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Starting from a discrete Heisenberg algebra we solve several representation problems for a
discretized quantum oscillator in a weighted sequence space. The Schriidinger operator for a
discrete harmonic oscillator is derived. The representation problem for a q-oscillator algebra
is studied in detail. The main result of the article is the fact that the energy representation for
the discretized momentum operator can be interpreted as follows: It allows to calculate
quantum properties of a large number of non-interacting harmonic oscillators at the same
time. The results can be directly related to current research onsqueezed laser states in quantum
optics. They reveal and confirm the observation that discrete versions of continuum
Schriidinger operators allow more structural freedom than their continuum analogs do.
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1 INTRODUCTION

During the last decades, lattice quantum field
theories have shown up and solved a lot of inter-
esting problems in physics. One basic effect is the
regularizing influence of lattices that are artificially
introduced into the theory. The quite complex
lattice field theories often go back to original
attempts in formulating quantum mechanics in a
discretized phase space. A long time before quan-
tum mechanics, Riemann was certainly one of the
first mathematicians who thought about irregula-
rities in the classical space, see [4]. But also in mod-
ern times the principal assumption that one should

be aware of irregularities in the structure of space is
broadly accepted. Let us mention in particular the
work of Ord on fractal space time, see [13]. It can be
regarded as one of the pioneer articles on research
of noncontinuous space-time structures. Extend-
ing A. Einstein’s theory with respect to quantum
gravity is a further example for research on sophis-
ticated space-time structures, see for example the
contributions by Drechsler and Tuckey as well as by
Breitenlohner et al. or Kleinert, compare [16-18].
There are also the celebrated approaches via string
theory and duality by Seiberg and Witten [21,22], in
addition by Sonnenschein et al., Louis and F6rger
[23,24]. They altogether reveal the rich and deep
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298 A. RUFFING

character of non-homogeneous space and space-
time structures.
Our approach to mathematical quantum models

in irregular space, i.e. in lattice space structures,
shall be given by solutions to discretized represen-
tation problems in lattice quantum mechanics. In
this context, we will have to define first what the
lattice shall be and then to discretize the involved
operators. One knows that the lattices used by
numerical approximations always must be finite.
But one is also automatically confronted with the
situation of an infinitely extended space axis in the
case of a one-dimensional Schr6dinger equation.
Also in higher dimensions, this principal problem
is still present. This may be one starting point for
thinking of an infinite discretization of the space
axis in order to obtain regularizing effects on the
one hand but also to deal with the situation of an
infinite position axis that is required within the
Schr6dinger theory on the other hand. Addition-
ally, there arises a further problem: When dealing
with a discretized space axis, what shall be the
Fourier transform into momentum space? And
having introduced a discrete space variable, does
this automatically imply that momentum is also
discretized?
To give a satisfactory answer to the stated

questions one has to develop a consistent mathe-
matical model for the discretization of the phase
space that is free of some arbitrary input. The
question however is how to find such a model.

Inspired by the research on quantum groups,
J. Wess suggested a deformation of the conven-
tional Heisenberg algebra in 1991, see [2,7], where
the deformation itself shall cause a discretization
of the phase space. We will refer to the discretized
Heisenberg algebra as the q-Heisenberg algebra
throughout this work. The basic idea when intro-
ducing the q-Heisenberg algebra is to deform the
conventional algebra by a real number q > that
shall play the role of a lattice parameter. Actually
it turns out that the chosen q-deformation of the
Heisenberg algebra leads to a discretization ofboth,
the deformed momentum and the deformed space
operator. This formalism fits into the more general

framework of quantization by noncommutative
structures, outlined for example in the work by
Connes and Jaffe, see [19,20].
The organization of this article shall be as

follows: Our aim is first to revise the relations of
the q-Heisenberg algebra and of the Biedenharn-
MacFarlane q-oscillator algebra. In the second
section we introduce the q-discrete harmonic oscil-
lator. A representation theorem for a deformed
oscillator algebra will be stated in Section 3.
The main result of this article shall be presented

