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Division of the parameter plane for the two-dimensional H6non mapping into domains
of periodic and chaotic oscillations is studied numerically and analytically. Regularities
in the occurrence of different motions and transitions are analyzed. It is shown that
there are domains in the plane of parameters, where non-uniqueness of motions exists.
This may lead to abrupt changes of the character of the dynamics under variation in the
parameters, that is, to a sudden transition from one stable cycle to another or to
chaotization of the oscillations.
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1. INTRODUCTION

The purpose of this paper is to apply bifurcation
analysis and continuation methods to study reg-
ularities in the occurrence of different motions in
the two-dimensional H6non map (H6non, 1976;
Hitzl and Zele, 1981):

Xk--F(Xk-1); k--l,2,...;

X- (xl, x2)r" F- (fl,f2) r"

fl OZX -+- X2;

Here a is the nonlinearity coefficient and/3 is the
coefficient of dissipation ([/31 < 1). T denotes the
operation of transposition.
The mapping (1) was originally proposed by

H6non (Hdnon, 1976) as a model of the Poincar6
map for a three-dimensional flow system. Since
then it has been extensively studied both numeri-
cally and from a more theoretical point of view

(for references see, e.g., Schuster, 1984; Berg6 et al.,
1984; Moon, 1987; Anishchenko, 1990; Landa,
1996). Curry (Curry, 1979) was the first to observe
that there exists a range of parameters for which
two chaotic attractors coexist, and Derrida et al.
(Derrida et al., 1979) showed how the
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period-doubling cascade in the H6non map for cer-
tain parameter values follows the Feigenbaum
scenario. At the same time, Newhouse (Newhouse,
1974) found that there are regions in parameter
space in which a dense set of the stable periodic or-
bits with extremely small basins of attraction may
exist. For a more recent discussion of this phenom-
enon see, e.g., Kan et al. (Kan et al., 1995). A var-
iety of different motions generated by the
two-dimensional H6non map (Simo, 1979; Hansen
and Cvitanovi6, 1998) in dependence of the param-
eters and peculiarities in the occurrence of chaos
are typical of a wide class of dynamical systems
(Schuster, 1984; Moon, 1987; Anishchenko, 1990;
Mosekilde, 1996). As shown, for instance, by
Anishchenko (Anishchenko, 1990) the map (1) is a

good representation of a three-dimensional model
of a radiophysical generator with inertial non-

linearity. In particular, it is shown that the collec-
tion of bifurcations in the plane of the controlling
parameters c and/3 is qualitatively equivalent to
that which is realized in the Poincar6 map of a
model of the generator. We have found a similar
equivalence when analyzing models of a specific
class of automatic control systems, for example,
two- and three-dimensional models of systems
with pulse-width modulation and a four-dimen-
sional model of a relay system with hysteresis
(Baushev and Zhusubaliyev, 1992; Baushev et al.,
1996; Zhusubaliyev, 1997; Zhusubaliyev, 1997a).
Many other non-linear dynamical systems dis-

play a structure of division of the parameter plane
and a shape and arrangement of the domains of
stability similar to what we shall discuss here. The
peculiarities of organization of domains of stabi-
lity with the specific shape, referred to as a swallow
tail, or a crossroad area and denoted here as

IIwalw can be observed with bimodal one-dimen-
sional maps as shown in (Gallas, 1994), for the
Ikeda map (Mosekilde, 1996), and for several
other nonlinear dynamical systems (Barfred et al.,
1996). Detailed analysis of such a structure have
been performed by Kuznetsov et al. (Kuznetsov
et al., 1993) and, from a more mathematical point
of view, by Mira et al. (Mira et al., 1996) (see also

references in this work). It is shown in (Kuznetsov
et al., 1994), that a quantitative universality in the
transition to chaos in two-dimensional H6non-like
maps exists. Hansen and Cvitanovi6 (Hansen and
Cvitanovi6, 1998) describe the possible bifurcation
structures for maps of the H6non type, in par-
ticular some swallow tail for various periods using
a series of n-unimodal approximations and the
associated symbolic dynamics. Sonis (Sonis, 1996)
provides a detailed description of the bifurcation
phenomena in the H6non map.

