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Based on a simple two-market model, characterized by a demand link between com-
petitive markets for goods, a system of coupled difference equations is used to re-
present the interdependent structure of a global economy. Relying on numerical and
analytical approaches, various dynamic properties of the proposed model are explored.
Among others, a general specification of the regions of stability of the equilibrium
and main periodic cycles, the transition to chaos through torus destruction, chaotic
synchronization, and the coexistence of different types of attractors in parameter space
are described. Typical bifurcation processes are illustrated.
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1. INTRODUCTION

The purpose of this paper is to investigate the
complicated inherent dynamics of a system of
interdependent open economies. In the first phase
of the study, a simple interacting cobweb model
is introduced. Relying on relatively common
assumptions, the model is used to describe the
interactive dynamics of two interdependent mar-
kets. This model, in its initial form, is defined for
a closed economy with no external interaction.
Models of this type were previously proposed by
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Currie and Kubin (1995) and by Hommes and
van-Eekelen (1996) in order to investigate the
relevance of application of partial equilibrium
analysis in economics.

In the next phase of the study, the framework of
the original model is extended in order to address
the dynamics of an interdependent global econo-
my. Considering the framework of the global
economy and relying on the insight provided by
Armington (1969), it is assumed that there is a
trade flow among different open economies for
goods that are distinguished not only by their
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technical specifications but also by other charac-
teristics such as their place of origin. A dynamic
model derived in the framework of a system of
coupled difference equations is consequently
proposed as a reasonable representation for the
interdependent structure of the global economy.

It is important to emphasize that the underlying
reasoning behind the present work is to confine the
study to the essentials, i.e., to strip the problem
of all the flesh until we are left with the main
structure, and no further simplification is possible.

Following this strategy, the focus is directed
towards the rich inherent dynamics of the model
and towards some of its characteristics that are
analytically or numerically tractable.

The model is derived in the general framework
of a discrete two-dimensional map. Although it
initially looks deceptively simple, it conceals a rich
complex dynamics that resemble similar patterns
observed in higher dimensional maps. Modern
theory of the nonlinear dynamical systems, devel-
oped in recent decades, is well suited to shed light
on the nature of complex dynamics, although
many essential questions still remain open (see,
e.g., Palis and Takens, 1993; Shilnikov ez al., 2000;
Iliashenko and Weigu, 1999).

The proposed model is presented as a two-
dimensional map, F, with an inherent quadratic
non-linearity. The fact that F is non-invertible, in
other words that it is an endomorphism but not a
diffeomorphism, implies that critical curves exist in
the phase space R> where the Jacobian DF is equal
to zero. Due to the presence of these two main
characteristics of the map F (i.e., non-linearity and
noninvertibility) rigorous analytical studies of the
global dynamics often lead to significant difficul-
ties. To the best of our knowledge, so far, this kind
of system has not been subjected to mathematical
investigations at an advanced level. Any such
investigation must incorporate two different as-
pects, namely the global dynamics of diffeomor-
phisms and the theory of critical lines developed
in Mira et al. (1996).

An example of the application of nonlinear two-
dimensional maps in economics is provided by

Brock and Hommes (1997), and the mechanism
of the transition to chaos through homoclinic bi-
furcations is illustrated. Our example appears to
be different. As we have found numerically, the
transition to chaos in our model mainly takes
place through torus destruction. The theory
developed in Newhouse et al. (1983) (see also
Shilnikov et al., 2000; Iliashenko and Weigu,
1999) can be applied in this case in order to
provide additional analytical insight into the
phenomena.

One of the main objectives of the present study
is to provide a preliminary understanding of the
main dynamic features of the proposed model for
the interdependent global economy. With this
purpose, the regions of stability for the equilibrium
and for the periodic cycles of period 2 in param-
eter space are analytically specified. Moreover, the
further developments in the dynamics of the
system are followed numerically when the param-
eters are varied. It is demonstrated that the
evolution of the system typically takes place
through a Hopf bifurcation followed by torus
destruction and finally a boundary crisis.

A short description of the main features ob-
served in the process of chaotic synchronization of
the map is presented. This phenomenon can take
place when the two coupled maps are identical.

It is interesting to notice the relatively large
regions in parameter space where the phenomenon
of multistability, or the coexistence of different
attractors, occurs. This phenomenon is of pro-
found significance since the long-term behavior of
the system will not only depend on the given
parameters, but also on the initial states of the
system. With identical sets of parameters and
different initial conditions, trajectories can move
towards different attractors.

