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“Heart attacks and devaluations are not predictable and, certainly, are never
preannounced”. (The usual remark made by government spokesmen shortly after a
domestic currency devaluation has taken place.)

The contribution that this paper aspires to make is the prediction of an oncoming attack
against the domestic currency, something that is expected to increase the possibilities of
successful hedging by the authorities. The analysis has focused on the Greek Drachma,
which has suffered a series of attacks during the past few years, thus offering a variety of
such “shock” incidents accompanied by frequent interventions by the authorities. The
prediction exercised here is performed in a discrete dynamics environment, based on the
daily fluctuations of the interbank overnight interest rate, using artificial neural
networks enhanced by genetic algorithms. The results obtained on the basis of the
forecasting performance have been considered most encouraging, in providing a
successful prediction of an oncoming attack against the domestic currency.
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1. INTRODUCTION and suffer its consequences. It is only natural,

therefore, that any contribution to the arsenal of
Exchange-rate crises represent a menace all central  crises-fighting devices used by the authorities must
banks have learned to live with, fight against be more than welcome. This paper aims at
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contributing to crises management by proposing
an application of selected computational intelli-
gent schemes based on artificial neural networks
for the prediction of an oncoming currency shock
in an environment of discrete dynamics of the
time-series data involved.

The currency we have decided to study is the
Greek drachma during the period between Janu-
ary, 1990 and February, 1999, a choice based on
the following reasons: First, the drachma has been
the victim of a considerable number of speculative
attacks, which have intensified during the last few
years, and led to its devaluation, despite the “hard-
drachma” policy aimed at curbing inflation.
Second, the Greek economy has been subjected
to a wide variety of structural and institutional
reforms during the period under consideration,
which have encouraged these speculative attacks.
Finally, Greece has gone through a number of pre-
election periods, during which the drachma was
put under severe pressure as a result of the market
expectations.

The reaction of the Central Bank in attempting
to face attacks against the drachma involves, in
most cases, the use of two policy instruments: The
daily reserves spent during a market intervention
and the overnight interest rate (o/n) which is the
daily borrowing rate among commercial banks or
between the Central Bank and commercial banks.
Data on daily interventions by the Central Bank
are, unfortunately, not available, due to interna-
tional commitments of the local authorities. This
leaves us with just one instrument, the overnight
interest rate, which is raised in order to protect the
domestic currency rates from the adverse effects of
exogenous disturbances, like the ones arising when
the local currency becomes the target of a
speculative attack. In such cases, raising the
overnight rate acts as a bumper against the attack
and leaves the local currency exchange rates
unaffected. It is important to understand, there-
fore, that a study of these rates themselves is not
expected to reveal the effect of an attack, since the
full effect of such an attack is neutralized due to
the market intervention by the Central Bank. It is

equally important, in addition, to agree on
defining a period of “crisis” or “‘shock™ as one
during which the interbank overnight interest rate
rises in protection of the domestic currency rates.
This rise must be both substantial (in percentage
terms with respect to the pre-crisis rates), as well as
sustained in terms of duration.

A thorough study of the drachma exchange-rate
history reveals that the Greek currency has been
subjected to attacks of varying character, intensity
and duration, as reflected in the fluctuations of the
overnight interest rate, depending on whether the
cause that triggered the particular shock is
associated with a pre-election period, a major
domestic market reform or an unrest in the
international markets, like the ones that took
place in the Southeast Asia, Russia or Brazil. We
shall be able to see during the analysis, that the
forecasting method employed in this paper is
based on training the algorithm to recognize the
particular pattern of overnight-rates fluctuations
which represents the reactions of the authorities
during periods of shocks like the ones described
above, learning to expect a similar behavior in the
future, once this particular pattern of data
fluctuations is again encountered. The “reasoning”
used by this method leads to conclusions which
should by no means be considered as restricted
only to the drachma case, since the networks used
are trained to recognize specific patterns of data
behavior during the training period, irrespective of
the nature of the variable itself. Besides, the
expected EMU membership of Greece beginning
in the year 2001 will eventually relieve the drachma
from the imminent danger of such an attack. One
may safely argue, therefore, that the results
derived in this paper may be considered as holding
true in the case of most small, open economy
currencies.

The paper is organized as follows: Section 2
involves a literature overview, while Section 3
describes the economic environment in Greece.
The methodology used, as well as the technical
framework on which the paper is based, are
analyzed in Section 4, while the empirical findings
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and the conclusions drawn are presented in
Sections 5 and 6 respectively.