in Section 4: There, we will investigate the action of
the discretized momentum operator on the eigen-
functions of the q-deformed oscillator. We obtain
the fact that the situation totally differs from the
conventional continuum analog in quantum me-

chanics. The main difference can be interpreted as

follows: It allows to calculate quantum properties
of a large number of non-interacting harmonic
oscillators at the same time. This can be directly
related to research on squeezed laser states in quan-
tum optics, where a great advance has been pro-
vided by a recent article of Penson and Solomon,
see 14]. Prosecuting the research into this direction,
new advances not only with respect to mathe-
matics and theoretical physics but also with
respect to technological needs in modern society
can be expected.
To provide the basics for this article, we first cite

several results from [9,11,12,15]. The relations of
the q-Heisenberg algebra are given by

p qp -iq3/2u, (1.1)

p qp iq3/2u-1, (1.2)

up=qpu u=qu q> (1.3)

and we refer to q-oscillator relations (i.e. deformed
oscillator relations) of the type

aa+ q-2a+a 1, (1.4)

which were already known to Heisenberg, see [5].
As pointed out in several publications [3,10-12], the
cited q-Heisenberg algebra is a discretized analog
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of the quantum mechanical Heisenberg algebra

whereas the q-oscillator algebra is a q-deformed
analog of the quantum oscillator algebra

aa+ a+a 1. (1.6)

In spite of the fact that the operators of the quan-
tum oscillator algebra (1.6) can be easily expressed
in terms of the Heisenberg variables (1.5), namely

a (p: ix) a+ ix), .7)+

the same task in the q-case, i.e. finding

a a(p,C,u), a+ a+(p,C,u),

such that aa+ q-2a+a

is highly non-trivial as there is no simple linear
transform that tells us to do so. We want to focus on
this problem in the next section and find suitable
tools that allow us to classify at least one family of
solutions to the problem (1.8); analytically, we

have to add more structure. We want to represent
the variables p, , u, a, a+ as operators in a suitable
Hilbert space and refer to a Hilbert space Hwhich is
fixed by the scalar product (,, ,) of the orthogonal
basis vectors e em, m, n c Z, or, r c {+ 1, }

(e, e) (q 1) -(’/2) 66mn. (1.9)

The Hilbert space itself is canonically spanned by
the vectors e, i.e. it is a weighted sequence space

H-- f--(q-1)

(q-- 1) qnlcanl2 < o0

The momentum operator p in the relations above
can be chosen as diagonal in the e-basis [9] and,
according to the q-Heisenberg relations, shows an

exponential spectrum

npe crq en. (1.11)

We will also make use of the Hilbert subspaces
H+, H_:

Ha’- fHIf-

The actions of the formally symmetric operator ,
densely defined in H, and the unitary operators
u, u+- u-1 are respectively given on the e by

{e icr
-(1/q2) qn (e,-1 e+l)’ (1.13)

-1/2 oc* -1 q+lue, q e,_ u e /2e+ 1. (1.14)

Note finally that the definition ranges D({), D(p),
D(u) and D(u-1) of the operators {,p, u, u- contain
invariant subspaces

{(D({) N Ha) C_ Ha, p(D(p) N H) c_ H#

u(D(u) H) c_ H,

cr {+1, -1). (1.16)

For the well-defined continuum limit q--+ 1, see

[2,01.

2 DISCRETE HARMONIC OSCILLATORS

We first revise several results which were stated
by the author in [15].
To find a suitable approach to the stated problem

(1.8), we address to the following situation in the
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continuum case:

The operator

a+a- (Px + ix)(px -ix)

and the classical Heisenberg algebrapxX Xpx- -i

imply the relations

a0 0 with scalar product

(VS0, b0)z;2() < and

a+aa+bo 2a+b0,

(2.1)

(2.2)

(,, ,)2() denoting the standard scalar product in
/2 (]t).