2. THE TWO-MARKET MODEL

In order to be self-contained, a brief description
of a slightly modified version of the Currie and
Kubin (1995) model follows.
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Assume that the economy consists of two
markets and that there is no external interaction
with other economies. Further more, assume that
the first good takes one period to produce and that
the corresponding price, p(f), adjusts instanta-
neously. The market clearing price is determined
by a linear demand function given by

qi(1) = ay — pi(t) + s1p2(?) (1)
and the unit profit of the first good is given by
() =pi(t) —c(l+r) =T 2)

where p, (?) is the price of the second good, the
parameter a; is positive, and the parameter s; is
positive (negative) if the goods are substitutes
(complements).

The parameter ¢ is the fixed unit cost. r is the
fixed interest rate, and T is the fixed unit tax on
the first good.

A simple quantity adjustment process is postu-
lated, assuming that the rate of change in the pro-
duction is proportional to the unit profit, that is,

a(+D=all) _ oo 3)

q1(1)

For the second market it is assumed that there

are linear demand and supply functions, and that

the market clears instantaneously. There is no

production lag, and, using a similar notation, we
obtain the following equations,

g5(1) = az + 521 (1) = pa(2), 4)
q5(t) = b(pa(1) = o), (5)

and
q5(1) = g5 (0). (6)

Solving for the quantity of the first good yields
the iterative quadratic map

qi(t+1) = puqi (1) +ngi(t) (7)

with the substitutions

_ a (1 +b)+s1(a2+bT2)
u—1+a( T —— c(1+r)—Ty
(8)
and
1+b
)

nzal—l—b—sm‘z.

The map given in Eq. (7) is a variant of the
celebrated logistic map. Using a slightly modified
notation and the following transformation it can
be rewritten in the standard form

Xy = px(1 = x,); X = gqm. (10)

Consequently the dynamics of the first good,
¢1 (1), in the economy can be studied through the
dynamics of x, and alteration in the space of the
parameters of the model.

3. THE INTERDEPENDENT MODEL

Analysing the global trade pattern among different
economies is often linked to the validity of the so-
called “‘perfect substitutability assumption’ of the
tradable goods. This assumption simply implies
that goods of a given type supplied by sellers in
one country are perfect substitutes for the same
sort of goods supplied by any other country.
A wellknown example of the application of this
assumption is the celebrated Hecksher—Ohlin
approach (see, e.g., Gandolfo, 1998; Wong, 1995;
Markusen and Melvin, 1988; Johns, 1985; Jones,
1979; Ellis and Metzler, 1950; Ohlin, 1933;
Heckscher, 1919).

Armington (1969) challenges the validity of this
assumption and argues that seemingly perfect
substitutable goods (such as French chemicals vs.
Japanese chemicals) should be regarded as differ-
ent products and distinguished specifically in the
analysis.
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Challenging the validity of perfect substitutabil-
ity assumption leads to a different modelling
approach in which goods “... are distinguished
from one another in the sense that they are assumed to
be imperfect substitutes in demand. Not only is each
good, such as chemicals, different from any other
good but also each good is assumed to be differ-
entiated (from the buyers’ viewpoint) according to
the suppliers’ area of residence’” (Armington, 1969).

Over the course of time, there have been other
approaches in which the product differentiation
is endogenously defined and related to a certain
firm and not a country (see Dixit and Stiglitz,
1977). Other approaches relate the presence of
product differentiation to a desire for variation of
the products among the consumers or alterna-
tively to a certain degree of heterogeneity among
the consumers (see Helpman and Krugman, 1989).
Besides these topics, it is also desirable to incor-
porate preferences and other behavioral related
peculiarities in the general analysis.

As previously noted, since our main strategy is
to confine the problem to the essentials, we choose
not to elaborate on these aspects in the present
study, but to direct our focus towards the inherent
complicated dynamics of the model.

Relying on this understanding, in the next stage
of the study, the initial framework of the model is
expanded by considering the global economy and
its various economies as an interdependent system.
This interdependence represents the introduction
of trade among open economies. In this way, we
intend to contribute to the discussion on partial
equilibrium analysis by addressing the global
dynamics of the expanded model. In order to do
so, a simplified version of the global model is
introduced by considering the case with two eco-
nomies each characterized by similar assumptions
and properties (as given by Egs. (1)—(10)).

This will yield the following system of
equations.

Xyl = ,let(l - xt)

11)
Vi1 = M2}’t(1 — 1) (

Introducing trade leads to an interdependence
between the economies. Limiting trade to the first
good, a simple form of interdependence can be
expressed by the following coupled dynamics
{Xt+1 = mx(1 = x1) + 71y (12)

Yir1 = paye(1 —y1) + 72,

where 11 ,€[0,4] and v;,€R.

