holds, where

k

., /lg7 Mo / f;IH),
n=l

the constant K is independent ofk <_ n* and > O.

Proof This is just a repeat of the Proofs of
Theorem 1.8 and 1.6, with obvious modifications
connected with the use of

(L2,1OoU, U)H2 (u, U)/2,2 (.f2, U)H2

instead of (1.35).
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2. PERTURBATION THEOREMS

2.1. Perturbation Theorems for
Parabolic Problems

Here, we study dependence of the solution of type
(1.9) and (1.8) (or (1.29) and (1.26)) on the param-
eter c when c-+ +0. We denote by z, i-1,2 the

n _u where index e is now used todifference uc, 0,i,
indicate the corresponding problem and its solu-
tion. We also make use of

k k

n=0 n:0

THEOREM 2.1 Let the conditions of Theorem 1.7
be satisfied and suppose that all Fk <_ K* with K*
independent of k <_n*. Then, for the solution of
(1.25) and (1.26), we have

k k

Mo + IlZl[2H1 -4- r IIZ ’ll = K2,
n=l n=0

(2.2)

where the constant K is independent of k <_ n* and
c>O.

Proof In accordance with (1.25) and (1.26), we
have

nOoMoz + Ll,Z + L1,2z2 0,

L2,1z guen,2 f.
(2.3)
(2.4)

These relations (2.3) and (2.4), together with (2.1),
imply that

nOoMoZ + L,Z + L1,2Z2 0, (2.5)
k

L2,1Z cyZ uen,2 F. (2.6)
n=0

Hence, Theorem 1.7 for (2.5) and (2.6) leads di-
rectly to (2.2).

It is worth noting that Theorem 2.1 implies
asymptotically optimal (O(e))convergence in the
norm the square of which is given by the left-
hand term of (2.2); the use of Theorem 1.6 and the
norm defined by (1.32) and (1.33) leads only to

O(e/r)-convergence. There is also a possibility to
establish O(el/2)-convergence for problem (1.9).

THEOREM 2.2 Let the conditions of Theorem 1.3
be satis’ed and suppose that

k

,_,, / IIg7112 o) < (2.7)
n:-I

with K* independent of k <_ n*. Then, for the solu-
tion of (1.9), we have

k

iIzll 2 2 < Ke, (2.8)

where the constant K is independent of k <_ n* and
c>0.

Proof By (1.9) and (1.5) with e- 0, we have

OoMoz + L z +-L 2L2 lZ{ L1,2Uo,2.

Therefore,

2 2Since (u L2,1ZI )H, < -lllL2,zll, / 4llzTil.,0,2,
we can conclude from (2.9) and (2.7) that (2.8)
holds.

Analogously, perturbation theorems can be ob-
tained on the basis of Theorem 1.8 (1.9) for para-
bolic problems in strengthened Sobolev spaces with
nonstationary boundary conditions.

2.2. Splitting of the Region for
Parabolic Problems

We start by considering a partition of h into a set
of blocks (panels) (l,..., hi,; each domain fi has
a Lipschitz piecewise smooth boundary Fi-0fi
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and the Sobolev space HI(Fi) can be easily defined

(all its elements are equivalent to continuous

functions).
On the set s=[,.JiOf; (the union of the panel

boundaries) we define the Hilbert space H2 H2(S)
with the square of the norm

Finally, we note that hyperbolic problems de-
serve a separate study, but it is fairly clear that
modifications of the results indicated above are

possible.

i*

IIg 2 2 (2.10)H2--Z
i=1

H2 consists offunctions g E L2(S) such that they are
equivalent to continuous functions on S and their
restrictions to each P; belong to HI(F;).
The model strengthened Sobolev space

GI,1 Gl,1 (f; S) H1 (2.11)

consists of functions in H(f) such that their traces
on each F; belong to H(P;), so we may define

i*

2/_/1- ] 2
H1 ()+ Z ]lTrr; vII2HI(I/)" (2.12)

i=1

It is known that H1 is a Hilbert space and the trace

operator Trs E (HI;L2(S)) can be considered as
an element of (HI;H2(S)); moreover, Trs
/2(H1;H2(S)) is normally invertible operator (see
D’yakonov, 1996a; 1997b). This key fact enables
us to apply results indicated above to problems in
the strengthened Sobolev space H1 (see (2.11) and
(2.12)) and in the Hilbert space H H x H2 (see
(2.10)). For example, Theorem 1.9 applies for (1.25)
with conditions (on S)

L2,100u cuff 0;

the case e=O corresponds to split (with respect
to the original partition of () problems dealing
with each panel separately (with the homogeneous
Dirichlet conditions on each P;); the corresponding
perturbation estimate is

k k

TZ II0ZII2 2 n 2 < K2.Mo -j- IlzklllH, -+- 7-Z "2 82
n=l n=0
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