Nonetheless, the complete bifurcation scenario
for the H6non map has not yet been established,
and the aim of the present article is to present a

number of results that appear not to have been
given in the above works. Special emphasis is paid
to the study of the structure and properties of the
division of the plane of controlling parameters for
the dynamical system (1) into the domains of
existence of periodic motions and chaos.

2. DIVISION OF PARAMETER PLANE

Let us begin with some preliminary notes.
Let Xci, i= 1,m be a periodic motion (m-cycle)

of the dynamic system (1). It is evident that all Xc;,
i-- 1, m satisfy the following equation

Xc Fm(Xc) O, Fm(Xc) F(F(... (F(Xc)) ...))
times

(2)

The local stability of the m-cycle is determined
by the eigenvalues (multiplicators) pl and p2 of the
basic matrix m. These are the roots of the
equation

det(m pE) O,

OF(Xc(i-1))
OXc(i-

i-l, GO E,i 1,m

OF(Xc(i-1))
OXc(i-

-2OXlc(i-1)
o
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Here E is the unit matrix.
Let II {(c,/3): # < c < u; </3 < } be the set

of the parameters of the dynamic system (1). A
point in the plane P (c,/3) EII corresponds to
every fixed set of parameter values. Let X.i(P),
1,m be a locally stable m-cycle corresponding to
point P.

Let IIk,j- be the simply connected set of para-
meters I-[k,j C I-I, k 1; j 1,2,..., s such, that for
every P E IIk,j there exists a stable m-cycle X,i(P),

1, m, which is continuous along the parameters
in IIk,.. If there are several motions at fixed P,
different IIk,v. correspond to different motions. The
k-cycle for Ilkd is minimum, that is, there is no m-
cycles with m < k in llk,.. The index j is introduced
to distinguish sets, having the same k. The value of
s may be finite or infinite.
The boundaries of the sets IIk,.. may be of the

following types:

simple, that is, there is a stable m-cycle for any
points P 1-’k,v-, connected with a limitation of
the parameter variation range;
the boundaries Pk,. are formed by the collection
of bifurcation values of parameters or by the
collection of points of accumulation, corre-
sponding to aperiodic motions.

The point P, II is a bifurcation point, if the
equation (Neymark and Landa, 1987; Butenin
et al., 1987)

x(P, P) [92 --]- lP @ 2 O,
x(P, p) det(m pE)

has a root, which is on the unit circle, when P- P..
These are the cases, when the greatest multi-

plicator of m-cycle (in absolute value) turns into
or -1. The corresponding bifurcation curves are
determined by the equations

x(P, 1) + 1 @ 2 0

x(P,-1) 1 @ 2 0

By analogy with (Neymark and Landa, 1987;
Butenin et al., 1987) here and in the following we

denote these curves as N+ and N_, respectively.
For the dissipative system (1), the case where two
complex conjugate eigenvalues cross the unit circle
cannot occur.

It is interesting to study the possibility of non-

empty intersections of the sets Yik,j and the
properties of IIk,v. in whole in order to understand
the great variety of different motions, generated by
the dynamical system (1). In the following we shall
restrain ourselves to the region II={(c,/3):
-1<c<4; 1/31<1}.
Let us first consider the solutions of Eq. (2) and

study the local stability of m-cycles.
Equation (2) when m has the form:

+ 0;

X2 Xlc"

The roots of this equation determine two
period- cycles

X -X2c /Xlc.

The domain of existence of a stable 1-cycle is
limited by bifurcation curves N+, N_

/32-2/+4c+1 =0 (4)

and

3/2 6/3 4c + 3 O,

respectively. Let us denote this domain as 1-I1,1

If the parameters P II1, II1 { (OZ,/)
< c < (1/4)(/3 1)2, I/l < }, then Eq. (3) has
no real roots. On the curve c (1/4)(/3- 1)2,
-1 </3 < Eq. (3) takes the form

=0
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and has a multiple root. When changing the
parameters along some smooth curve (referred to
as the trajectory of deformation) into the domain
a>-(1/4)(/3-1)2, -1</3<1, two solutions
arise: one of which corresponds to a stable 1-cycle
and the other to an unstable 1-cycle. This pair of
1-cycles occurs abruptly in a saddle-node bifurca-
tion at a--(1/4)(3-1)2. In a reverse transition,
the stable 1-cycle disappears as it coincides with the
unstable cycle at the points of intersection with the
trajectory of deformation and curve (4).

