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Based on the renormalization group approach developed by Kuznetsov and Pikovsky
(Phys. Lett., A140, 1989, 166) several types of scaling are discussed, which can be
observed in a neighborhood of Feigenbaum’s critical point at small amplitudes of the
driving. The type of scaling behavior depends on a structure of binary representation
of the frequency parameter: F-scaling (Feigenbaum’s) for finite binary fractions, P- and
Q-scaling (periodic and quasiperiodic) for periodic binary fractions, and S-scaling
(statistical) for non-periodic binary fractions. All types of scaling are illustrated by
parameter-plane diagrams for the rescaled Lyapunov exponent.
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1. INTRODUCTION

It is known that many dissipative nonlinear
systems of different nature demonstrate the onset
of chaos via a period-doubling bifurcation
cascade. According to the concept of universality
suggested by Feigenbaum [1,2], details of this
behavior for the whole class of systems may be
described quantitatively using the simplest repre-
sentative of the class, say, the logistic map.
From the universality intrinsic to an indi-

vidual system one can conclude that complex

constructions, which use such systems as build-
ing blocks, should demonstrate universal proper-
ties too. Moreover, they could be studied with the
use of models built on the basis of the logistic
maps.
As a particular example, let us turn to period-

doubling systems driven by external periodic force.
According to the above discussion, one can use
the forced logistic map to study many aspects of
dynamics near the onset of chaos in these systems.
The logistic map contains a unique control
parameter, so, to account for the external force
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we introduce a modulation of this parameter and
write

2
Xn+l A + e cos(2rrnw + qS) xn. (1)

Here c, w, and q5 designate, respectively, the
amplitude, frequency, and initial phase of the
external force. Index n is interpreted as discrete
time.
The periodically forced logistic map was studied

extensively by many authors [3-9]. There are two
essentially different cases: the first, when the fre-
quency parameter w is rational, i.e., a period of
the forcing contains an integer number of time
steps, and the second, when w is irrational, and
one should speak about quasiperiodic rather than
periodic driving. In the last case torus doubling
bifurcations occur instead of the usual period-
doubling [3, 4, 10-12], and a possibility of such
nontrivial behavior as strange nonchaotic attrac-
tor in the intermediate region between order and
chaos has been reported [13, 12].

Universal properties, which should be regarded
as a generalization of those of Feigenbaum, can be
expected for small amplitudes e and for values of
A close to the accumulation point of the period-
doubling bifurcations in the unforced system,
%. 1.40115518902. We will refer to the point
(A A, c=0) as the Feigenbaum critical point.
Renormalization group (RG) analysis appropriate
for a neighborhood of this point in the presence of
driving was discussed by Arneodo [6], Argoul et al.
[’7], Kuznetsov [8] and Kuznetsov and Pikovsky
[9].

In this paper the scaling properties of the
parameter space for the forced logistic map near
the Feigenbaum critical point are studied. We
closely follow the RG analysis of Ref. [9] with
a few modifications. To illustrate scaling we use
parameter-plane charts of Lyapunov exponent
distributions. We present a sketch of classification
for possible types of scaling in dependence on the
mathematical nature of the frequency parameter
w. The simplest one is the usual Feigenbaum
scaling (F-scaling), observed for w being equal to

a multiple of 2 -k. For other rational values of w
the structures in the parameter space near the cri-
tical point either reproduce themselves in smaller
scales after several steps of doubling (P-scaling),
or behave quasiperiodically (Q-scaling). If the
frequency parameter w is a typical irrational
number, the parameter space structure at subse-
quent levels of magnification evolves chaotically.
However, such a structure may be characterized
by some statistically averaged scaling constant
(S-scaling).

In continuous-time autonomous period-
doubling systems the dynamics under external driv-
ing is more complicated because of presence of
additional variable, the phase measured along the
trajectory. This class of systems has to be studied
separately. Due to the universality following from
the RG arguments, the same regularities are

expected for other systems-maps and non-auton-
omous (time-periodic) flow systems.

In Section 2 we recall content of the RG
analysis of the forced one-dimensional maps. In
Section 3 we discuss and illustrate types of scaling,
which occur for rational values of the frequency
parameter. In Section 4 statistical scaling in-
trinsic to a case of irrational frequency is con-
sidered. Section 5 contains conclusions and general
discussion.