2. LITERATURE OVERVIEW

Predictability issues referring to foreign exchange
markets, have led, in most cases, to results which
are either limited (Marsh and Power, 1996; Pollock
and Wilkie, 1996; West and Cho, 1995), or difficult
to interpret (Kim and Mo, 1995; Lewis, 1989).
Some authors even conclude that there is no such
thing as the best forecasting technique and that the
method chosen must depend on the time horizon
selected or the objectives of the policy maker
(Verrier, 1989). The difficulties encountered are
attributed, among other things, to the noise level
introduced by frequent policy interventions from
the part of the authorities (Taylor, 1995), and to
the failure of the structural models to outfore-
cast the random walk model, due, among other
things, to difficulties in modelling expectations of
the explanatory variables (Meese and Rogoft, 1983;
Leventakis, 1987; De Grauwe et al., 1993; Frankel,
1993; Baxter, 1994 and Pilbeam, 1995). The
empirical failure of models to forecast exchange-
rate movements may also be due to the fact that
expectations are much more complicated than
what modern exchange-rate theories have specified
(see e.g., Pilbeam, 1995), primarily because the
rapid flow of information as well as the shift in the
demand and supply patterns bring about signifi-
cant influence on the market movements (Mehta,
1995).

Thus, several authors seem to conclude that
even the forward rate, which is considered very
efficient when used to improve forecasting perfor-
mance, can sometimes fail in contributing towards
this direction (Levich, 1989). These difficulties in
predicting the exchange rate are accentuated when
it comes to the question of currency-crises
predictability (Berg and Pattillo, 1999), and even
more so in the case of a devaluation, since, apart
from the issue of technical problems, one has to
face the fact that the decision to devalue is

primarily a policy-maker’s option, which is not
at all certain to follow an attack against the
domestic currency. In a number of cases, however,
some authors deal with the matter in terms of
forecasting the rate of devaluation in the ERM
context (Rose and Svenson, 1995), while others
(Siklos and Tarajos, 1996) try to determine the
probability and expected devaluation rate on the
basis of monthly cross-section data. Koedijk and
Kool (1994) deal with speculative strategies within
the EMS depending on the ability to predict the
timing and the rate of the parity change, while an
interesting case study by Majuca (1992) attempts
to predict the date of the exchange-rate collapse of
the Philippinese peso.

As has been admitted in the literature, the
limited success in interpreting exchange-rate move-
ments, has led to the use of ‘“‘some recently
developed sophisticated time-series techniques”
(Taylor, 1995), tracing chaotic behaviour in the
exchange-rates series examined, as well as the
method of artificial neural networks. These meth-
ods, being data-driven approaches, have been
considered preferable to traditional, model-driven
approaches used for forecasting purposes. In fact,
the exchange-rate literature has been recently
enriched by an increasing number of studies which
resort to using the neural networks methodology
for exchange-rate forecasting and lead to better
results compared with “conventional methods”
(e.g., Mehta, 1995; Steurer, 1995; Refenes and
Zaidi, 1995). With reference to Greece and the
drachma rates, in particular, Karytinos et al.
(1999) and Andreou et al. (2000) have focused
on revealing long-term dependence and the ex-
tent to which the time series involved exhibit
chaotic behaviour, while another series of papers
attempt to predict the exchange rate of certain
major currencies against the Greek Drachma
(Andreou et al., 1997 and 1998a; Adamopoulos
et al., 1997). The case of classifying a period as
normal or under attack using feedforward Multi-
Layer Perceptrons (MLP’s) neural networks is
reported in Andreou et al. (1998b) yielding
successful results.
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3. ECONOMIC ENVIRONMENT
AND SHOCKS

The ineffectiveness of the “fully-accommodating”
exchange-rate policy of the 80’s, leading to the
depreciation-inflation vicious cycle by generating
inflationary expectations is a fact extensively
underlined by various authors like Brissimis
and Leventakis (1989); Karadeloglou (1990);
Zombanakis (1998) and Karadeloglou et al. (1998)
and by the authorities themselves (Bank of
Greece 1991, p. 33). With the business sector
neglecting any supply-side reforms while relying
heavily on the state support expressed as a sub-
sidy via the drachma depreciation, the policy
makers had no choice but to resort to a non-
accommodating depreciation policy since the early
’90s, and later on, to fixing the exchange rate of
the drachma vis-a-vis the ECU. This policy has
proven to be more than successful, since its drastic
anti-inflationary impact was accompanied by a sig-
nificant interest-rate reduction representing a relief
for the budget deficit and a decrease of the capi-
tal cost of the business sector. Thanks, also, to
the “hard-drachma” policy, increases in servicing
the external debt have been avoided and the
foreign-exchange risk has been restricted. Mean-
while, the cost of the import component for Greek
export firms has been held constant, in view of
attaining the economy’s international, long-run
policy targets (Bank of Greece, 1994) and catching
“the last train to Euro” in January, 2001.

