Discrete Dynamics in Nature and Society, Vol. 5, pp.97-106
Reprints available directly from the publisher
Photocopying permitted by license only

© 2000 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science

Publishers imprint.

Printed in Malaysia.

Differential Representations of Dynamical Oscillator
Symmetries in Discrete Hilbert Space

ANDREAS RUFFING*

Zentrum Mathematik, Technische Universitat Minchen, Arcisstrasse, 21/H4, D-80333 Mimnchen, Germany

( Received 10 January 2000)

As a very important example for dynamical symmetries in the context of g-generalized
quantum mechanics the algebra aa’'—g %afa=1 is investigated. It represents the
oscillator symmetry SU,(1,1) and is regarded as a commutation phenomenon of the
g-Heisenberg algebra which provides a discrete spectrum of momentum and space, i.e.,
a discrete Hilbert space structure. Generalized g-Hermite functions and systems of
creation and annihilation operators are derived. The classical limit ¢ — 1 is inves-
tigated. Finally the SU,(1, 1) algebra is represented by the dynamical variables of the

g-Heisenberg algebra.
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1. INTRODUCTION

The dynamical symmetry SU(1,1) plays an im-
portant role in the abstract description of quantum
mechanical harmonic oscillators. Recently several
approaches to quantum mechanics in discrete
space-momentum structures have been given in
the context of quantum groups [15, 16, 10]. Others
consider g-incertainty phenomena [14]. We follow
the basic ideas of [10] where the g¢-deformed
Heisenberg algebra and its representations are
introduced. Our aim is to represent the corre-
sponding algebra of SU,(1, 1) symmetry [1, 2]

ad' —q*ala=1 g>1 (1)
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by the dynamical variables p, & u of the g¢-
deformed Heisenberg algebra

(2)

Let us briefly summarize the meaning of this
algebra. It is based on a complex Hilbert space
HS with orthonormal basis {|n)}’|n€Z,peS:=
{1, -1}, m € R}. Following the approach of Wess
it has turned out that this Hilbert space is directly
related to a quantization of momentum and space
via the parameter g, see [10]. We refer to this
phenomenon by the expression ‘Discrete Hilbert
Space/HS’. As a consequence the spectrum of p
can be regarded as a lattice. Like in quantum

pE—qép = —icu g>1
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mechanics the Hilbert space HS shall give all pos-
sible states of the free particle where

Yo ppil=1 ()

pES,jEZ

o ()5 = bumbpo,

The parameter 7, characterizes the chosen repre-
sentation. In the special case ¢= (¢~ '>—¢ *?
matrix representations of p, u, £ are given by the
action of the operators in the following sense

plnyy’ = pmoq"In),’ Q)

gy = —ip~'my g
(@Pln=17 =g Pln+1)7)  (5)

uln),’ = |n—1)5". (6)

p is considered to be the momentum operator, £ is
identified with the operator of space. u turns out to
be an operator which shifts one lattice point into
its neighbour. The matrix representations yield
a quantization of the spectrum belonging to the
operator £. The quantization is related to the ¢-
Fourier transform [10, 8]. There are also a lot of
possible representations for p, u and £ in the
context of g-hypergeometric functions [8, 9]. In the
following we choose the g-momentum representa-
tion which is given by the mapping

p — z, £ — D (g-differentiation), u — R (7)

Generalizing the quantum mechanical framework
z denotes the multiplication of a function with its
variable. The operators R, L, D are given by their
action on a suitable function f which has to be
specified in the context. The actions are realized by
shifting operators R, L and the ¢-difference opera-
tor D

(RA)(2) =f(g2) (LN)(2)=f(g"'2), g>1 (8)

flgz) = flg~'2)

o)) ="

;o g>1 (9)

From now on we restrict to g>1 following
[10, 5, 6]. Clearly the limit ¢g— 1 turns D into the
differentiation of classical analysis. Questions con-
cerning the limit were investigated in detail in [12]
where also is shown that a suitable choice for the
g-deformed Heisenberg algebra is

pé—qép = —iq**u (10)