The fact that we propose to deal with a two-
dimensional process in (x;, y,) space in the frame-
work outlined in Eq. (12) implies that the
dynamics of the first good is no longer solely
determined in terms of the local policy parameters
(such as unit tax, interest rate, etc.) or local
structural parameters (such as unit cost, demand
interdependence, etc.). Thus, in contrast to the
framework outlined in Eq. (11), using linear
coupling as proposed by Eq. (12) facilitate the
introduction of a new component in the analysis,
namely the interdependent structure of the econ-
omy and consequently the trade policy para-
meters. The coupling coefficients v, and -, can
be interpreted as trade policy parameters. Ob-
viously, as long as there is no trade between the
economies, v; =, =0. The parameters p; and u,
are defined by Eq. (8) in the framework of the two
market economies.

In the next section, the issue of complicated
global behavior of this system will be addressed.

4. CHAOTIC SYNCHRONIZATION
AND ASYNCHRONOUS CYCLES

Consider the simple version of the expanded model
with two open economies and restrain the trade to
the first good. Consequently, the system of two
coupled difference equations given by (12) can
provide a reasonable representation for the inter-
dependent structure of the global economy.
Numerical simulations indicate, that the system
given by Eq. (12) has many common features with
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the symmetrical case obtained from Eq. (12), in
which py=po=p, and v1=7,=7,

Xep1 = pxe(1 = x0) + vy (13)
Yirr = pye(l = yo) + 7 X1

Despite the complicated global behaviour of
the symmetrical system, some of its important fea-
tures appear to be analytically tractable. Due to
the presence of symmetry, the system has a one-
dimensional invariant manifold given by the
diagonal D ={(x, y): x=y}.

Symmetrical motion on the diagonal D is ob-
viously given by the recurrent equation

Xep1 = (4 7)xe(1 = x) (14)
and, hence, by the logistic map

farx—ax(1—x), a=p+~ (15)
The dynamics of the map f,, and the corresponding
symmetrical behavior of the model given by
Eq. (13) may be regular or chaotic (see Collet
and Eckmann, 1980), depending on the parameter
a€[0,4]. At the same time, the symmetrical
behavior (i.e., when x, =y, for all f) can be stable
or unstable with respect to asymmetric perturba-
tions of the initial conditions (xg, o).

Transverse stability of the behavior means that
the two open economies represented here by the
relevant state variables (x;y,) can synchronize
even if their initial states (xq, yo) are different.

This property can be expressed by

|xt—y,| — 0 ast— oo. (16)

The synchronization given by Eq. (16) is called
periodic or chaotic, depending on the periodic
or chaotic dynamics of the corresponding logistic
maps given by Eq. (15). The case of chaotic syn-
chronization is of particular interest. In this case
the state variables x, and y, converge towards each
other (asymptotically with ¢), while the dynamics
remains chaotic.

Absence of transverse stability of the symme-
trical motion in the diagonal D means that a small
asymmetry of the initial states xq and yo can grow
with time. Then, in general, there are two scenarios
for the desynchronized motion to consider, namely
the case in which the trajectories will approach
some stable asymmetric regimes, or the case when
they eventually return to the synchronizing be-
havior. Besides this, the asymmetry between x,
and y, can also grow until the model collapses.

During the last decade, synchronization of
coupled dynamic systems has been the subject of
intensive investigations by many scholars, and a
variety of applications have been suggested in
various fields (see Fujisaka and Yamada, 1983;
Pikovsky, 1984; Pikovsky and Grassberger, 1991;
Afraimovich et al., 1986; Pecora and Carroll,
1990; Pecora et al., 1997, Ashwin et al., 1996;
Kocarev and Parlitz, 1995; Roy and Thoruburg,
1994; Rulkov and Sushchik, 1997; Hasler and
Maistrenko, 1997; Ditto and Showalter, 1997;
Astakhov et al., 1997, Kapitaniak and Maistrenko,
1999; Yanchuk et al., 2000).

In particular, the system of two coupled iden-
tical logistic maps

o (1) (G nifan)

in which a and « are real parameters has been
investigated by Maistrenko er al. (1998a,b,
1999a,b). This map is topologically conjugated
to our map

P <x> _ (ux(l—x)+7y) (18)

y py(l —y) +yx
which corresponds to the symmetrical system (13).
Indeed, conjugacy between F and G is easily given

by the following scale transformation of the state
variables:

x= <1 +%>X, y= (1 +%>Y, (19)

for a=p+~.
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Following Maistrenko et al. (1998b), one can
numerically identify the region of synchronized
behavior in the space of the parameters (v, u) for
the map F. This region is illustrated in Figure 1
and denoted by R4. The points in the region R4
were obtained from the condition of negativeness
of the typical transverse Lyapunov exponent A,
of the symmetrical one-dimensional attractor A
situated in the diagonal D. The synchronization is
chaotic if attractor A is chaotic. This case can
clearly take place only in the parameter band
3.569 - < u+v<4 and if the value of the
parameter a =+~ does not belong to any of
the infinitely many windows of periodicity of f,
given by Eq. (15).