The persistent and intensive pressure on the
Greek currency following the Southeast Asia
crisis, however, led to its ERM participation,
along with its devaluation on March 13, 1998,
despite the adverse impact on the number one
target, i.e., the inflation rate (Bank of Greece,
1997). This prolonged run on the drachma, with
investors selling Greek bonds to make up for the
losses suffered in the Southeast Asian markets,
lasted about a month, sometime between October
and November, 1997. The overnight rate, never-
theless, rose by about 950%, a percentage in-
dicative of the intensity of the crisis. This was

succeeded by a prolonged period of continuous
episodes, persistent in character, although moder-
ate in intensity. Thus, the pressure on the drachma
continuing throughout the beginning of 1998 in
the form of a series of brief, repeated attacks, each
of small duration, leads to the conclusion that the
measures taken to face this run on the drachma
have proven inadequate to avert its devaluation.
We believe, therefore, that this behavioural syn-
drome composed of a sequence of two or more
phases of a crisis, a major, however relatively brief
attack followed by a second (or even several
others), in an environment of specific exchange-
rate policy commitments, should be regarded as an
alarming indication which the market cannot
afford to ignore. A word of caution is required
at this point, however: This statement does not
imply that all such behavioural complexes neces-
sarily lead to devaluations. It simply asks the
analyst to consider it as being unusual and,
therefore, worth noting, given the particular
exchange-rate policy pursued by the authorities.
After all, only one of two such major runs during
the period under review, namely the one just
described, did indeed lead to a devaluation. The
second, i.e., the one of 1994 caused as a reaction of
the market to institutional reforms, was much less
painful, as we shall see later on.

A closer look at the remaining most important
incidents in the 1990s which have resulted in
“shocks” against the Greek currency, leads to the
conclusion that politics play indeed a major role.
In fact, the period 1989 to 1990 offers a good
example of a political shock of the domestic
currency due to devaluation expectations in the
market in the context of a prolonged pre-election
period. The impact of the October, 1993 parlia-
mentary elections on the domestic market was also
pronounced, albeit to a lesser extent compared to
that of 1990, with the overnight rate increasing by
about 45%, and its duration being as long as four
to five months.

The period under review here is full of structural
reforms for the Greek economy, with the May,
1994 removal of the capital movement restrictions
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TABLE I Main statistics and special features of selected runs against the Greek Drachma (1990—1998)

1989/1990 1992 1993 1994 1997 1998 1998

Election ERM Election Policy S.E.Asia Deval. Russia
Av. Dev. 5.24 4.07 2.5 45.09 22.72 2.47 1.03
Var. Pop. 36.31 23.15 8.55 2582.98 1139.26 11.26 1.63
Dev. Sq. 8422.7 1134.5 1248.5 51659.6 37595.5 1013.5 439
Coef. Var. 0.288 0.143 0.120 0.489 1.050 0.249 0.101
Duration 7.5 months 1.5 month 4.5 months 20 days 1 month 3 months 1 month
Max. o/n Change 190% 70% 45% 860% 950% 170% 40%

mentioned above being of major importance. Since
this “institutional’” reform had been more or less
anticipated by the market, the overnight interest
rate reached a global maximum of about 860%
during the second week of that “crisis”. The
successful treatment of this attack on the basis of
the overnight rate was supplemented by the
outflow of about $3 billion of the Central Bank’s
foreign exchange reserves to maintain the ex-
change rate of the drachma and drove the crisis to
an end after a brief duration of about two weeks.

Furthermore, the international crisis that
started on the 16th of September, 1992 affected
the Greek market rather moderately, since the
Central Bank had to raise the overnight rate by
about 70%, just for one day, a score and a
duration which are rather low compared to those
of other cases. The consequences of the turmoil in
the international markets, however, kept affecting
the domestic economy for a month or so. Final-
ly, the impact of the August, 1998 Russian crisis
on the Greek economy seems similar to some
extent, to that caused in September, 1992, despite
the differences in the nature and causes between
the two incidents, with the pressure on the
drachma lasting for about a month and the
overnight rate rising by roughly 40%.

A comprehensive picture of these events in terms
of their main statistics is included in Table I.

4. TECHNICAL BACKGROUND

This section is devoted to introducing and analyz-
ing the technique of artificial neural networks,

which belongs to a class of data-driven ap-
proaches, as opposed to model-driven approaches.
Certain  general-purpose  algorithms  address
the process of constructing such a ‘“machine”
based on available data. The problem is then
reduced to the computation of the weights of a
feedforward network to accomplish a desired
input—output mapping and can be viewed as a
high-dimensional, nonlinear system identification
problem of discrete dynamics. In a feedforward
network, the units can be partitioned into layers,
with links from each unit in the kth layer being
directed to each unit in the (k+1)th layer. Inputs
from the environment enter the first layer and
outputs from the network are manifested in the
last layer. An m-d-1 architecture, shown in
Figure 1, refers to a feedforward Multi-Layer
Perceptron (MLP) network with m inputs, d nodes
in the hidden layer and one node in the output
layer.

From the given time series x = {x(¢): 1 <t < N}
of exchange-rate data, we obtain two sets: a
training set Xy, ={x(?): 1<t< T}, and a test
set Xegr = {x(£): (T+1)<t< N}, where N is the
length of the data record. After a period of
learning, during which the training patterns and
corresponding actual values are presented itera-
tively to the network, convergence is achieved. The
evaluation of the network’s performance is carried
out using the testing set, a task that investigates
whether the network succeeded in generalizing the
knowledge embodied through the training phase
rather than simply memorising it.