It is easy to see, that a- (1/4)(/3- 1)2 < 0.
Now let us follow the evolution of the stable and
unstable 1-cycles with variation in a from nega-
tive values to positive ones by passing through
a-0. Denote the solutions of the Eq. (2) as Xs,
XUc, that correspond to stable 1-cycle and unstable
-cycle.
When a 0, Eq. (2) has only one solution

3
Xlc ’ X2c

It is obvious, that

lim xs
-,+/-o 1-/3’

lim xzSc-++o

13=0.2

o ot

(a)

PlP2 [3=0.2
P;

-0. t6 0.3

Hence the solution of Eq. (2), which corre-
sponds to the stable 1-cycle, depends smoothly on
the parameters in IIl,1, whereas XU is uninter-
rupted in 1-[1,1 except for the points, in which a- 0.
In points a-0, 1/31 <1 the solution XcU has an
infinite discontinuity.
The distinction in the nature of the parameter

dependence of the solutions Xcs and XcU is shown
in Figure l(a). The dependences of the multiplica-
tors of stable and unstable 1-cycles are given in
Figure (b).
When the trajectory of deformation and the

bifurcation curve (5) intersect, the 1-cycle loses its
stability, and a stable 2-cycle arises softly as the
result of a period-doubling bifurcation. Both 1-
cycles continue to exist as unstable over the whole
range of parameters beyond bifurcation curve (5).

FIGURE (a) Variation of the stable and unstable period-1
cycles with the nonlinearity parameter c. Note the different
nature of these dependences. (b) Corresponding variation of the
multiplicators Pl and/)2.

Equation (2) when m- 2 takes the form

oz3X41c 2o2Xc q- (1 fl)3Xlc- (1 -/)2 @ o 0;

X2c 1-
This equation has four real roots in the domain

a > (3/4)(/3- 1)2. Two of the roots correspond to
two unstable 1-cycles. It is not difficult to show,
that a stable 2-cycle satisfies the equation

O2Xc c(1 -/3)Xlc + (1 -/)2 o 0;

X2c -/3
(1 aX21c)" (6)
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The set H2,1, whereupon a stable 2-cycle is
determined, is limited by the bifurcation curve (5)
and by the curve, defined by the following
equation

5/2 6/3 4c 5 0 (7)

that is,

H2,- (oz,/3)’(/3-1 _<oz

<1 (5/32 6/3 5), I/ 1 < }.
When passing through the boundary (7) into the

domain of values c > (1/4)(5/32- 6/3-5), 1/31 < 1, a
stable 4-cycle arises softly, and the 2-cycle con-
tinues to exist, but becomes a saddle.

It becomes more and more difficult to obtain
bifurcation formulas in explicit form for m- 2;-1,
i- 3, 4,... All the rest of the sets H2/-l,1, i-- 3, 4,...
were built numerically. The collection of H2,-l,1,
i-- 1,2,... which forms 1-I1,1, is shown in Figure 2:

n,,, U fi>’,,
i=1

In this way, the set II1,1 consists of domains of
existence of stable 2i-l-cycles (i-1,2, 3,...). The
boundaries, separating these domains in
correspond to period-doubling bifurcation curves.
The set I-[1,1 is limited by bifurcation curve (4)
from the left and by a curve formed by the
collection of accumulation points from the right.
Now consider I-[k,j --Uie=l l-Ik.2i-l,j for k-/= 1.

From Eq. (2) when m- 3 we find

o6Xtc o5(1 t)Xc nL oz4((1 )2 3oz)Xlc_
o(1 )(1 -t-/32 2oz)Xc+

qL_ ty
2 (4 2 @ (3 @ 2. ).