One finds that the representation allows a well
defined limitation ¢ — 1. For remaining problems
in the context of g-limitation see [12]. From the
last equation follows the g-momentum representa-
tion for p, u, & We will see that the expected
representation of the algebra (1) in terms of the
dynamical variables

a=f(p,u,€) a" =f(p,u¢ (11)

yields a problem which in contrast to quantum
mechanics is much more complicated. In [10]
one can find a deeper investigation of questions
concerning self-adjointness and essential self-ad-
jointness of the involved operators p, &, u. We will
apply these results briefly at the end of the fourth
chapter. By the operation ‘t” we denote the formal

adjoint of the dynamical variables which is given
by

pl=p &=¢ ul=u" (12)

i.e., for example

(pln)y, Im);) = (Im)?,plim);") m,nez  (13)

To deal with the mentioned non trivial situation
in the g-case we will start in the second chapter
from an observation which we call commutator
symmetry or oscillator symmetry of Heisenberg
algebras. Making use of it we can generalize the
oscillator concept of quantum mechanics. The
expression oscillator symmetry can be related to
the corresponding dynamical symmetry (1). In
the third chapter we will derive the g-Hermite
functions which follow from the commutator
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symmetry. We will construct explicitly creators
and annihilators in the g-momentum representa-
tion. We will also investigate the behaviour for
g— 1. Finally we transfer the result of the g¢-
momentum representation to the situation in the
abstract Hilbert space HS. Moreover we intro-
duce an operator which can be regarded as a
formal g-generalization of the quantum mechani-
cal Hamiltonian for harmonic oscillators. For its
interpretation in a g-deformed theory see [5,6].
Further investigations concerning the deeper
physical meaning of this situation are presently
prepared [3].

2. OSCILLATOR SYMMETRIES
OF HEISENBERG ALGEBRAS

In quantum mechanics the ground state of the
harmonic oscillator is given by the equation

(p—i&lho) =0 or (p+if)|o) — 2plio) =0
(14)

Applying the operator (p+if) repeatedly on this
equation and making use of the Heisenberg
algebra p& —£p =i we obtain

(P +1€)" " 3po) + cnp(p + )" [tho)
+ Bu(p+i€)" o) =0 (15)

where ne€ N. The numbers «, and [, are
determined uniquely by the recursion.

The action of the operator p+ i€ leaves the form
of Eq. (15) invariant. It leads to the mentioned
oscillator symmetry aa' —afa=1. All that is well
known from quantum mechanics so that we can
be very brief. As the described situation admits a
direct approach to the a-a-relations in quantum
mechanics we want to generalize it in the g¢-
deformed case.

Let us consider equations of the following type
based on the g-Heisenberg algebra

(T +au™ '€+ bp)|Ypr) =0
and (T + aué + bp)|Yry =0 (16)

where a and b are arbitrary complex numbers. 7'
denotes an endomorphism of the Hilbert space HS
and can be represented by its action on the eigen-
states of p. Let End(HS) be the set of all
endomorphisms in HS. Furthermore we want to
restrict to all triples

(T,a,b) € (End(HS),C x C)
which allow solutions [¢)7) of the Eq. (16) with a
finite norm,

[Yr)= D am)Ti+ Y balm)™ (o= 1)

(17)

Wiler) = 3l + P <00 (19)

n=—00

Without loss of generality we will consider only
the first equation of (16). Furthermore it turns out
that the g¢-generalizations of recursion formula
(15) require the following properties of T

1. T fulfills the commutation relation Tp=q~*pT

2. For a given solution [i7) of the equation
(T+au™ '€ +bp)|ib7) =0 the following elements
of Hilbert space

[n) = (T + au™"€)"|¢r),

exist and have finite norm (¥,|1,) < co.

n=0,1,2,...