In the following we will address to operators a+a
which fulfill relations of type (2.1) and (2.2) with
respect to the scalar product (,, *)H in the Hilbert
space H.

Generalizing the ansatz (2.1) and (2.2) we thus
want to know how an operator a+a must look like
in terms ofthe q-Heisenberg variablesp, , u in order
to generalize relations (2.1) and (2.2). We start from
the ansatz

a u2h(p) iu--" u2h- iu,

a+ h(p)u-2 / i{u-1,

(2.3)

(2.4)

where

(ae em) (e +,a em) c,r<{+l, -1} (2.5)

and

nh(p)e h(crq )en, o E {+1, } (2.6)

with real valued h(rq’). Moreover we give the
following:

DEFINITION a+a, a+, a, p and shall be called
harmonic variables. In detail, a+a shall be called
discrete harmonic oscillators.

Note that the action of the harmonic variables on
the basis vectors e, n E Z reveals the fact that they
are bilateral Jacobi operators. For basic facts on
bilateral Jacobi operators, see for example [25], for

basic facts on monolateral Jacobi operators,
compare for instance [8].
We allow a and a+ to have maximal definition

ranges, Dmax(a) resp. Dmax(a+) in H. These defini-
tion ranges are given as usual by

Dmax(a) {g) HI (ayz, ag)) <
Dmax(a+) {g HI (a+ g), a+g)) <

Let us continue with the action of the operator a+

+ of H+ It is given by theon the basis vectors e

following bilateral Jacobi operator:

a+en+ (hu-2 q- iu-1)en+
qh n+2\ + +q )en+2 + q- u- ten

+ +On+2en+2 -+- /ne (2.7)

while we make use of the following abbreviations"

(Yn+2 qh(qn+2) -+- q-n-(1/2)(1 q-2)-I and

fin --(1 q-2)-lq-n-(1/2). (2.8)

Similarly, we obtain a as a bilateral Jacobi opera-
tor via

ae+n (b/2h- ib/)en+
-2 + +q Cnen_2 +/3he (2.9)

and thus

+ (q-2 2 2 + +aa+en On+2 + n)en + On+2/n+2en+2
-2 ++ q Oen/nen_2. (2.10)

Note the following invariance properties for the
single operators a, a+ and their composites

a(D(a) N H+) C_ H+,
a+ (D(a+) H+) c_ H+,

a+a(D(a+a) H+) C_ H+,
aa+ (D(aa+) H+ C_ H+.

(2.11)
(2.12)
(2.13)
(2.14)

The same holds analogously for the Hilbert space

H_ HI f- Z qncne;1 (2.15)
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Equations (2.11)-(2.14) imply that a, a+, a+a, aa+
have invariant subspaces. Without loss of general-
ity we thus can restrict first to discrete harmonic
oscillators in one of the Hilbert spaces H+, H_. To
do so, we consider now the following two equations
which generalize (2.1) and (2.2):

aa+ Cnen Cnen

a@o a Cnen

(2.16)

(2.17)

Suppose that they can be simultaneously solved
in the Hilbert space H+. Then it follows that

+ is a further eigenvector of a+a in H+n=- Cnen
This easily can be seen: From the left-hand side of

+ e D(a)

_
(2.16) we conclude that a+ ’,=_ c,e
H+, thus

Cnen Cne (2.18)

leads to the following recursion relation between
the coefficients cn:

(q-2a2 2 q-2Cnk n+2 +/3, 2) + OZn+2/n+2Cn+2

/ OZn/nCn_2 O. (2.21)

On the other hand, the equation

Z + -0 (2.22)ao a One

yields a second recursion relation

Cn-2 Cn(q-(5/2)(1 q-2)qnh(qn) + q-2). (2.23)

One easily verifies that

OZn (qn-(1/2)(1 q-2)h(qn) + 1)(-/3n_2), (2.24)

see (2.8). Inserting (2.24) into (2.23), we obtain

q 4nCn-2 --CnOen (2.25)

Therefore, a common solution oo + of-]n=-oc Cnen
(2.16) and (2.17) immediately implies the existence
of a discrete harmonic oscillator a+a.
Next we want to decide explicitly for which

functions h in (2.3) and (2.4) the operator a+a can
indeed become a discrete harmonic oscillator.