The forecasting task was based on two different
techniques from the implementation point of view:
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FIGURE 1 The m-d-1 feedforward Multi-Layer Perceptron (MLP) neural network architecture, where m denotes the number of

inputs and d the number of hidden nodes.

The first approach employs MLP networks trained
by an algorithm relying on a Kalman filter for
training and a genetic algorithm for evolving the
structure of nodes in the input and hidden layers.
The genetic algorithm monitors the course of
forecasting and alters the size of the network to
obtain the optimum architecture. The Kalman
filter was selected for training due to its speed,
during the recurrent process of learning which is
provided by its following two features (Haykin,
1994): (i) Efficient utilization of the information
contained in the input data using state-space
concepts, and (i) Estimation of the state recur-
sively from the previous estimate and the cur-
rently available data, thus reducing storage
requirements.

The second approach uses a flexible multiple
layer perceptron scheme, in which each layer is
activated by a different function. Thus, the task of
adjusting the internal weights of the network relies
on multiple non-linear computations, which leads
to better fine-tuning of the internal parameters.
This second scheme will provide us with the
opportunity to incorporate an additional variable
as input to the networks, which measures the
intensity of a shock period, as it will be described
below.

4.1. The Localized Extended Kalman Filter

A category of feed-forward ANN (Artificial
Neural Network) training algorithms are those
using advanced filtering techniques. One of the
most effective among the different methods be-
longing to this category, is the localized approach
of the Extended Kalman Filter, briefly presented
in this section.

Let us consider a network characterized by a
weight vector w representing the free parameters of
the network. The average cost function that should
be minimized during the training phase is defined
in terms of N input—output patterns as follows:

N
Eav(W) :'Zl_z [(l;(l’l) _yj(n)]2 (1)

n=1jeC

where dj(n) is the desired response and y,(n) the
actual response of output neuron j when input
pattern # is presented, while the set C includes all
the output neurons of the network. The cost
function E,(w) depends on the weight vector w
due to the fact that y(n) itself depends on w.
Concentrating on an arbitrary neuron i, which
might be located anywhere in the network, its
behavior during the training phase may be viewed
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as a nonlinear dynamic system, which, in the
context of Kalman filter theory, may be described
by the following state-measurement equations
(Haykin, 1994; Shah et al., 1992):

wi(n+1) = wi(n) 2
d;(n) = yi(i’l) + e,-(n) (3)
yi(n) = p(x] (n), wi(n)) Q)

Here, the iteration n corresponds to the presenta-
tion of the nth input pattern, x(n) and y,(n) are the
input and output vector of neuron i respectively
and e,(n) is the measurement error at the output of
neuron i, the instantaneous estimate of which is
given by:

o)

E(n)
- Ayi(n

()

ei(n) =

~

E) =3 Sl )~y ()

jec

The differentiation in Eq. (5) corresponds to the
back-propagation of the global error to the output
of neuron .

The activation function (- - -) is responsible for
the nonlinearity in the neuron. The weight vector
w; of the optimum model for neuron i is to be
“estimated” through training with examples. The
activation function is assumed to be differentiable.
Accordingly, we can use Taylor series to expand
Eq. (3) about the current estimate of the weight
vector and thereby linearize the equation as
follows (Haykin, 1994):

p(xf (mwi(n)) = gj (n)wi(n)
+ [p(x] (n)i(n) — gf (n)vi(n)]
(7)
where,
o [ B (m)wi(n)
(") [ owi(n) ]w,.(n)=w,-(n) (8)
= 3;(n)[1 = 3i(n)]x:(n)

J4n) is the output of neuron i that results from the
use of the weight estimate. In Eq. (7) we have
assumed the use of the logistic function:

[1 + exp <—gw,~xi+0)]_l )

Other sigmoid functions, like the hyperbolic
tangent, can be used as well. The first term of
the right hand side of Eq. (7) is the desired linear
term while the remaining term represents a
modeling error. Thus, substituting Eqgs. (7) and
(4) in (3) and ignoring the modeling error we
obtain:

di(n) = q; (M)wi(n) + ei(n) (10)

where ¢,(n) and ¢,(n) are defined in Eqs. (5) and (8)
respectively. Equations (2) and (10) describe the
linearized behavior of neuron 7.

Given the pair of Egs. (2) and (10), we can make
use of the standard Recursive Least Squares (RLS)
algorithm equations (Haykin, 1994), which is a
special case of the Kalman filter, to make an
estimate of the weight vector w,(n) of neuron i. The
resulting solution is defined by the following
system of recursive equations (Haykin, 1994), that
describe the Multiple Extended Kalman Algo-
rithm (MEKA) (Shah et al., 1992):

ri(n) = A" Pi(n — 1)gi(n) (11)

ki(n) = ri(m)[1 + r] (n)gi(n)]™" (12)

wiln+ 1) = wiln) + eiwkin)  (13)

Pi(n+1) = X 'Py(n) — ki(n)r (n) (14)

where, n=1,..., N is the iteration number and N
is the total number of examples. The vector g4n)
represents the linearized neuron activation func-
tion given in Eq. (8), P;(n) is the current estimate

of the inverse of the covariance matrix of g;(n) and
ki(n) is the Kalman gain. The parameter X\ is a
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forgetting factor which takes values in the range
(0,1], and eyn) is the localized measure of the
global error. Equation (14) is called the Riccati
difference equation (Haykin, 1994). Each neu-
ron in the network perceives its own effective
input g«n), hence it has to maintain its own copy
of Pfn), even in the case in which it may share
some of its inputs with other neurons in the
network.