We call such a triple (7,a,b) € (End(HS),
C x C) generating triple and X:=T+au"'¢
the related transition operator as T describes a
mapping from [t,) to [, 1) by

(T + au ' O)ipn) = [Yns1). (19)

It is worth noticing that any transition operator
X = T+au~ "¢ can be expressed in the form

X =puhy hn)"T = h(£q")m)T . (20)

where &, is a real valued function on the compact
support Y ={xq"|n € z}, hy: >, — R.
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Let (7, a,b) and (S, ¢, d) be two generating sets,
X and X7 the corresponding transition operators.
We then have

(T + au” '€+ bp)|r) =0, Tp = q_sz, a,beC
(S+cu "¢ +dp)lpy) =0, Sp=q~°pS

so that we immediately obtain

(T + auw™"'&)"|yor) = yu(p)Itbr)
and (n€No)(S+ cu™'&)"|Ybs) = yu(p)|ibs)-

Note that the functions y,(p) are the same in
both cases. They are easily determined to be poly-
nomials in p. It can be shown that they fulfill
recursion formulas of the following type

Ynr1(P) + bg *"pyn(p) — iq~'[nlaby,—1(p) =0,
(21)

where

q-2n -1

[n] == g1

, HEN (22)

In order to classify these polynomials let us con-
sider the case b= —1 and —ig 'ab=1 which
plays the most important role in practice. Apply-
ing the left hand side of (21) on the state |—2m):=
|—2m)| we obtain

Onr1 (@) = 472" "ya(g ")

+lnlyaci (@)~ 2m) =0, neN  (23)
This holds for all eigenstates of p which belong
to even lattice points. These states span the even
Hilbert space and therefore

Y1 (@) — 42" yu(g

+ [nlyn-1(g") =0 (24)

—Zm)

The same argumentation is valid for the odd
lattice points. It can be easily recognized that Eq.
(22) yields polynomial functions y,:{+ ¢*"|

m € Z} — R. Equations of type (24) can be written
in the form

Yuet (@) = ¢ " yu(g™™™)

+ (@) (1 =g )yu1(g™) =0, neN
(25)

From this equation we deduce the family of
polynomials. The functions y, are said to be g-
generalized discrete Hermite polynomials [4].

We expect these polynomials to characterize g-
deformed oscillator relations which will be derived
in the following section.

3. Q-HERMITE FUNCTIONS
AND Q-LADDER OPERATORS

To generalize the situation of quantum theory let
us fix T and i as elements of a generating set
(T,ia, B), a, B € R. We construct g-creation opera-
tors by the definition

a' =T +iou"¢ (26)

which can be rewritten in the form

a' = Bpu*h(p) + i ¢ (27)

In order to establish the expected g-oscillator
relations o and [ have to be specified. In this
context a' is supposed to be a transition operator.
The formal adjoint is given by

a:=T"—iatu (28)

We need to find a ground state |io) with finite
norm so that the following equations hold

(1) alho) =0

) a'lo) =7plo), 7 € R

(3) |1/)n> :'Yn(at)n|¢0>9’7n €R

@) d'p=(T+iou 'Op=q *p(T+iou™ &)+ 1=
q_zpaf—i-l

(5) <"pn|1/}m> = 6nm
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Note that in quantum theory the equation of
the ground state (1) implies the remaining rela-
tions (2)—(5). Making use of the momentum
representation, given in the first chapter, Egs. (2)
and (3) read

(=q*aLy2Dy2 + B Lyf (X))gho(x) =0 (29)

(@Dg2 + Bf (x)Rg2)do(x) = yxio(x)  (30)

where x € {+¢*", £¢*" " 'n € Z}.

We show now that Egs. (29), (30) have a
common solution v, which is well defined for
every real value x.

The first equation is equivalent to the equation
(aDy- + Bf(x)R42)tbo(x) = 0. Substituting this
last relation into (29) we receive

D24 (x) = Lx(x) (31)

For the special choice (y/a)=(¢ >—1)"" a solu-
tion is given by the explicit expression
W) = (i ) (~ixig ) (32)

Here we make use of the g-factorials defined by

k—1
(a;q %) = [](1 —ag™)
n=0
(4477 = lim (@477, (33)

Note that the parameter 3 can be recognized as
a part of the function f and therefore may be
omitted.

It is interesting to consider the special solutions
¥} belonging to the choice

(a)’Y) = (la(q_z - 1)_1)
and (v,a)=(l,g2-1) (34)

from which we can learn most of the basic facts
concerning g-generalized annihilators and creation
operators.