+

(1 2 + 2 4fl-
5fl2 4fls + 4_ 2fl2) 0.

The roots of this equation can be found only
numerically. Let us try to find the equation of
bifurcation curve N+ for the 3-cycle. Taking into
account, that with parameter values, located on
the curve N+, Eq. (8) has only multiple roots, we

-1

-1 et 4

FIGURE 2 The collection of the sets I]2,-,,1, 1,2,... which forms 1-I,1, I] and I denote those domains of H, where trajectories
diverge to infinity with any initial conditions.
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obtain

/Xc + x + o.
2c

Here

o- 2/ (2c c2 -/3-/3 +/3

qt_ /4 qt_/5 nt O2/_ 2Ct/33)

where

0 +/3 -+-/2 q__/4 q_ 5 q_/6

c( 2c q- O2 4/3 5/2 4 +/4 2cfl2).

Then the desired bifurcation curve will lie on the
two-dimensional surface (Fig. 3(a))

We find an equation for the bifurcation curve, by
setting X(c,/3, 1) equal to zero:

--8[#(Ct,/)](1/2) _+_ (1 )(1 +/)2 0.

The form of this curve is shown in Figure 3(b).
The remaining domains II3.2i-,1 i-2,3,..., as
well as ]-[2/-,1, i--3, 4,..., were built numerically.

Figure 4 shows the collection

1-[3,1 U3.2i-1,1 l-[k,1 U fik’2i-I
i=1 i=1

k 5, 6, 7, 8, 10, 12

and

IIk,2 U 1-Ik’2i-’,2’ k 5, 6, 8
i=1

which were obtained numerically. Naturally,
Figure 4 represents only those sets, that are

relatively large in II.
The resulting picture for the division of Hdnon

mapping parameter plane II {(c,/3): < c < 4;
1/31 < into domains of various oscillatory modes,
is shown in Figure 5. The domains of chaoticity
adjoin to the parts of boundaries of 1-I,., formed
by the set of accumulation points. The diagram
depicts only one of them, which occupies the
largest region in the parameter plane. The domain
is shown in Figures 4, 5 by dark hatching and is
denoted as l-[Chaos. The remaining domains are

very narrow and hence, are not shown in the
diagram. There is a great number of windows with
deterministic dynamics within IlChaos, which begin
with saddle-node branching m-cycles. The inner
structure of such domains may be similar to that
for Ilk,./or be different. The domains, whose prop-
erties are different from the properties of fik,.j,
are denoted as Hswallw (see Fig. 4). The structure
of Ilfwallow and the bifurcations in this domain
were described in some detail in (Dmitriev et al.,
1994).
For any point P C Il with the exception of

P=(0,0) there is such (simply or not simply
connected) domain D, in the phase space of the
dynamic system (1), that if X0 c D,, then

lim X(X0)]]- oc, X(Xo) F(Xo). (9)

In Figure 5 (cf. also Fig. 2) lii and M2 denote
those domains of II (not hatched), where Eq. (9)
with any X0 is valid for all points P I)l t I)2.
As seen in Figures 4, 5, all sets FI,.j, with the

exception of IIwallw, have non-empty intersec-
tions with II,. Moreover 11i,l Ilq,p (i, q 1,
i- q). This means, that there exist different stable
m-cycles, corresponding to IIi, and IIq,p for every
P IIi,lf’qilq,p.

It is easy to see, that

II3,1 Cl II5swallw b, 1-IiSwallw

AI-Iwallw 5, i7 j.
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FIGURE 3 (a) The 2D surface, on which the bifurcational curve N+ for 3-cycle lies. (b) The curve of saddle-node bifurcation for
3-cycle.

Based on these results let us elaborate on the
bifurcations analysis, while moving along the
parameters in the domain (U(,.j)H,..) u fIChao in
more detail.
The analysis was made in the sections /3=0.3;

/3=0.68 and /3=0.5, changing the parameter c

over the range of

2- ..-a(- 1)

< c < u, 1/31 < 1, u < 4, (u, const)}.
The bifurcation diagrams calculated for these

values of / and the indicated variation of c are

depicted in Figures 6(a), 7(a) and 8. It is easy to see
in these diagrams, that the complication of
oscillations happens through a sequence of
period-doubling bifurcations while continuously
increasing c. These sequences lead to the appear-
ance of aperiodic motion with some critical value
of cx and then to the domain of chaoticity. The
ranges of variation in c in which chaotic oscilla-
tions are observed, are interrupted by small
intervals, where stable cycles exist (Figs. 6-8).