4.2. The Hybrid Algorithm

MLP neural network architectures are evolved
through a genetic algorithm, each being trained by
MEKA to produce predictions on the overnight
interest rate. In particular, a proposed modified
Genetic Algorithm (GA) maintains a population
of individuals (Neural Networks) for each genera-
tion, having random structure in the hidden
region. The MEKA algorithm is employed for
the training of each network for just one epoch.
Performance is measured with the fitness function,
which is a function of the MRE described later on
and the size (number of nodes) of the network.
Then a new population is created, by selecting the
top individuals based on their fitness (select step).
Some members of the population undergo trans-
formations by means of genetic operators to form
the new individuals. We use a mutation operator
that changes the structure of the network ran-
domly in order to preserve diversity. Also, there is
a crossover operator, which creates new indi-
viduals by combining parts from two individuals.
After some number of iterations the program
converges at a near-optimum solution.

The steps of the genetic algorithm are analyti-
cally described as follows:

Step 1, Initialization An initial population of
randomly generated individuals (random number
of inputs and hidden neurons) is created. Gen-
erally, a large population size is preferable, but in
our experiments we need to compromise with
the computer limitations, so a population of
fifty individuals was used in all of the con-
ducted experiments. The connection weights are

initialized to random values in [—1,1], using
uniform probability distribution.

Step 2, Selection Selection is an essential opera-
tion in genetic algorithms; it constructs a new
population with respect to the probability distribu-
tion based on fitness values of the individuals of the
previous population. In our experiments, a varia-
tion of the classic Roulette Wheel Selection
Operator (Michalewicz, 1996) was used. In this
variation we save the best ever individual in a place
outside the population and in the selection opera-
tion we make sure that at least one copy of this
individual will pass to the next generation (elitism).

The fitness function used in the selection phase
takes into account the performance of the network
on the test set and its size and has the following
form:

Fitness = 1/(1 + MRE + size_par * MRE # SIZE)
(15)

where size par is a parameter that controls
the importance of a network’s size in the
evaluation of the fitness function. The objective
for size_par is to take values that will lead to
individuals with small sizes, maintaining though
good forecasting ability. The term (size_par+M-
RE«SIZE) allows for the importance of the
network’s size to decrease accordingly to the
decrease of MRE.

Step 3, Crossover The crossover operator is
applied to the new population. Generally it works
as follows: it selects two parents and generates one
or two offsprings by recombining parts of them.
The offsprings take the place of their parents in the
new population. In the proposed algorithm cross-
over operates as follows:

Let us assume that we have the two parents:
ILH,O and LLH,O where I, H and O are the
numbers of input, hidden and output nodes,
respectively. Next we generate the random num-
bers:

i; = a uniform random number in [0,7;], j=1,2
h; = a uniform random number in [0,H}], j=1,2.
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Then we create a child with (i;+i) input
notes, (h;+h,) hidden nodes and O output
nodes. If (;+i)=0 then we set the number
of input nodes to 1; if (h;+h)=0 we set the
number of hidden nodes to 1. The weights of
the child are initialized randomly in the same
interval that was used in the initialization
phase. The second child is created in the same
manner.

Step 4, Mutation The mutation operator
works as follows: It selects at random a neu-
ral network (individual) from the population
and changes its number of inputs and/or its
number of hidden neurons by adding or delet-
ing a random number (selected uniformly from

Interest
rate

a given interval) of inputs

neurons.

and/or hidden

4.3. The Multi-layer Multiply Activated
Perceptron (MLMAP)

The basic component of this technique is a multi-
layer perceptron as shown in Figure 2. The network
consists of three hidden layers connected to each
other. Each layer has its own activation function:
The first hidden layer uses the hyperbolic

tangent given in:
1 —eb

tanh(x) = 1—_*_—e—l_)x—

(16)

Shock
State

Output layer

Next interest-rate
value in time-series

FIGURE 2 Graphical representation of the layers structure in the Multi-Layer Multiply Activated Perceptron (MLMAP) neural

network scheme.
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The second one uses the Gaussian as its
activation function:
flx)y=e". (17)
Finally, the third hidden layer is based on the
Gaussian complement activation function:

2

fx)y=1—¢e>. (18)

The input layer is linear, while the output uses
the sigmoid function.

4.4. Performance Evaluation

Evaluation of forecasting is performed through
three well-known error measures, the Normalized
Root Mean Squared Error (NRMSE), the Corre-
lation Coefficient (CC) and the Mean Relative
Error (MRE). All these measures were applied on
the testing set of data, that is, a set of patterns that
did not participate during the course of learning.