LEMMA There exists a necessary condition on h
such that a- uZh iu and a+ hu-2 / iu-1 con-

stitute a discrete harmonic oscillator a+a in H+,
namely

(qh(qn) / (1 q-2)-lq-n+(3/2))2
2q4 (q2 1)-I + (1 q-2)-Zq-Zn+3
/ (q/l5(-1)’,l / "/25(_1)’,_1)q (2.19)

This last equation now serves to eliminate one of
the coefficients in (2.21). The result is

cn(q-2 2 2 -4 2%+2+/3;-2-q %)

/ q-20Zn+Z/%+zCn+2 O. (2.26)

Next we substitute n-- n / 2 in (2.25) and insert

(2.25) into relation (2.26). Thus we receive

-2 2 /2 -4 2 2/2q an+2+ ,-2- (2.27)q Cn q n+2 or

q2 2 2 q2 4 2q )/3 2q 4 (2.28)On+2 O /

The last equation determines the numbers an and
hence also h(q n) (because of (2.8)). One solution
of (2.28) is

for all n E Z with suitable and fixed parameters
")/1, ")/2 .
Proof On the one hand, the eigenvalue problem

aa+ +- 2 Z Cn + (2.20)Cnen e

2 -2q3-2n 2( 2 -lq4%-(1-q-Z) + q -1) (2.29)

Our next aim is to find all solutions of (2.28).
Thus let an be any other solution of (2.28). We
then receive

q2 2 2(an+2 Ctn+2) (a2n Ct2n) O. (2.30)



302 A. RUFFING

2With the abbreviation Sn "-q (azn- %) finally
follows Sn const, because of qn-0. We therefore
obtain the general solution of (2.28) by adding
any real number times q-" to the special solution

2 This however requires two restrictions. FirstOg

we have to distinguish between even and odd n:

The general solution of (2.28) then reads

{e+ n 2;} of the p-eigenvectors in H+, namely

(aa+ q-2a+a)e+n
+(q-4(q2 2 2,)+ (1 q-2)/3Z)e,Ctn+2

Comparing with (2.26) yields the well known
q-oscillator relations (see also [1,5,6])

2 3-2n 2 -1 4o-- (1-q-2)-2q +2(q 1) q

+ (715(_1)",1 -4- 725(_1)",_1)q

Secondly, the constants "71 and 72 must be chosen
2in a way such that indeed % > 0 for all n 2;. We

will consider this choice in more detail in the next

section.
2 contains all information about h via (2.8),As

Eq. (2.31) yields a necessary criterion for the exis-
tence of discrete harmonic oscillators a+a in the
Hilbert space H+. This completes the proof of the
Lemma.

It is not yet clear whether the criterion (2.31)
already implies the existence of a solution for (2.16)
and (2.17) in the Hilbert space H+, i.e. whether

+o- c,,e, H+. (2.32)

In the sequel we will give an answer to this question
by Theorem 1.

(aa+ q-a+a)e+ 2e
=> (bb+ q-2b+b)e+ e
where a (3.4)

Vice versa: Let us consider the ansatz

a-- (u2h- iu) a+ (hu-2 --iu-1 (3.5)

with real valued h such that a, a+ fulfill the relations

(3.4): The choice of h now defines the coeffi-
cients c, := qh(q") + q-n-(5/2)(1 q-2)-l, as de-
scribed above, and they fulfill relation (2.28). This
can be checked by calculating them explicitly. These
observations lead us to the following:

THEOREM Let a (u2h iu) and a+ (hu-2 q-

i{u-1) be defined as in (2.3), (2.4), (2.7) and (2.9)
with a real valued .function h on the lattice