In the domain -(1/4)(fi/- 1)2 < Oz < , 1/1 < 1,
, < 4, (t,,/3 const) with variation in c many other
stable motions occur in saddle-node bifurcations,
such as 3-, 6-, 8-, 18-cycles and other motions with
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-1

H6,1

H/0,1

-1 ot 4

FIGURE 4 The collections of the sets ]-I3,1, Ik,2i-,,l,i 1,2,... ,k 5, 6, 7,8, 10, 12 and I-[k, 2, k- 5, 6,8. Here IIChao is the domain
the chaoticity.

-1

FIGURE 5 Resulting picture for the division of H6non map parameter plane into domains of various oscillatory modes.

subsequent period-doubling bifurcations. That is
why the general pattern of cycles branching is
complicated significantly.

Let us follow the evolution of various stable
cycles, with variation in c. The results of
numerical calculations for /3=0.3 and /3=0.68
are presented in Tables I, II. In these tables the

second column contains the periodicity of a cycle,
the forth and the fifth columns are the range of c,
in which locally stable m-cycle exists. The last
column indicates the width of this range.

It is convenient to represent the data of the
tables in the form of a diagram, which was call-
ed branching pattern (Figs. 6(b) and 7(b)) in
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-1.5 13=o.3
0.0 ot 1.4

2.5

-2.5 13=0.68
0.65 ot 0.98

(a) (a)

50

m

13=0.3

0 1.4

(b)

FIGURE 6 (a) Bifurcation diagram and (b) branching pattern
for 0 _< c _< 1.4 and/3 0.3.

40

2 =0.68

(g)

FIGURE 7 (a) Bifurcation diagram and (b) branching pattern
for 0.65 _< c < 0.98 and/3-0.68.

(Baushev and Zhusubaliyev, 1992; Baushev
et al., 1996). In these diagrams values of varying
parameters are plotted on the horizontal axis
and values of m are plotted on the vertical axis.
Further, we use designations as in (Baushev et al.,
1996). Vk,j. are the branches, where index k indi-
cates from which k-cycle the branch begins. The
maximum value j indicates the number of observ-
ed branches, having the same k. All branches start
with k-cycles, which arise in a saddle-node bifurca-
tions. Some Vk,j are determined on sets, that were
not shown in Figure 5, as their sizes in param-
eter plane are too small.

2.5

Xi

-2.5
0.7 ot 1.074

FIGURE 8 Bifurcation diagram for 0.7 < c _< 1.074 and
/3=0.5.
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TABLE

Oi-1 OZ /Vk,j m 2.k, 2.k,

Vl,1 --0.1225 0.3675 0.49
2 2 0.3675 0.9125 0.545
4 3 0.9125 1.0258554050738 0.1133554050738
8 4 1.0258554050738 1.0511256620352 0.0252702569614

16 5 1.0511256620352 1.0565637581588 0.0054380961236
32 6 1.0565637581588 1.0577304656609 0.0011667075021
64 7 1.0577304656609 1.057956 0.0002255343391

V6, 6 1.062372 1.0710703629071 0.0086983629071
12 2 1.0710703629071 1.0750124047736 0.0039420418665

V7, 7 1.2266174 1.2541834642429 0.0275660642429
14 2 1.2541834642429 1.2600151726701 0.0058317084272
28 3 1.2600151726701 1.2614289068416 0.0014137341715
56 4 1.2614289068416 1.2617 0.0002710931584