With the choice (y,a)=(1,4~%>—1) we derive
from

(Oqufz +qu~z)¢0(x) = ’y)C’lbo(X) (35)

the recursion relation

(72 = 1)Dy2 + £ Ry2)" o (x)
—q7"x((q7* = 1)Dg-> + f Ry2)"tho(x)
+ (=g (g = 1)Dy-
+fRy2)" po(x) =0
(36)

Defining the polynomials

hn(x) = ea((q72 = 1)Dyg2 +f Ry2) "o (x) /9o (),
(37)

where ¢, 1:=¢*"ch, co=ci=1, we obtain from
(36) the equation

Bt (x) = xh ()
+ (@) (1 = g (x) = 0. (38)

By setting x:=g " these functions reproduce
exactly the polynomials y, given by (25). Note the
important fact that these g-generalized Hermite
functions are orthogonal with respect to the square
of the ground state, 3, i.e.,

S U (ca® Vi (eq™) + hn(—ca Vhn(—ca™)}

k=—00

¢(2)(cq2k)q2k = Vu(€)bum (39)

This equation holds for all positive numbers c
where V,(c) is a normalization factor. For abstract
classification of the polynomial type see also [4].

The result obtained in this way is the expected g¢-
version of the quantum mechanical orthogonality
relation for continuous Hermite functions.

Next we consider the solution 1), belonging to
(a,7)=(1,(¢~%=1)""). Equation (35) then reads

(Dy> +f Ry )tho(x) = (g7 — 1) 'xpo(x)  (40)
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where £(x) = (D, +%0)(x))/(so(x))). For simpli-
city of notation we introduce o := /(1 — ¢~*) and
obtain the following equation by applying the op-

erator R, on both sides of (40)

(b, + L)

) = 4 ),

(41)
where
P0(x) := (Rotpo) ().

This rescaling procedure turns out to be suitable
for the limitation g — 1 as we will see later on. To
proceed it is useful to introduce the operator

C(p . P,
A ._< D, e >Rq_ (42)

and its formal adjoint A. From (41) we obtain the
recurrence relation
(AN 90 — g7 (1 + g 72)x(AT)"y
+(1+¢ ) nAa)"¢0 =0 (43)
Defining the polynomials H,(x) = ((4")"y°(x))/
¢°(x) this relation may be written as

Hy(x) — (14 ¢ 3g *"xH,(x)
+ (14 ¢ ) [nHy-y (x) = 0. (44)

A straightforward calculation gives

(1= ¢ 2" (LoHy) (%) (Lotho) (x)
= (1 + q~2)n/zcnhn(x)¢0(x)a (45)

where co=c1=1,¢,,1=¢""c,, n € N. This leads
almost immediately to the result (compare (39))

o)

> Hut) (g™ ) (Hat") (g™ ) eq™

k=00

S ) (=) (Hy) (g e

= Vu(€)bum (46)

Note that the functions (H,¥°)(x) show the
mentioned phenomenon of scaling orthogonality
which implies that the orthogonality of the func-
tions does not depend on the positive parameter
¢ [4]. Compared to the case of classical Hermite
polynomials this turns out to be an additional
property of Hermite functions occuring in the
g-generalized case.

Now having derived the orthogonality relation
for the functions H,y° let us discuss the basic
properties of 4 and A'. Formal calculation shows
that

Alx — g 2xAT =1
and therefore
XA —qAx =1 Ax = ¢*xA — ¢*

Introducing the functions

the action of the operator Ax on 1, yields
Axto = —q*o & AP = —¢*Tido,

as a consequence of putting n =0 in the recurrence
relation (43). Therefore we know the induction
statement

Aty = —¢*7ln]) o (47)

for n=0,1. From the recurrence relation (44) we
obtain

T_I’Yn+1,lﬁbn+l + q_znx’ann + [n]’Yn—lwn—l =0 (48)