{q] n Z}. Under these assertions the operators a

and a + satisfy the commutation relations

+ 2e,+, (3.6)(aa+ q-2a+a)e

3 A REPRESENTATION THEOREM

and only if there are real constants 71,72, such
that jbr all n 2;:

By direct calculations one verifies that the solutions
of Eq. (2.28) lead to the following action of the

+operators aa+ and a+a on the basis vectors e"

+ (q-2 2 2 )+ +aa+e. c,+2 q-/n)en q- Ctn+2/n+2en+2
q_ q-2Ctnfln +en_2,

+ + q-2 2 2 +a ae, c +/on)e, + c,+2/,e,+2

++ q 2Ctn/n_2en_2" (3.2)

With the help of (2.8) we see that the operator
C:=aa+-q-2a+a is diagonal in the basis

(qh(q) + (1 q-2)-,q-,+(3/2))2

2q4(q2- 1)-l@ (1- q-2)-2q-2n+3

+ (715(_1)",1 -+- 725(_1),,,_1)q-n. (3.7)

Among all these (71,72) exists at least one couple
for which the kernel of a is non-trivial and in H+,
namely (71, 72) (0, 0).

We are going to verify the last statement of
Theorem during the next steps; up to now we

have solved the original representation problem
(1.8) for a two parameter family of operators a, a+
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in the Hilbert space /-/+ with 7,72 being the
parameters. We can also extend our result to the
whole Hilbert space H=H+@H_ because of
the following observation:

Introducing a parity like operator I-I by

I-[ < <’,

where n Z, cr + 1, } we see that I-[ obviously
converts H+ into H_ and vice versa. If (TL, 7)/2)--
(0, 0) then a commutes with 1-[ in the following
sense:

H a(>,2)e a(’r,2) H e. (3.9)

If (71,72)- (0, 0) the stated equation

Vn Z" (qh(q n) + (1 q-2)-,q-n+(3/2))2

2q4 (q2 1)-1 q_ (1 q-2)-2q-2n+3

-1- (")/1(5(_1),,,1 -]- 72(5(_1).,_1)q

provides two solutions for h(q’). One of them yields
the proper continuum limit to quantum mechanics
by sending q--+ 1. It is given by

h(qn _h(_qn v/1 + 2q2- (1 -(l/q2))-
q-(l/z) (1- (l/q2))

(3.11)

where the equality h(q’) -h(-q) is implied by
(3.8) and (3.9). As a result, we have explicit formu-
las for a and a+

a //2 V/1 -]- 2q-( q-2)p2
q-(1/2) (1 q-2)p -i<

and

a+ V/1 + 2q- (1 q-2 )p2
q-(/2) q-2)p

u-2 + i(u-.
(3.13)

a and a+ solve the representation problem (1.8)
on the common maximal domain M’-/)max(a)f’-I
Dmax(a+), M C_ H.

By direct calculation one recognizes that a vector

b0 H-- H+ q) H_ which satisfies

ao (u2h(p) iu)@o

a Z c’(e+, +e-) 0 (3.14)

must fulfill the following condition for the recursion
coefficients

Cn_2 cnq-2v/1 + 2q2n-1 (1 q-2). (3.15)

This recursion implies that b0 is indeed an element
of the Hilbert space H"

(b0,%) < oc. (3.16)

With these tools we state now

TheOREM 2 All vectors (a +)’bo are well-defined
in H and satisfy thefollowing recurrence relation:

(a+)n+lo_ 2q-(3/2)q-2np(a+)nO
+ 2q-[n](a+)’-’gao O, (3.17)

where

[n]
q-2,
q-2_

n < No. (3.18)

Proof We first investigate the action of a+ on b0.
To do so we refer to the abbreviation

k

Z c"(e+ + e-) (3.19)

k

=> a+o- Cn(OZn+2 +(en+2 + e.+2)
k

+ + (3.20)