V20,1 20 1.067564 1.0677430954543 0.0001790954543

V2,1 21 1.26887 1.2692033433938 0.0003333433938

TABLE II

i- ozi /O2.k, 2.k,

V1, 2 2 0.0768 0.808 0.7312
4 3 0.808 0.9169381427467 0.1089381427467
8 4 0.9169381427467 0.9361479503607 0.019209807614
16 5 0.9361479503607 0.9400330556502 0.0038851052895
32 6 0.9400330556502 0.9408680756308 0.0008350199806
64 7 0.9408680756308 0.9410471449543 0.0001790693235

V6,2 6 0.70142261 0.7343659105724 0.0329433005724
12 2 0.7343659105724 0.7445017603884 0.010135849816
24 3 0.7445017603884 0.7467731395103 0.0022713791219
48 4 0.7467731395103 0.7472652867434 0.0004921472331

Vs, 8 0.70791248 0.713479366256 0.005566886256
16 2 0.713479366256 0.7158180118385 0.0023386455825
32 3 0.7158180118385 0.7163564950326 0.0005384831941
64 4 0.7163564950326 0.7164739420036 0.000117446971

V18,1 18 0.74696954 0.7476245768696 0.0006550368696
36 2 0.7476245768696 0.7479207404767 0.0002961636071

The range of existence of each branch Vk,.. is
presented in the form of intervals

Here the parameters OZ2ik,j, i= 1,2,... corre-

spond to loss of stability of the 2i- k-cycle and
soft occurrence of the 2ik-cycle. When increases,
the intervals /OZZik,j O2i+lk,j --OZZik,j Of the ex-
istence of the 2ik-cycle become narrower (see Tabs.
I, II), so that each branch has its limit value of

ck,j*, which corresponds to aperiodic motion. We
shall call these parameters accumulation points as

in (Baushev et al., 1996). The accumulation points
are shown in Figures 6(b) and 7(b) as vertical lines.
The beginning of the windows of periodicity in the
bifurcation diagrams coincides with the beginning
of the branches. Some of Vk,(k: 1) intersect with

V1,1. In those ranges of c, where V, [..J Vk,.-Cb,
k-/: 1, there exist both a stable 2i- 1-cycle and stable
2d- k-cycle, k _> 3; i, d_> 1. This means, that the
phase plane (x,x2) of the dynamic system (1)
comprises some basins of attraction of different
cycles. In this case the 2i- 1-cycle or the 2d- k-
cycle are chosen, depending on the initial
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conditions. The character of division of the
iphase plane of system (1) into basins of attraction
of different cycles is shown in Figures 9-11. Fig-
ures 9(a) and (b) display basins of attraction for
the 1-cycle and the 3-cycle (P=(0.949;-0.744)).

In Figure 10 we show basins of attraction for
the 1-cycle, the 18-cycle, and the 3-cycle,
(P=(1.0295;-0.8)), and in Figure 11 are basins
of attraction for the 2-cycle and the 8-cycle
(*’ (0.53;0.SS)).

X

-0,7 x, 1,6

(a)

FIGURE 9 (a), (b) Basins of attraction for the 1-cycle and the 3-cycle with c 0.949, fl -0.744. (See Color Plate II.)
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-2 X 2

FIGURE 10 Basins of attraction for the 1-cycle, the 18-cycle, and the 3-cycle with (-- 1.0295,/3= -0.8. (See Color Plate III.)

FIGURE Basins of attraction for the 2-cycle and the 8-cycle with c 0.53, /3= 0.88. (See Color Plate IV.)

The location of X,k, k-- 1,m, are marked by that there are intervals within the limits of
dots in Figures 9-11. The non-hatched parts of existence of the V,I where periodic motions
Figures 9 and 10 correspond to the collection of coexist with chaotic oscillations. Here, the
initial conditions from which the trajectories system may chose a periodic motion or chaotic
diverge to infinity (see(9)). oscillations, depending on the initial condi-
One can see from the comparison of the tions. As an example Figure 12 gives the result

branching pattern with the bifurcation diagrams of plotting of the basins of attraction for the



FIGURE 12 Basins of attraction for the coexisting 6-cycle and chaotic motion with s =1 .7, fl = -0.03 . (See Color Plate V .)

a

(a)

Swallow
10,1

FoldI) 11,5

+
1' 0,5

A Swallow
5,1

^ Swallow
I10,2

(U)