Actually, the region illustrated in Figure 1 is a
region of so-called weak or Milnor stability of the
attractor 4 (see Milnor, 1985). Weak stability
guarantees that the attractor A is stable in average,
i.e., almost all trajectories on the chaotic set are
transversely stable, and so the basin of attraction
of A has positive Lebesgue measure in R>. When
A is a periodic attractor, weak stability clearly
coincides with usual Lyapunov stability. But the

weakly stable chaotic attractor 4 may not be
Lyapunov stable.

This particular case in which the chaotic
attractor 4 is weakly stable but not Lyapunov
stable is interesting for the structure of the basin of
attraction of A. In this case, the basin appears to
be riddled (see Alexander et al., 1992), i.e., densely
filled with points from which the trajectories are
not attracted to 4. The transition to a riddled
basin is determinated by the first orbit on the
chaotic attractor 4, which becomes transversely
unstable and is referred to as the riddling bifurca-
tion (see Lai et al., 1996).

The riddling bifurcation leads to the appearance
of trajectories which are repelled from the attrac-
tor A in the transverse direction. Consider tra-
jectories that are originally repelled from the
neighbourhood of 4. The basin is globally riddled
if the dynamics of the system allows direct access
for the trajectories to go to some other (asynchro-
nous) attractor or infinity. Globally riddled basins
resemble the morphology of a fat fractal set with a
maximal density concentrated around the attrac-
tor A as well as around the preimages of 4.

6.5

RA

2.5

(bound)

-2

FIGURE 1 Parameter regions for typical dynamical regimes of the system (13). Details are specified in the text.



INTERDEPENDENT OPEN ECONOMIES 167

Alternatively, if there is no access for the
trajectories to go to other attractors or infinity, it
is typical for allmost all trajectories to return to the
neighborhood of 4, and consequently, by repeat-
ing such behavior, bursts away from the diagonal
are produced. At the end, most of the trajectories
will be eventually attracted to 4. In this case, the
basin of A appears to be only locally riddled (see
Ashwin et al., 1996; Maistrenko et al., 1997
Maistrenko et al., 1999b). It is filled with initial
conditions that are not leading to A4, but the set
that consists of all of these initial conditions is
characterized by having a Lebesgue measure of
Zero.

Hence, the detailed structure of locally riddled
basins can not be observed by standard computa-
tional procedures, but by reliance on more specific
approaches (see Pikovsky and Grassberger, 1991).

It was previously reported by Maistrenko et al.,
(1998a) and by Bischi and Gardini (1998) that the
distinction between these two types of riddling
processes depends mostly on the existence of so-
called absorbing and mixed absorbing areas (see
Mira et al., 1996). These regions of state space
derive from the theory of two-dimensional non-
invertible maps (see Mira et al., 1996). They
control to a large extent the global dynamics of
the system given by (13), and in many cases they
restrain trajectories starting near the synchronized
chaotic attractor 4 from reaching other limiting
sets or infinity.

Riddling bifurcation curves belonging to the
region R, are determined by Maistrenko et al.
(1998b) (see Fig. 5 in that paper).

Region R, represents parameter combinations
that lead (at least) to a weak stability of 4. The
boundaries of R4 consist of the parameter points
(v, @) for which the typical transverse Lyapunov
exponent A, of the attractor A changes its sign
from negative to positive, and the so-called
blowout bifurcation takes place for the map F
(see Ott and Sommerer, 1994). After the blowout
bifurcation, an invariant chaotic set A4 in the
diagonal D still exists, but it is transformed into a
so-called chaotic saddle (see Nusse and Yorke,

1991). Only a zero-measure set of the trajectories
are attracted to it, so they are not detectable by
regular numerical procedures. Special procedures
in which chaotic saddles can be obtained have
been proposed by Nusse and Yorke (1998).
Nevertheless, due to the finite precision of calcu-
lations, one can observe that trajectories eventu-
ally end up in the chaotic saddle A4, even when
the transverse Lyapunov exponent A, is slightly
positive.

Consider the stable asynchronous regimes which
are dominating in the model (13). Apparently
there are two such dominating regimes character-
ized by asynchronous period-2 and asynchronous
period-4 motions.

Depending on the parameters, each of the
motions can be either regular (in which case the
attractor is a point cycle or a piece wise ergodic
torus), or chaotic (in which case the attractor is
piecewise chaotic). Parameter regions for the
stability of the period-2 and period-4 motions are
shown in Figure 1 as dashed regions and denoted
by R\ and R{", respectively.

Asynchronous period-2 and period-4 point
cycles (Pga) and Pga)) have emerged via a transverse
period-doubling bifurcation of the symmetrical
fixed point P;=(x*,x*) and the symmetrical
period-2 cycle Pgs) =((x1,x1), (x2,X2)), respec-
tively. In the next phase P and P{" lose their
stability in a Hopf bifurcation. Curves for the
Hopf bifurcations are shown by dashed lines inside
R and RY (for details, see the next section of
the paper).