The Normalized Root Mean Square Error
(NRMSE) is defined by:

NRMSE(n) — "MSE()
OA
_ RMSE(n) (19)
V) S aceli) — 0]
where,

RMSE(H) = \/(1/}1) zn:[xpred (l) - Xacl(i)]2 (20)
i=1

On the other hand, the correlation coefficient (CC)
between the actual and predicted series is given by
it [(xact () = Xaetn) (Xpred (£) — Xpred, )] ]

\/TZ?:] (Xact (£) — Xact,n)z] [Z?:l (Xprea (i) — ’_‘pred,n)z]
(21)

CC=

The CC measures the ability of the predicted
samples to follow the upward or downward jumps

of the original series. A CC value near 1 in
absolute terms is interpreted as a perfect follow up
of the original series by the forecasted one. A
negative CC sign indicates that the forecasting
series follows the same ups or downs of the
original with a negative mirroring, that is with a
180° rotation about the time-axis. When the
original series moves up, the forecasting moves
down at the same time-period and vice versa.
Finally, the MRE is given by the formula:

xact(i) (22)

MRE :lzn:

i=1

where X.q(i) is the output of the network, x,c(i) is
the actual value when pattern i is presented and »
is the total number of patterns. MRE shows the
percentage of accuracy of predictions expressing it
in a stricter way, since it focuses on the sample
being predicted. Thus, we are able to estimate
prediction error as a fraction of the actual value.

5. EMPIRICAL RESULTS

5.1. Application of MEKA and MLMAP

As has already been indicated, the two major
shocks suffered during the period under considera-
tion are one in May 1994, as a result of the
complete liberalisation of capital movements by
the removal of all institutional barriers imposed on
international capital transactions, and the second
one during and after the crisis in the Southeast
Asia, during the second half of 1997 (Fig. 3). The
training stage, therefore, provides the algorithms
used with the pattern of the overnight-rate
fluctuations exhibited as a result of the reaction
of the Central Bank to support the drachma
during these two crises, as well as during several
milder ones, mostly caused by political rather than
economic reasons. The two computational intelli-
gent systems employed, namely the MEKA and
the MLMAP, have been subjected to repeated
experiments with a forecasting horizon of one and
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FIGURE 3 Daily values for the Greek overnight interest rate.

five days in each case. To make up for the lack of
information on the daily foreign-exchange reserves
spent by the Central Bank to support the drachma
during periods of crises, we have made use of the
MLMAP technique which allows for the introduc-
tion of a dummy variable operating as a shock flag
or indicator. This is a triple-state variable encod-
ing the effects of the shock period it indicates:
Thus, a value of 1 indicates a period characterized
by severe pressure on the drachma, leading to its
devaluation, while a value of 0.5 denotes an attack
against the drachma which, was successfully faced
by the authorities without any repercussions on
the drachma exchange rate. Finally the value of 0
corresponds to a perfectly normal period, free of
attacks of any kind.

Table I indicates that the two major attacks
mentioned above, have indeed led to spectacular
increases of the o/n rates of the order of 900%, in
defence of the drachma parity. In the fist case, in
May 1994, this rise, accompanied by an unknown,
nevertheless substantial amount of foreign-
reserves outflow, was enough to handle the crisis
that lasted only about 20 days. The second run
started with the crisis in Southeast Asia during the
second half of 1997, and, despite the pronounced

Sharp peaks correspond to periods of attacks against the drachma.

reaction of the o/n rate and the fact that the
Central Bank spent, until the end of the year, at
least 10 billion dollars of foreign exchange reserves
to protect the drachma, it led to the March 1998
devaluation.

The results reported below were derived on
the basis of a 1200-sample length for the training
data set (approximately 5 years, in-sample data)
covering the period from 1/1/90 to 30/6/97 and a
580-sample length (approximately 2,5 years out-
of-sample data) for the testing set, from 1/7/97 to
10/2/99 starting immediately after the last sample
value of the training set. Objective evaluation on
this testing set of data, which was not previously
used during any of the intermediate networks
training stages is achieved through the error
measures reported earlier. The set of inputs used
for the MEKA method is decided by the genetic
algorithm evolving the structure of the networks.
The MLMAP input set consists of the daily o/n
interest rate values during the period mentioned
above and the shock flag, while the number of
hidden nodes have been empirically chosen
through numerous runs.