FIGURE 13 (a) The 2D surface illustrating the peculiarities of organization of the domains of existence for 5-cycle Itiallow and 10-

cycle ~SO,ill°" and Ilso211ow which are of a "swallow tail" kind . (b) Bifurcation curves bounding the domains H a11 o`" fl Mow and
nsozlloW Note that both plots are not drawn to scale .
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coexisting 6-cycle and chaotic motion (P=
(1.7;-0.03)).
Now let us consider the difference between the

properties of the set wSwaow and the set 11,...
Similarly to (Anishchenko, 1990), when analyzing
the model of the radiophysical generator with
inertial non-linearity, we introduce and consider
a three-dimensional space (,/3, x.(P)), in which
we depict the dependence x,:(P). Here, as in

(Anishchenko, 1990), by x..(P) we mean one of
component of the fixed point X:(P) of the
mapping X:=F’(X:). The locus, corresponding
to stable and unstable m-cycles, forms a two-
dimensional surface 6)m,.i in (c, ,x:(P)). The first
index in the designation of (3m,.. indicates the value
of m, for which the surface was built, and the
second index is introduced to distinguish (R),..,
having the same m. The plot of such a surface for
m= 5 and m= 10 is schematically shown (6)5,1
and 6)10,1, 6)10,2) in Figure 13(a).
Now we shall project an image of the surface

6),.. onto the plane of control parameters
(Fig. 13(b)). For the purpose of illustration, the

bifurcation curves in Figure 13 are not drawn to
scale. The domains of existence of the stable 5-
cycle and the stable 10-cycles are denoted as

Swallow Swallow Swallow

115,1 and H10,1 ,1110,2 respectively. The set
Swallow

1-[5,1 is limited_by the period-doubling bifur_c_-
tion curvves P,5 P 1,5 and the curves P+ P+0,5’ 1,5’ 1,5

(P,5, Pl,5 -are the lines of fold (Arnold, 1990) of

(35,1), corresponding to combination of the stable
5-cycle and the unstable+ 5-cycle (the curve N+ ).
The curves P+ and are supported by the1,5 1,5

Swallow
bifurcation point OFld Fold

1,5 (01,5 1-I5,1 of codi-
mension 2 (the point of assembly (Arnold, 1990) of

Swallow

the projection 5,1), forming a sector in 115,1
where two stable 5-cycles and two unstable 5-
cycles exist. One of the unstable 5-cycles occurs

together with the stable 5-cycle on the boundary
p+

0,5"
The picture below the curves P{5 and

Swallo
repeats structure described for 115,1 (Figs. 13,

14). The bifurcation curves P75-2’---’ and
j- 1,...,2i-1", i- 1,2,... accumulate, and there

FIGURE 14 The results of numerical calculations of the domains nSwllow k 5, 6, 7 8 and some others. (See Color Plate VI.)
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cz=1.53

o.14 f O. 165

(a)

50

m

Vs2 ct=1.53

o.4 f3

FIGURE 15 (a) Bifurcation diagram for c=1.53 and 0.14_</3<0.165 and (b) branching pattern for c=1.53 and
0.145 _</3 _< 0.162. This section intersects that region of the domain 1-I5Swallw where two stable 5-cycle coexists.

exist transversal directions along which in-
finite series of period-doubling bifurcations take
place.
The projections of the two-dimensional surfaces

lm,j, (m 5 2i- ; j= 1,..., 2i- , i= 2, 3,...)
onto the place of control parameters have the
same peculiarities as 5, (Fig. 14). The domain

II5swallw consists of the collection of the sets

Swallow

1-[5.2i_1,j j- 1,..., 2i- 1., i- 1,2

(U --Swallw

I-5Swallw / \j=lI5.2i-l,j;.
Figure 14 (see also Figs. 4, 5) shows the

collection of some I-[/wallw, which begin with
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1.2

Xl

0.14

0=1.56

(a)

0.155

50’

m

.56

5 15

0.14 [ 0.16

FIGURE 16 (a) Bifurcation diagram for a 1.56 and 0.14 _</3 _< 0.155 and (b) branching pattern for a 1.56 and 0.14 _</3 _< 0.16.
This section intersects that region of the domain II5swallw where two stable periodic, stable periodic and chaotic or two chaotic
motions can coexist.

different stable k-cycles

I-Iwallw u U I-Ik.2i_l,j
i=1 j=l

k 5, 6, 7, 8.