After the Hopf bifurcation, a closed invariant
curve (called also torus) emerges with a quasiper-
iodic motion on it. This is followed by a periodic
motion on the torus. Later on, the torus loses its
smoothness, and the destruction of the torus will
occur due to the further variations in the space of
parameters. This process typically leads to a
strange attractor (Newhouse et al., 1983, see also
Shilnikov et al., 2000; Iliashenko and Weigu, 1999)
which, after a number of transformations,
vanishes in a boundary crisis (upper right bound-
ary of the regions in Figure 1 ’Rg") and th“)).
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FIGURE 2 Basins structure of the system (13) for different values of the parameters p and +:(a) coexistence of asymmetrical
period-2 stable cycle (basin is grey) and symmetrical 4-picce chaotic attractor in the diagonal (basin is black), at 4 =3.77 and v=
—0.2; (b) coexistence of two asymmetrical attractors: period-2 stable cycle (basin is dark grey) and 4-piece chaotic attractor (basin
is light grey), at 4 =3.6 and yv= —0.105; (c) coexistence of three attractors: symmetrical period-8 stable cycle (basin is dark grey),
asymmetrical period-2 invariant curve, i.e., torus (basin is grey) and asymmetrical 4-piece chaotic attractor (basin is light grey), at
p#=3.59 and v = —0.035; (d) two-dimensional chaotic attractor of the system (13), at ;= 2.8 and y=0.31; (basin is light grey). In all
examples, the basin of infinity is left blank.



INTERDEPENDENT OPEN ECONOMIES 169

1.1

(c)

(d)

FIGURE 2 (Continued).
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Many essential features that are usually occur-
ring with the cycle Pg“) and PS{’) appear to be
similar. But the shape of the parameter region R‘({')
is clearly different from Rg") since RE{‘) apparently
has a characteristic form similar to a “shrimp” (a
typical stability region for two-dimensional maps).
It is caused by the fact that in addition to the cycle
Pff), other stable period-4 cycles can exist inside
R,

It is important to underline that although there
are infinitely many other regions of stability of
other asynchronous attractors of F, the set of
parameters for these regions appears to be of a
relatively insignificant size. Further elaboration on
these points is omitted in the present paper.

Therefore, we conclude that there are predomi-
nantly three regions of stability in the parameter
plane (v, u) for the map F, characterized as regions
RV and R for asynchronous attractors, and
region R, for, the symmetrical attractors placed
on the diagonal.

As illustrated in Figure 1, it is interesting to
notice the intersection of these three regions in the
space of parameters. In other words, there is a
rather significant region in the parameter plane in
which two or even three of the attractors coexist.

This observation leads to an important issue
concerning the relative structure of the basins of
attraction of these attractors. One can begin with
the case in which, starting from the different initial
conditions, eventually leads to the realization of
different asymptotic regimes. Examples of different
basin structures are presented in Figure 2. Among
possible scenarios the case in which one of the
regimes is synchronous but the others are not (case
a) can be mentioned. Besides that, the case in
which both regimes are asynchronous, but one is
regular (periodic or quasiperiodic) and the other
chaotic (case b) can be mentioned. Moreover, the
case in which even three of these attractors coexist
(case ¢) can be imagined.

This interesting property leads to the conclusion
that, given the same combination of parameters,
it is conceivable that there are, roughly speaking,
three different scenarios concerning the patterns of

behavior for the dynamics of the system, all
depending on the initial conditions.

This property is of particular significance for
economic theory. Our simple model illustrates
that, due to the inherent dynamics of the inter-
dependent global economy, identical structural
policies (represented by the same combination
of parameters in the two-markets model) and
trade policies (represented by coupling param-
eters) can eventually lead to different regimes
of behavior, all depending on the initial states
of the economies (for further discussion sce
Section 6).

Furthermore, one particular region is of essen-
tial significance in studying the asynchronous
dynamics of F. This region contains all points in
the space of parameters (v, 1) of the model (13)
for which the trajectories when starting near the
attractor 4 are bounded. This region is denoted by

Rf}’"““d’ and visualized in light grey in Figure 1.

R&bound) intersects the above regions R4, Rg“) and

R\”, but none of them belongs to it. Consider
those parameter values (v, ) € R that do not
belong to any of the previously mentioned regions
Ra, R;a) and R‘(‘”). Then, as numerical simulations
indicate, there is a rather large probability that the
attractor of the map F will be two-dimensional and
in such a way that the one-dimensional invariant
chaotic set 4 belongs to it. In Figure 2d, an
example of this kind of attractor is presented for
the parameter values ¢ =2.8 and v=0.31.