2

The operator 4 acts on ¢~ ~"xv,1, as follows

4" uAxp,
. =2n 2 2
=q " m(q XA = ¢°)u
— q_z("_l)’ynx(—1)q27'[n}1/2¢,,_1
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— g 2 Dy,
= g2 (=) (=D Pyl ey
— g 2 Dy,
= @7xg 2V 1hy — g2 Dy,
= —@ ) (T pn + [1 — 1 yn—2tn2)
— g 2 Dy,
= =+ ()"
— @7lnlln = 1], -2%n2

= —@*yan+ 1] = @7n)n — yathna.  (49)

Furthermore we get

— Y1 @[ — 1)[n)hu—2
Yna[n — ][Rl Tpn 2 (50)

[n]A7n—l lpn—l =

Summarizing these computations we get the result

T_1A7n+1¢n+1 - qZ'Vn[n + 1]¢n =0

which can be written as

2
T
A¢n+l = 4 ]1/2 d)n

Tn+1 [n +1

or
At = —*rln+ 1) 4p,. (51)

As we have seen (48) implies (51). This completes
the proof of induction so that (48) holds for all
n € No.

The definition of the functions 1, also yields

Al = (1] (52)

This reveals a great similarity to the well known
quantum mechanical generators and annbhilators
a, a'. In order to establish a complete analogy to
the quantum mechanical a—a'-relation we perform

a rescaling of (51) and (52) by putting

pi= _qz(l + q—Z) and 1, = Y" = p~n/2,¢)n
(53)

Consequently we obtain the following result with
two possible realizations of 4 and AT

ATy = £ p'Pn 4 1] 2y (54)

Ay = & p'2n) Pyt (55)

where p'?:=ig(1+¢~ %" The corresponding

momentum representations read
Al = +ig" P27 Dy + (D29 [Y)R2)  (56)
A= £ig" P2 (Dg2 + (D29 [4")Rg2) T (57)

From now on we choose the upper signs for 4 and
A" in (56) and (57). We immediately obtain

Aty = [n4 1)t (58)
Ay = [n] Py (59)

This provides the existence of an orthonormal set
{¢"'|n € No} which can be easily verified by
calculating the scalar products by means of (58)
(59).

All functions {v"} are orthogonal up to a
constant factor,

o0

> W (ed) (e

k=—0c0

+ " (—eq® )" (—cq™))q** = Sum const.

The same argumentation holds for the above
mentioned second solution (e, 7) = (g~ *—1), 1).

It can easily be verified that (58) and (59) yield

AATY — g PATAY" = ¢ (neNy) (60)

This relation is directly related to the symmetry
SUL1,1).
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4. REPRESENTATION
OF THE SYMMETRY SUy(1,1)

Let us now apply the differential representation of
the first chapter. Without loss of generality we
choose mp = 1. We denote by |n) the eigenvectors of
momentum which belong to the given mp=1 and
we define «y := —i[Z];g.

In the above introduced abstract Hilbert space
HS the operator a' is given by

at = ’y(q_zphu_2 + q“3(§p — qpé)§)
where
h(p) == —p~ (" (p)) ' Dy2¢*(p)-

Its momentum representation reads

Repr,(a') = =g "Dy + (#°) " (Dg29")R, ).
(61)

An evaluation of (¢°)”' (D, 2%") yields the follow-
ing result for A

h(p) = (g7 = Dp2(1 = (1 + (1 — g Hp*) ™).
(62)

Performing two levels of expansion we get

(147 g (1+g2)(1 g )+
(63)

N =

h(p) =

for all vectors |n) for which p?|n)=g¢~*"|n) and
g "(1-qg~H<l.

For a given ¢ we denote the number of all
vectors satisfying the last condition by N,. It is evi-
dent that N, is finite. One can show that N, — oo
as ¢ — 1. This means A(p) — 1 as ¢ — 1.

The last observation leads immediately to the
general result that lim, ; ¢°(x) = e"(/2¥ where
the limit exists pointwise. This can also be seen
by considering the general eigenvalue equation
p*ln),, = mq*"|n),, and by taking into account

that R naturally is generated by the superposition
of the open sets consisting of the spectral points
m2¢*" which belong to 7 (o varying in R).

We recall that by the calculations of the third
and fourth chapter the formal adjoint of a is given
by

a = —y(pith+ g *¢(p€ — q&p)).