Table II summarises the best results produced
for each of the two methods applied on a daily and
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TABLE II Evaluation of interest-rate prediction during the training and testing phases for a one and five-days prediction horizon

Training phase Testing phase
Horizon ~ Network architecture* C.C. NRMSE MRE C.C. NRMSE MRE
1 MEKA 4-5-1 0.9640 0.3443 0.0610 0.7503 0.7517 0.0629
S MEKA 5-17-1 0.7674 0.6735 0.1133 0.2278 1.8401 0.2840
1 MLMAP 2-10-10-18-1 0.967 0.253 0.033 0.728 0.814 0.168
5 MLMAP 2-10-10-18-1 0.794 0.610 0.086 0.245 0.978 0.130

*MEKA p-k-t refers to MEKA algorithm on a p-inputs, k-hidden nodes and ¢ outputs network MLMAP p-k-k,-k3-t refers to
MLMAP scheme with p-inputs, k; nodes in the first hidden layer, k, nodes in the second hidden layer, k3 nodes in the third hidden

layer and ¢ outputs.

five-days prediction horizon. The MEKA algo-
rithm used a number of generations equal to 1000,
a population size equal to 50, while the size_par
variable was set to 10~% The results are quite
encouraging. The generalisation ability of all
networks 1is satisfactory, particularly when it
comes to the one-day prediction horizon, yielding
more accurate predictions, as expected. Daily
forecasts produced by MEK A are slightly superior
to those of the MLMAP, reaching a success level
of 75% for the former and 73% for the latter in
CC (Correlation Coefficient) terms during the
testing phase. The NRMSE measure (Normalised
Root Mean Square Error) reveals a high predictive
ability for both schemes, clearly superior to that of
a simple mean predictor in both horizons, with
MEKA being superior once again. Finally, the
same picture is observed through MRE (Mean
Relative Error) values, signifying small deviations
between predicted and actual values and favouring
MEKA over MLMAP.

A point that we feel is worth noting, however, is
the following: The forecasting performance of
both algorithms is considerably reduced in cases of
a five-day prediction horizon, as expected. Never-
theless, the MLMAP algorithm exhibits a much
preferable predictive ability when moving to the
five-day horizon case, retaining a NRMSE slightly
lower than unity and an improved MRE over the
corresponding MEKA statistics. This indicates
that the MLMAP may be more applicable for a
longer-time prediction horizon, once the shock flag
is replaced by the daily foreign exchange reserves
used to defend the drachma rates.

Figures 4(a),(b) present the interest rates pre-
diction results in both the daily and five-days
horizon in graphical form for those architectures
that performed best (4(a) MEKA, 4(b) MLMAP).
The area on the left of the dashed line represents
the training phase, while the one on the right the
testing phase.

5.2. Artificial Shocks

Aiming at improving the performance of the
algorithms, we have tried several additional runs
introducing artificial shock periods in the training
phase of the interest-rate series, thus providing the
algorithm with more information concerning a
typical reaction of the authorities to an attack
against the domestic currency (Fig. 5). In other
words, we have simulated the behaviour of the
overnight rates during periods of pressure against
the drachma, substituting the artificial rates that
the simulation has produced for the actual rates
during the specific, shock-free period of the
training set. To avoid a favourable bias concerning
the forecasting performance of the algorithms
used, the artificial shocks do not resemble any
particular crisis pattern as far as the overnight
(o/n) rate fluctuations are concerned. Instead, they
are designed to exhibit a typical crisis pattern, with
the o/n rate fluctuations being substantially pro-
nounced and their pattern exhibiting two or more
recurrent peaks as a result of the sustained
pressure on the drachma. Selected results of these
experiments are summarised in Table III. We
observe that the introduction of an artificial shock
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FIGURE 4 Actual versus predicted interest rate values produced by neural networks (a) MEKA, daily and (b) MLMAP, 5-days

prediction horizon.

has improved the predictive ability of the
MLMAP in terms of the NRMSE and, more so,
in terms of the MRE, showing a remarkable
improvement compared to the case in which
artificial shocks were absent. It is interesting to
point out that the forecasting performance of the
algorithm does not decrease when the prediction
horizon is increased from one to five days. The
MEKA, on the contrary, does not appear to be
suitable for such exercises, as both the NRMSE

and the MRE deteriorate due to the introduction
of the artificial shocks. The CC, finally, are
somewhat lower in the artificial shocks case,
reaching rates of slightly less than 70% for a
one-day horizon, in the MLMARP case. A possible
explanation for this inferior performance may be
related to planting an artificial shock which
assumes a more or less arbitrary pattern resem-
bling none of those characterising the actual shock
periods, thus, confusing the network rather than
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Daily artificial overnight interest rate values 1990-1998
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FIGURE 5 Daily values for the Greek overnight interest rate enriched with periods of artificial attacks against the drachma.

TABLE III Evaluation of artificial interest-rate prediction during the training and testing phases for a one and five-days prediction

horizon

Training phase Testing phase
Horizon Network architecture* C.C. NRMSE MRE C.C. NRMSE MRE
1 MEKA 8-15-1 0.8744 0.5013 0.0418 0.6577 1.1568 0.1236
S MEKA 7-5-1 0.8051 0.7280 0.1020 0.2024 1.5355 0.2555
1 MLMAP 2-10-10-18-1 0.852 0.524 0.046 0.669 0.760 0.066
5 MLMAP 2-10-10-18-1 0.882 0.780 0.105 0.273 0.989 0.128

*MEKA p-k-t refers to MEKA algorithm on a p-inputs, k-hidden nodes and ¢ outputs network MLMAP p-ki-ky-kj-t refers to
MLMAP scheme with p-inputs, k; nodes in the first hidden layer, k, nodes in the second hidden layer, k3 nodes in the third hidden

layer and ¢ outputs.

improving its level of knowledge gained through
training.