5. STEADY STATE AND PERIOD-2
POINT CYCLES

In the present part of our study, the focus is
directed towards the behavior of the equilibrium,
for the symmetrical version of the proposed model
for the global economy given by Eq. (18).

There are (at most) four conceivable fixed points
for the map denoted as F given by Eq. (18).
Among them are the two symmetrical points on
the diagonal D (i.e. (0,0) and (x*, x*)=((u+v—1)/
u, (u+v—1)/u)) and two asymmetrical points



INTERDEPENDENT OPEN ECONOMIES 171

(x7,y7) and (x3,y3), given by:

* *
X2 = X1

(20)

The asymmetrical fixed points exist for the
following ranges of the parameters

l-3y<u<l+4+y if p>1, (21)

l+y<pu<l=3y if pu<l. (22)
Asymmetrical fixed points do not contribute
much to the inherent dynamics of the model since
they can never be stable and do not give rise to any
other more complicated attractors of the map F.

The important case relates to the symmetrical
fixed points which can stabilize in some regions of
parameter space. Moreover, when losing stability,
they initiate more complicated stable regimes. Let
us consider this issue in more details.

Diagonal D is invariant with respect to the map
F. In other words, starting from any initial point
(x0, yo) € D, the initiated trajectory never leaves D
under the action of F. Therefore, the dynamics in
the diagonal is clearly given by the one-dimen-
sional quadratic map

S x— — ﬂxz + (p+7)x (23)

which for x =(1+~/u) X and a= p++ reduces to
the logistic map f, given by Eq. (15).

Assuming f,=f,,;,, the fixed point (0,0) is
stable in the parameter range—1<u+vy<I,
while the fixed point (x*, x*) is stable for 1<
pw+v<3. At u+v=3, this second fixed point
undergoes a period-doubling bifurcation that leads
to a stable period-2 cycle. Reaching the parameter
value, p+~v=1 corresponds to a transcritical
bifurcation which interchanges the stability be-
tween the fixed points (0,0) and (x*, x*).

Therefore, in the parameter range —1<
p+vy < 3, the logistic map given by Eq. (15)
has one stable fixed point, x*, which is equal to

=%ﬂu—7—1i¢0+7—m0—ﬂ—3ﬂ)

0, if u+v<1 and equal to (u+vy—1)/p, if
Ay > 1.

In order to obtain the region of stability of the
equilibrium P;=(x*, x*) of the two-dimensional
map F, the focus is directed towards the longi-
tudinal eigendirection (i.e., along the diagonal D)
of P; and the transversal eigendirection which is
perpendicular to D.

The corresponding eigenvalues are consequently
denoted by

v =f'(x*) =2 — p—~ (parallel)
and
v, =f'(x*) =2 — p— 3 (transversal).

The stability of the fixed point Py is conditioned
on the following inequalities
l—y<pu<3—
Y<H Y (24)
1 —-3y<pu<3—3y

since both eigenvalues in this case will lie inside the
unit circle.

These inequalities provide the region of stability
of P; in the space of parameters of the model,
denoted by R, in Figure 3 for positive values of p.
Besides R, the stability region of period-2 cycles
PY) and P are also visualised, denoted as R
and RY, respectively.

Each of these cycles (Pgs) and Pga)) emerges from
P, in a period-doubling bifurcation. But for Pgs) it
happens in the bifurcation which goes along the

diagonal, and so Pgs) €D and is specified by:

PgS) _ {(X(IS)’ x(IS))’ (xgs)’ x(zs)) eD: ng)z

:u+7+1iJW+7+UW+7—$}
20 '

The bifurcation curve for the synchronous
period-doubling bifurcation of P, is given by

LY ={(y,p): p=3-1} (25)
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FIGURE 3 Parameter regions for the stability of the equilibrium (R), symmetrical perlod 2 cycle (R( )) asymmetrical period-2
cycle (R ) and asymmetrical period-4 cycle (Rg ) of the system (13). Details are specified in the text.

which is obtained from the condition v = — 1. The
curve denoted by L serves as a boundary
between the regions R and RS’

Another bifurcation curve, £@, is obtained
from the condition v, = —1. This corresponds to
the transversal period-doubling bifurcation of P
and is given by;

LO={(y,p): p=3-3}. (26)
The curve denoted by £@
between R1 and R
Cycle P ) is 51tuated out of the diagonal and is

defined as

serves as a boundary

Py

= {01, 6 5 =)

_u+'y+1i\/(7u+”r—1)2—4(7—1)2
a 2p }

The left side boundary of the steady state
region R, (denoted by £V in Fig. 3) corresponds
to a pitchfork bifurcation of P;, in which the
transverse eigenvalue v, leaves the unit circle
through the point +1.

This pitchfork bifurcation appears to be sub-
critical and does not give rise to any new stable
cycle or another attracting state.