The properties of the function /4 show that the limit
g— 1 turns a and 4' into

=i(17—i§) fz_i(P+i§)

A A

where p —&p=i. Thus we obtain the well known

creators and annihilators of quantum mechanics.
Making use of the obtained results we define the

following states of the given Hilbert space

W5 = (1= )2 S gm(g)ian)

n=-00

3 (g - 20)

n=-—00

) 1= (1 — g )2 S g hjan 4 1)

n=-—00

+ Z qn+1/2¢m(_q2n+l)| —on— 1>

n=—00

where m € N,.
Furthermore we find

a'lg) = [n+ 1)y,
') = [n+ 1"y, (65)

aly) = ['"ly) ) = ] )  (66)

Moreover this leads to a g-generalization of the
well known quantum mechanical relations be-
tween a and af

(ad" — g *d'a)|y?) = |¥?) (neNo).  (67)
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As a consequence we receive the following eigen-
value equations

dalyy) = [nlly) a'aly)) = [lly))  (68)

(Waltn) = bum (Dolth) = Eum (Pple) =0 (69)

The momentum representation of the eigenstates
becomes the eigenfunctions of the quantum
mechanical harmonic oscillator as g — 1.

We can show that «a is dense in Hilbert space,
i.e., the domain D(a) CHS is dense in HS. For
a general framework see also [17]. Let us define
the set

D" := {|) € HS [3[¢)" € HS Vlp)
eD(a") : (ale), 1¥) = (l¢), [¥))},  (70)

i.e., the operator a*: D* — HS, a*|¢) == |¢)* for all
|) € D* is the adjoint of a. The operator a* is
always closed and one can show that all eigenvec-
tors of the momentum operator p are in D(a).
Therefore a* is densely defined in HS. As a
consequence [13] the operator

H — a**a*
is self-adjoint. As a* is dense and closed we find
a'lyy) =d'lyy) @) =dly)  (71)

Omitting the symbols x and y we receive

(@ [thn), @ |9hn)) = [n+ 1] <00 (72)

This means that the vector |p,,)=a*|¢,,) is a
well defined element of the Hilbert space,
ie, |@m)=¥mi1). We define a**|p,,) by the
relation

(@ [hn), lm)) =2 ([¥n), @ |om)) = mn (73)

By the definitions |po) =|1) and a**|1py) =0€ C
the action of the linear form ¢** on the basis of HS

is completely determined. As an easy consequence
we find |¢,) € D(a¢**). This means

(@ [Yn), @ b)) = (@ |Yn), [om))
= (|n), @ om))
= ([¢n), a"a* |thm))
= bpn[n + 1]

Let H| denote the restriction of H on the subspace
of HS which consists of all finite linear combi-
nations Z;"z%Naniz/)n). Obviously a'a coincides

with H|.

5. CONCLUSIONS

The operator H:=a'a is an oscillator like expres-
sion. For details of its physical meaning see [3].
In the g-deformed case the interpretation in
the context of SU,(1,1) symmetry is investigated
[5-17].

The action of H on the g-Hermite basis elements
of HS is given by

Hlyy) = [Allvy), Hlv,) = [mllyn)  (74)

Let us finally give the representation of p and &
by operators a and a' as a generalization of the
quantum mechanical situation

o0

p=—q"> (1-q?*)"(da)"(ga" —a)
—0

3

NgE

5 — iq3/2'y( (_l)nq—nu—2n+l> (au—z + u2a‘f).

(=1

n=l|

(75)

One can easily see that these operators are
invariant under the formal adjoint { which is
necessary for a consistent formulation of g-
generalized quantum mechanics. They become
the well known objects momentum p and space
&(p€—E&p =1i) of quantum mechanics as ¢ — 1.

As a concluding result we have represented the
SU,1,1) symmetry algebra aa'—q 2d'la=1 in
terms of the dynamical variables p, u, £ The



106

A. RUFFING

solution of this nontrivial problem reveals a
further rich structure in the context of quantum
symmetric quantum mechanics. More work has to
be done on this area.
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