Inserting c- /2)h(q’)(1-q-2)+l
yields

/3n ct]fl71q-4 2q-(3/2)q

(e+, + e-, a+b) 2q-(3/2)qncn
for In] <k-2, k>2

(3.21)

(3.22)
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==> a+o lira a+,
k---

i.e. (a+o, a+o) < (3.23)

It is remarkable that a+ acts on 0 in the same way
the operator 2q-(3/2)p does, see (3.22). Thus we
have

ao 0 a+bo 2q-(3/2)pbo. (3.24)

Making use of the commutation relation

a pen q-Zpa+ en, C {+1, -1}

and of the q-Heisenberg algebra relation

(p- qp)e -iq(3/Z)ue (3.26)

one concludes

(a+)2)0 2q-(3/2) (q-2pa+ vq)o- O, (3.27)

where (q-2pa+-(1/v/-))0 is well defined in H.
Therefore (a+):0 is also an element ofH. By induc-
tion one finds in complete analogy to (3.27) the
recurrence relation

(a+)n+l b0 2q-(3/2)q-2np(a+)nbo
+ 2q-Z[n](a+)n-lo O, (3.28)

where again [n] ((q-2n 1)/(q-2 1)), n C No.
Similarly one concludes by induction that

(a +)n/9o have finite norms for n No. This proves
Theorem 2.

The momentum operator p maps the intersection
of its domain with HS’, i.e. D(p) HS’ to HS’. This
allows to construct an energy representation ofp in
HS’. Like in conventional quantum mechanics, this
shall be the action of p on the eigenstates of a+a.
The recurrence relation (3.28) for 71 ")/2---0 is

(a+)n+l bo 2q-(3/2) q-2np(a+)n@o
+ 2q-Z[n]q_2(a+)n-lbo 0

r o). (4.2)

The (a+)nb0 are pairwise orthogonal but not yet
orthonormal. We next determine their normaliza-
tion. To do so, we start from the ansatz

(4.3)

The recurrence relation then can be rewritten as
follows:

z"n+n+ 2q-(3/2) q-2npUnn
/ 2q-2 [n]q_2 ’n-1 @n-1 0 (4.4)

which is equivalent to

/n+l U-1 (2q-(3/2) q-2n)-i n+l
/ qZn[n]q_2q-(1/Z)l,’n_ltelff)n_ O, (4.5)

i.e,

(4.6)

where bn and an are the coefficients in (4.5).
As p is a symmetric operator, one finds

bn-1 an-l, a-1 0, n 0, 1,... (4.7)

and hence

4 DISCRETE ENERGY REPRESENTATION

We first define a subspace of H, being spanned by
eigenfunctions of a+

HS’’- -Zcn(a+)nfol(,b) < oc, cnC
n=O

(4.1)

an (2) -(’/2)q(U2) v/[n + 1]q_2q2n,
n=0,1,... (4.8)

The normalization coefficients are related as follows:

u0 b’n+ 2[n / 1]q-Z/"n,
n=0,1,... (4.9)
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These informations are useful to determine whether
p is an essentially self-adjoint operator with respect
to the energy representation given by (4.6), (4.7) and
(4.8). To investigate this topic, we have to apply
results from the theory of infinite monolateral
Jacobi matrices [8], p. 522. Let us reformulate these
results in some generality in order to apply them to
the operator p.
The action of the operator p A on the energy

eigenstates looks as follows:

Abn bn_lb,_l + bb+l (4.10)

By direct calculation, one verifies that the energy
eigenstates bn have a polynomial representation of
the following type:

b P(A)bo, (4.11)

where the Pn(A) are in general C-valued polyno-
mials that satisfy the relations

,Pn() bnPn+ (,) -@ bn_lPn_ (,)

P_I(A) P0(A) 0

(n e N)

(4.12)

(4.13)

The following theorems characterize the property
of essential self-adjointness in the case of the opera-
tor A, see also [8], p. 522.