On the basis of the above and in terms of a
general assessment, we are inclined to support the
view that the MLMAP is considered more applic-
able for tackling forecasting exercises of this type.
Indeed, Figures 6(a),(b) indicate the best results
obtained using the MLMAP in terms of forecast-
ing performance with the help of artificial interest
rates, in both the daily and five-days horizon.

In terms of evaluating our results with reference
to similar research on the topic, comparison can be
made only with papers using time-series rather
than model-driven techniques, since the success of
the latter depends heavily on the performance of
the function(s) used. Such functions concentrate
on forecasting a shock based on the exchange-rate

behaviour itself rather than the authorities reac-
tions during an attack. This, in its turn, presup-
poses that the pattern of behaviour suggested by
the function is expected to continue throughout
the forecasting horizon, which is not always the
case. Moreover, not intending to underestimate
any such work, we need to point out that most of
these contributions rely on the ERM participation
of the currencies involved. This makes the predic-
tion of an oncoming shock easy to determine, once
the forecasted rates exceed the ERM band limits.

Turning to papers using data driven approaches,
Steurer (1995) concentrates on forecasting the
DEM/USD exchange rate using as input the daily
spot rates. Despite the distinct differences between
our approach and the one under consideration,
one must point out that the accuracy rate of
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FIGURE 6 Actual versus predicted interest rate values produced with the MLMAP algorithm using artificial series on a (a) daily

and (b) 5-days prediction horizon.

fluctuation prediction ranges on the average
around 50%, an accuracy rate typical of the so-
called “naive prediction” method. As regards
Andreou et al. (1998b), they apply the neural
network methodology aiming at predicting a run
against the drachma, using as input both the
drachma rates against four major currencies, as
well as the overnight rates. The results obtained on
the basis of the MLP algorithm lead to a better
forecasting performance compared to the present
paper. One must point out, however, that the MLP
uses a dual-nature shock flag, (0 or 1), lying on
the output side, which facilitates the prediction

performance, unlike the present paper, in which we
use the three-parametric shock flag (0, 0.5, 1) as
one of the inputs to predict the overnight interest
rate fluctuations.

6. CONCLUSIONS

The results obtained in this paper lead to the
conclusion that the neural network algorithms are
indeed applicable in the context of a discrete
dynamics environment, for predicting an oncom-
ing attack against a certain currency. Despite the
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lack of data concerning daily foreign-exchange
expenditure by the Central Bank in defence of the
domestic currency rates, the forecasting perfor-
mance of the networks is quite satisfactory, based
only on the daily interbank overnight interest rates
which is the second policy instrument used by the
authorities in cases of a crisis.

Two alternative computational intelligent sys-
tems based on MLP neural networks were
employed to predict an oncoming shock relying
primarily on the overnight interest rate fluctua-
tions: A hybrid scheme trained with Kalman
filtering and evolved by a genetic algorithm
(MEKA) and a multiply activated architecture
(MLMAP). Both schemes yielded encouraging
results along a daily and five-day prediction
horizon. Between the two algorithms employed
in this paper, the MLMAP seems to be more
suitable for such forecasting exercises compared to
the MEKA. This conclusion has been reached on
the basis of the improved learning ability displayed
by the MLMAP, once the raw data is subjected to
an environment of simulated attacks against the
domestic currency, (the “artificial” crises expressed
by the rise of the overnight rates). The MLMAP
has also shown better performance in comparison
to the MEKA in cases of longer-than-one-day
forecasts.

The results above must be interpreted very
carefully, since the forecasting performance of
the networks can not be considered as predeter-
mining the intentions of the authorities to resort to
a devaluation in order to ease the pressure
exercised on the domestic currency. Such reactions
are the result of policy decisions which may be
taken by the authorities either in an environment
of speculative attacks on the currency, or just as a
measure of improving export-price competitive-
ness, in the absence of a crisis altogether. The
forecasting performance of the algorithms em-
ployed, therefore, simply shows that the system
has been instructed to recognise certain signals
which indicate that the currency is under con-
siderable pressure which may or may not lead to a
devaluation. In other words the predictive perfor-

mance of the networks acts as a reliable hedg-
ing device rather than a means for an exchange-
rate forecast. One should not overlook, however,
useful indications reflected in the behaviour of
the o/n rates series, like the length of the time
period during which the pressure is going on, as
well as the persistent and recurrent pattern of
abrupt overnight-interest rate increases. These may
be directly related to the possibility of a devalua-
tion, since they indicate that the measures taken
may not be effective enough to mitigate or even
curb the pressure on the currency.

Further research on this topic is expected to
lead to more successful results, particularly with
reference to the correlation coefficient, once data
on the daily foreign-exchange expenditure during
crises becomes available to replace the shock flag
used as a proxy by the networks.
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