Moreover, in the present case, this bifurcation
characterizes a tendency towards the collapse of
the system. In other words, after that, when the
parameters are chosen to the left of £°Y| there are
no other attractors in the whole phase space R>.
And consequently, all the trajectories that do not
belong to the diagonal diverge towards infinity.
Another interesting bifurcation curve which lies
inside the region R is denoted by £") in Figure 3.
This curve visualizes the emergence of transcritical
bifurcation of the fixed point P;. Below E("), the
steady state P; is trivial and equal to (0,0), while
above it, the steady state P; is non-trivial and
equal to (x*, x*). Given (v, p)e L™, the fixed
point P; is only stable from one side.
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As illustrated in Figure 3, the stability regions
Rgs) and R\ of the synchronous and asynchro-
nous cycles share a rather large intersection given
by R, = Rgs) N Rg") in the space of parameters. It
is interesting to observe that for (v, p)€R, the
stable synchronous and stable asynchronous per-
iod-2 regimes coexist and, depending on the initial
conditions (xg, Vo), a given trajectory will tend
either to P’ or to P{*) as 1 — oo. The trajectory
can also go to infinity if the initial point (xo, yo) lies
out of both the basins.

Figure 4 presents examples of basins structures
for the cases when the parameter point is in R,
(case a), ’Rg) (case b), Rga) (case ¢) and Ry =
Rgs) n Rga) (case d), respectively. The basin of R(Zs)
is marked in dark grey, the basin of Rga) in light
grey, and the basin of the set of points diverging
to the infinity is left blank.

Particularly, for the intersection region R,, we
can see that if the initial conditions (xg, yo) are
chosen near the diagonal D, the trajectory goes,
with a rather large probability, towards the syn-
chronous period-2 cycle Pgs). Otherwise, if the
initial conditions (x,, yo) are chosen away from the
diagonal (but not too far), there is a larger prob-
ability that the trajectory moves towards the
asynchronous period-2 cycle Pga). Increasing the

L1

-0.1
-0.1

FIGURE 4 Basins structure of the system (13) for different
values of the parameters y and v: (a) (v, pu) €ERy, at p=2
and 7=0.1; (b) (7,#)672(;), at =33 and y=—0.1; (¢)
(1, p) €RY, at p=2.9 and v=0.1; (d) (7, p) € Ry, at p=3.1
and y=0.1. Points of corresponding cycles are marked by
Ccross.

1.1

-0.1

(b)

-0.1

L

1.1

-0.1

(d)

-0.1

X 1.1

FIGURE 4 (Continued).
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0

-1.2

0 1.2

FIGURE 5 Parameter regions for the stability of the equilibrium, and the symmetrical and asymmetrical period-2 cycles of the

systems (12), where py = p, o =pu1+e, y1="72=7, at e =0.1.

distance between xy and y, will eventually lead to
the divergence of the trajectory towards infinity.

Another interesting peculiarity of the shape of
the parameter regions in Figure 3 is that they
spread into the domain g > 4. This phenomena
occurs for negative values of the coupling coeffi-
cient . In order to provide a more visual inter-
pretation, consider the uncoupled case (y=0) of
the model given by Eq. (13) and let param-
eter p assume a value more than 4, e.g., u~4.5.
Then almost all trajectories of Eq. (13) diverge.
But, with a decreasing coupling coefficient, the
system will initially stabilize, first to the asym-
metric cycle Pg”) and then to the symmetric cycle
PY) before it finally becomes diverging again.

6. DISCUSSIONS

The standard trade models are often different
variations of the so-called Computable General
Equilibrium (CGE) family of models (for some
recent studies, Karunaratne, 1998; Rattso and
Torvik, 1998; Chang, 1997; Rodrigo and Martin,

1997; Harrison et al., 1997; Smith and Spinosa,
1997).

Despite the popularity of these types of models,
there is little evidence to suggest that these models
do possess an inherent ability to provide significant
insight into the general topology of the policy
space. This is due to the fact that these models are
predominantly designed in a comparative statics
framework. From an epistemological viewpoint,
this property constitutes the main critique for using
these classes of models for studying trade flows.
One practical remedy is to link the model to a
dynamic macro model, but such interventions
can only provide a second-hand impression of the
dynamics of trade. This problem is especially
significant from a dynamic modelling approach
when different policy mixes can be represented by
specific points in the parameters space of the
model.

Therefore, it is reasonable to ask whether such
an approach is appropriate for analysing a volatile
process such as the global trade dynamics.

On the other hand, in economics there is a
tradition of modelling dynamic processes,
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especially in discrete time. The Cournot duopoly
model and the Samuelson—Hicks business cycle
model are among the well-known examples of
this tradition (for further references, see Puu, 1997
and Lorenz, 1989).