THEOREM 3 A is not essentially self-adjoint if the
series k=O IPk(i)l 2 converges.

Proof We denote the scalar product of x, y E HS’
again with (x,y). If the series in Theorem 3 is

guaranteed to converge, there exists an x HS’
such that

(bl,x) Pk(i). (4.14)

Taking into account the relations (4.10) and (4.12)
we obtain

(Abk, x) bk_Pk_(i) + bkPl+(i) iP(i),
(4.15)

where the overline denotes complex conjugation.
Because of (4.14) one receives

(Abk, x) (bk, ix). (4.16)

As the operator A as well as the scalar product are

distributive, one gets in the case of any finite
element

k

Y ZYJJ (4.17)

the following relation:

(Ay, x) (y, ix). (4.18)

Applying the theory of monolateral Jacobi
matrices, [8], p. 521, one knows that (4.18) is valid
for any y D(A). Therefore, the following result
holds:

x D(A*) and A*x ix. (4.19)

This immediately
Theorem 3.

THEOREM 4 If the series

_
o IP(i)I 2 diverges,

the operator A is essentially self-adjoint.

Proof We have to show that A* has definitely
not +i, -i as eigenvalues. If

implies the statement of

A*x=ix with (x,x)=0, (x,x) <oc, (4.20)

then one concludes because of the definition for
A* and because of bl D(A) that

(A, x) (, ix) (4.21)

or

thus in total

(x,A) i(x,b) ix, (4.22)
x := (&, x), (4.23)

(x, bl-l, 1-1 + bkk+ iXk. (4.24)

The scalar product yields

bk-lXk-1 + bkXk+l ix. (4.25)
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Because of the polynomial relation (4.12) and by
means of induction we receive

xk Pl(i)xo and x0 0. (4.26)

This is in obvious contradiction to the required
divergence of the series k0 IPI(i)I 2. Replacing
in this series by -i one obtains again a divergent
series because of

P(-i) P(i). (4.27)

Thus, as for A*, and -i cannot be eigenvalues.
Therefore, Theorem 4 holds.
With analogous methods one proves:

THEOREM 5 Only one of the following cases can

be true." For any non-real z E C the function

F(z) Z Pk(2) 2 (4.28)
k=0

becomes divergent or for any non-real z E C the

function F converges. A is essentially self-adjoint in
the first case. In the second case, A is not essentially
self-adjoint.

If A is not essentially self-adjoint, i.e.

IP/(i)I 2 < oc, (4.29)
k=0

one verifies by the proof of Theorem 4 that x
P/(i)xo (k 1,2,...). Note that the choice of x0 -/: 0
is arbitrary.

This however means that the eigenspace that
belongs to is one-dimensional. The same holds
when substituting i--+-i where the xk are now
replaced by 7. Therefore, because of

dim Eig(A, + i) dim Eig(A, -i) 1, (4.30)

the deficiency indices are equal and thus A has self-
adjoint extensions.
By denoting

xi Z P(i)bk, (4.31)
k=0

x-i P(-i)b, (4.32)
k=0

one sees that the elements of the domain D(Ao)C
HS of a special self-adjoint extension Ao of A are

uniquely determined by

V XA _qt_ OZXo, (4.33)

where

XA D(A) and c C, (4.34)

as well as

xo i(e(i0/2) xi q- e(-i0/2) x-i) with 0 < 0 < 27r.

(4.35)

Let p(A) be the spectral density of A (if A is essenti-
ally self-adjoint) or of Ao (ifA is not essentially self-
adjoint). We then obtain in analogy to [8], p. 524:

Result 1 The polynomials Pk(A) constitute a com-
plete orthonormal set with respect to p(A), i.e.

o Pi(A)Pj(A)d(p(A)) 5ii. (4.36)

We now are going to decide whether the operator

A D(p) C HS’ - HS’, x Ax px

is self-adjoint or whether it has self-adjoint exten-
sions. Following the outlined theorems, only one of
these two cases will be true.