Let us denote the part of II2wallw, where a single
stable motion exists, which is uninterrupted along

IlSwallow The properties ofthe parameters, as "k,conv
-iSwallowk,conv are similar to the above adduced proper-
ties of IIk,.. There is non-uniqueness of motions in
the domain l-[Swallow\I-ISwallow which li.e_ between"k \’k,conv
the bifurcation curves +52; and Fj,5.2;_,, j-
1,...,2i-’; i= 1,2,... (Fig’sl 3, 14).
When the boundaries of 1-[Swallw\llSwallw

"k \l-k,conv are
+intersected in the points of the curves Fj,5.2;_,, and
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.+
’j,5.2i_ ;j- 1,..., 2i- 1., i- 1,2, one can observe
hard transitions from one mode to another with
hysteresis as it is typical for such transitions
(Figs. 15 and 16). Figures 15 and 16 illustrate
only one of possible variants of change in the
character of the dynamics with variation in the
parameters. The branching patterns in other
sections may be more complicated in comparison
with those shown in Figures 15(b) and 16(b) (see
Figs. 17 and 18).

We realize that the content of the above analysis
is qualitative rather than quantitative. As it is seen
from Figure 14 the real picture of the properties of

1-Iwallw as a whole is substantially more compli-
cated than presented in this paper.

Finally, the case should be considered, when the
trajectory of deformation passes through oFold

"-’j,5.2i-1,
j- 1,..., 2i- 1., i- 1,2,... The dependence of the
solutions of xc(P) (2) on the parameters for this
case is qualitatively shown in Figure 19, where

X

[3=-0.55ot+1.079

0.89356 1.68

FIGURE 17 Bifurcation diagram for/3= -0.55c+ 1.079 where 0.89356 _< c < 1.68.

1.5

X

-0.24 [3 0.245

FIGURE 18 Bifurcation diagram for c= 1.53 and -0.24 _</3 < 0.245.
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X

S/
X

Xe

FIGURE 19 The qualitative plot of the variation of the stable
and unstable 5-cycles with the parameters when the trajectory
of deformation passes through the bifurcation point 0TM of1,5
codimension 2.

S_x (P) and xS+(P) correspond to the stable 5-
cycles, and x(P) corresponds to the unstable 5-
cycle. When approaching OFld the solutions1,5
s_ x(P) become closer and thenx (P), xSc+(P) and

they combine in the point OFld and form the1,5
single stable f-cycle, which is dependent on P
uninterruptedly. The solution x.(P) is nonrough at
the point OFld and, if we change the trajectory of1,5
deformation in such a way that it does not pass
through OFld then x.(P) falls into two isolated1,5
solutions.

3. CONCLUSIONS

1. In the present paper we have established the
domains of the modes of periodic and chaotic
oscillations in the plane of parameters using
numerical as well as analytical approaches.
Two types of the domains of cycles stability:
1-Ik,j, 1-I/wallw, k- 1,2,... were determined. The
structure of sets IIk,j, IIkswalw and their proper-
ties in whole have been studied.

2. It was shown that the motions, determined on

the sets IIk,j, depend smoothly on the param-
eters. While moving along the parameters
continuously within the limits of IIk,j, the
transition from some stable cycles to other
cycles occurs softly through a sequence of direct

and reverse period-doubling bifurcations,
whereas in IIcwallw hysteretic transitions are

possible.
3. While intersecting the boundaries of Hk,j., which

correspond to the parameters of hard occur-
rence of stable cycles, catastrophic transitions
from one stable motion to another or cata-
strophic chaotization are possible. But such
transitions are not hysteretic.

4. The sets IIk,j intersect non-emptily. Some of the
regions II,j. have intersections with the do-
mains where chaotic oscillations are realized,
and that is why a great variety of bifurcation
transitions is possible.
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