Inspired by this tradition, we have formulated
the presented interdependent model of global eco-
nomy. Despite the simple structure of the model, so
far, we have come a long way in this paper. In very
few words, we have illustrated how a simple global
model of trade characterized by a demand link
between competitive markets for goods and a
linear trade coupling between economies can be
represented by a non-invertible system of coupled
difference equations with an inherent non-linearity.
Reaching this point enabled us to conduct vari-
ous numerical and analytical investigations that
eventually provided a deeper understanding of a
number of interesting features of the model.

Among these features were the observation that
the transition to chaos mainly takes place through
a torus destruction, and a general specification of
the regions of stability for the main equilibrium
and for the point cycles of period 2 and 4 in the
parameter space. Moreover, it was demonstrated
that the evolution of the system typically involves
a Hopf bifurcation followed by torus destruction
and, finally, a boundary crisis. This was followed
by elaborations on the emergence of the process of
chaotic synchronization in the model including
a short description of the process. Later on, the
existence of the phenomenon of multistability, or
the coexistence of different attractors in the
parameter space, was demonstrated.

Besides the mathematical significance of the
presented results, these results can also be appre-
ciated from an economic viewpoint. One particular
view concerns the policy design and the related im-
plications of different policy measures. This issue
was dealt with by exploring the general topology
of policy space, since different policy mixes were
represented by specific points in the parameters
space of the model.

As previously mentioned, our model focuses on
real trade flows and incorporates a certain degree

of insulation (or interdependence) of domestic
markets from the world markets. The demand
links (incorporated as determinants of u defined
in Eq. (8)) and particularly the linear couplings
provide the mechanism through which the dy-
namics is transmitted across markets and econo-
mies. Following this approach, the consequences
of structural adjustment programs and macroeco-
nomic policy packages can be reflected into
the space of parameters of the global model (i.e.,
the (v, ) space). Therefore, specification of the
regions of stability of the equilibrium in parameter
space corresponds to a general classification of
the qualitative behavior of the global model when
economies are subject to different policy mixes and
their related measures.

Moreover, the existence of the phenomenon
of multistability or the coexistence of different
attractors in the parameter space corresponds to
the case in which even identical policies designed
for identical economies can not guarantee similar
behavior.

However, it should be mentioned that we obtain
these results at the cost of not including many
details and specific modelling of different factors
such as the exchange rate, labour markets, capital
markets, etc., so the model in the presented form
should be regarded as a prototype of a more
detailed modelling approach.

Finally, we would like to make some brief
remarks on another interesting feature observed in
the model. This issue will be addressed specifically
and in more details in future. For the time being
we only consider the mathematical framework
of the model and omit further elaborations on
interdependences between the parameters of the
original two-markets model and parameters (and
variables) of the system of coupled difference
equations. The focus is then solely directed
towards analytically tractable characteristics of
the symmetrical system of two coupled one-dimen-
sional quadratic maps given by Eq. (13).

Consider the asymmetrical system (12) and set
mi=p, pa=p+e, y1=7, and y,=7y+4. The
parameters ¢ and 6§ characterize the magnitude of
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the mismatches between u; and u,, and between
~1 and +,, respectively.

In Figure 5, the bifurcation structure of the
system (13) is illustrated, given € =0.1 and 6=0.
As visualized in this figure, although regions of
stability of the steady state and of the synchronous
and asynchronous period-2 cycles undergo defor-
mations, their shapes remain quite similar to the
original ones plotted in Figure 3 for the sym-
metrical system (12).

Numerical simulations indicate that the evolu-
tion of the system (12) from regular to chaotic is
going on through the same “torus destruction”
scenario which (as described in Section 5) controls
the complications of the dynamics for the symme-
trical system (12). Therefore, small mismatches
do not distort the period-2 and period-4 asyn-
chronous regimes. Moreover, these regimes are
seemingly maintaining their dominance in the
asymmetrical system (12). This phenomenon also
concerns the two-dimensional chaotic attractors
which can typically exist for the parameter values
(v, 12) belonging to the region R,

At the same time, the chaotic synchronization
behavior characterized by Eq. (16) will cease to
exist at any small mismatch. This is due to the
fact that the diagonal D is no longer invariant.
Moreover, seemingly there are no longer any
one-dimensional invariant manifolds for the sys-
tem (12) if py; # po and (or) vy # ~,. This leads
to an important question concerning the further
developments of the symmetrical chaotic attractor
A when the parameters are subject to alteration
(i.e., mismatches are conceivable).

As it was pointed out in Popovych et al. (2000)
for the analogous system with nonlinear coupling,
small mismatches can transform A4 into a two-
dimensional chaotic attractor placed around A.
This is apparently due to the existence of absorb-
ing and mixed absorbing areas enveloping 4. If
such an area exists and does not contain any other
attracting states, then, with small mismatches,
it can become a chaotic attractor for the asym-
metrical system (12).
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