Let A C. The ansatz

n=0 n=0

(4.37)

then leads to the three-term recurrence relation

cn+ Aa- Cn an- a Cn_ (4.38)

where the an are given by (4.8). Equality (4.38)
yields

cn Aa.llCn-l_ an-2an-llCn-2 (4.39)
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and therefore

Cn+l (,2a-lan-l_ an-la-l)cn-1
Aan_ea- a Cn-2. (4.40)

Looking simultaneously at (4.39) and (4.40), one

obtains a system of linear equations as follows:

Cn+l (YnCn-1 -[- /nCn-2,

Cn ")InCh-1 -Jr- (SnCn-2. (4.41)

Note that the coefficients an,/3n, %, 6n are fixed by
(4.39) and (4.40). We define the vectors vn E C2 by

Choose e > 0 such that p q-2 _+_ 2e < 1. With the
help of (4.43) we then obtain

(4.48)
(4.49)

from a certain index N on. (4.50)

In detail, one has a_ 0 and therefore, because of
(4.38), the sequence of the cn is uniquely fixed after

Co is chosen. As a consequence, any cn can be
uniquely represented as a polynomial Xn in Co

Vn’--(Cn+,cn)T n--0,2,4,... (4.42)

and the sequence of matrices An E C22 with com-

ponents an,/3n, %, 6n. They are related by

Vn+2 A, v, (4.43)

and by inserting an from (4.8) one finds for any fix
element x C2

lim A,,x- -q-2x. (4.44)

Thus, An converges pointwise and the limit is
-q-2E where E C2x2 denotes the identity matrix.
Using the norm

Ilxll + x2x2 (4.45)

c--Xn(c0) n-- 1,2,... (4.51)

Choosing A-+i resp. A--i, we assume that the
series

Ecn (4.52)
n=0

diverges for any Co C.
Because of (4.50), one receives

2 2 2 2 (4.53)

Thus we find for x "--Ic]l +l 2
Cn+

E x,, < oc. (4.54)
n=0

for an element X--(X1,X2) C2, we know that C2,
established with I*ll, becomes a Banach space.
Thus we can conclude that the sequence of norms
(I]Anll) is bounded, where

sup IIA,x[I. (4.46)

One finally perceives that I[An[I -+ q-2 as C2 is finite-
dimensional. Consequently, to any e > 0 there exists
an index N(e) E N such that for all n > N(e)"

IAn -q-21 <e => llAll < q-2 + e. (4.47)

Therefore, the series (4.52) always converges.
Applying now the general facts from the stated

theorems, we finally obtain

Result 2 Let p be the restriction p on HS’. The
operator p is not self-adjoint for q > 1. However,
there exist self-adjoint extensions P0 via

P0: D(p) U { 5 + c0+
+/30_ I D(p)} -- HS’,

p0q5 := p4 p00+/_ := p*0+/_, (4.55)

0+/_ i(e(i+/-/2)x+i /- + e(-io+/-/2)x+_(-), (4.56)
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0 <_ 0+/_ < 27r, (4.57)

p’x?/- ix]/- p*x+ -ix+(-, (4.58)

x?/- Z P(i)O+/_,
k=O

x+_ P(-i),+/_. (4.59)
k=0

In total, this result reveals the fact that the energy
representation of the discrete q-momentum opera-
tor in terms of a+a-eigenfunctions is completely
different from the analogous situation in the con-

tinuum, when q 1. In the continuum situation,
the operator p is essentially self-adjoint in the basis
of ;z(R) that is provided by the classical Hermite
functions. As stated in the introduction, this
observation is directly related to the interpretation
of q-oscillator algebras in the context of squeezed
laser state research, see [14]. A fascinating devel-
opment on this area can be expected and a lot of
mathematical investigation concerning related
spectral theoretical results still has to be perfor-
med. This article gives one more contribution into
this direction.
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