2. RENORMALIZATION GROUP
ANALYSIS

Idea of the RG approach consists in considering
a sequence of evolution operators, corresponding
to larger and larger time intervals, each of which
is expressed via one or more previous operators.
Constructing each next operator in this sequence
we use redefined scale (scales) of dynamical
variable (variables) to ensure somewhat reason-
able limit behavior of the operator sequence.
Usually, this is the case at the border to chaos,
and we say that the values of parameters of the
original system correspond to a kind of critical
point.
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Let us write the one-dimensional forced map in
a form

Xn+l f(Xn) + AA. h(xn)
+ [Z0(x,)exp(w, + +) + ..1,

(2)

where c.c. stands for the complex conjugate. Here
f(x), ho(x), and Zo(x) are smooth functions, f(x) is
supposed to correspond to the critical point of the
period-doubling accumulation, while the term
AA. ho(x) describes deviation from the criticality.
The map (1) is, of course, a particular case of (2)
withf(x) + AA. ho(x) A x2 (At. + AA) x2, and
Z0(x)--1/2. Let us apply the map (2) twice to
express xn + 2 in terms of xn. Parameters c and 7 are
regarded as small, so we consider only linear
terms. Then the result will be

Xn+2 f(f(Xn)
+ a,. [ho(x.)f’(f(x.)) +
+ {cei[Zo(xn)f’(f(Xn))

+ Zo(f(x,,))exp(iw)] + c.c.} (3)

Following Refs. [1,2], instead of x we introduce a
rescaled variable

X cx2, (4)

where c 2.502907 is Feigenbaum’s constant.
Note the redefinition of discrete time, which is
of principal importance (index n in the left part of
(4) versus 2n in the right part). The result of the
variable change may be rewritten in a form ana-
logous to (2), but with new functions fl, Z1, and
new frequency parameter wl:

x.+ A (x.) +/x. h (x.)
+ [eZ, (X)exp(iw,n + ic/5) + c.c.],

where

A (x) .f(f(x/.) ),
h, (x) .[ho(X)f’ (f(x) + hoO(x) )],
Z (X) o IZo (X)f’ (f(X) + Zo (f(X) exp (iwl)],

wl 2w (mod 1).

(6)

The new evolution operator defined by a set
{f,h,Z,w1} describes the evolution over a
doubled time interval. It is expressed via the pre-
vious operator by Eqs. (6), which are just the RG
equations. Now the same transformation may be
applied to operator (5), and then again and again,
to obtain recursively a sequence of the evolution
operators {f,hk, Zk, w} for time intervals 2k,
k-- 2, 3,....

According to Refs. [1,2], the sequence of func-
tions f converges to the universal function g(X)
obeying the functional equation

g(X) og(g(X/oe)). (7)

The sequence of h asymptotically behaves as

5h(X), where h(X) is an eigenfunction, and
5-4.669201 is an eigenvalue obtained from the
equation

Sh(X) oe[h(X)g’(g(X)) + h(g(X))]. (8)

Both Eqs. (7) and (8) were derived and solved by
Feigenbaum, and they correspond to the part of
the problem that relates to the unforced system.
For the forced map, we can write a set of

equations describing the asymptotic behavior of
the evolution operators under subsequent RG
transformations as follows:

(9)

Observe that the equation for Z, in contrast to the
equation for h, is not invariant with respect to a
shift of the index k ("the renormalization time"):
This is a functional equation with a variable
coefficient exp(iwk). The dependence of this coeffi-
cient on the renormalization time appears due to
evolution of the renormalized frequency parameter
W according to the third Eq. (6), which is the well-
known Bernoulli shift map. Hence, the character of
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this evolution is determined by the binary repre-
sentation of the initial condition w w0.

If w0 is rational, then it is either a finite binary
fraction, or a fraction having infinite periodic tail.

If the binary code is finite and contains m digits,
then after m steps of the RG transformation we
arrive to the fixed point wk --- 0. At subsequent steps
the equation for Z accepts the same form as the
equation for h, and asymptotic behavior ofthe solu-
tion will be Zko(5h(X). So, the influence of small
periodic force will be equivalent simply to a shift of
the control parameter A from the critical point.

In the case of w represented by an infinite binary
fraction of period m, the dependence of the coeffi-
cient in the equation will be periodic too. Then,
like in Floquet theory, one can consider eigen-
values and eigenfunctions defined over the period.
This means that they should correspond to multi-
ple RG transformation, containing rn steps of the
doubling procedure (6).
At last, if w is a typical irrational number, the

binary representation will be a random sequence of
symbols 0 and 1. In such a case there is no possi-
bility to express the asymptotic solution simply in
terms of eigenfunctions and eigenvalues, but we

can introduce an analog of the Lyapunov ex-

ponent, which is an averaged characteristic of
growth for the solution Z.

3. RATIONAL FREQUENCIES: SCALING
OF F, P, AND Q TYPE

Let us discuss in more detail the scaling properties
of the parameter space of the forced logistic map
in the case of a rational frequency parameter w.
As we have already explained, the case of a finite

binary fraction is rather trivial: After some num-
ber of steps of the RG procedure the asymptotic
behavior of the components h and Z will be iden-
tical (up to a constant coefficient), so the evolution
operator looks like

Xn+l g(Xn) + (AA + co)" (5h(Xn). (10)

The form of this expression depends only on a
combination C (AA+ cc)k. If we take a special

value of C, corresponding to a period-doubling
bifurcation, then in the k-th evolution operator
(10) the bifurcation will occur at (AA+ ce) C-.
This yields a set of bifurcation lines in the param-
eter plane (A,e) accumulated to the Feigenbaum
critical line (AA + ce) 0.
Arrangement of the parameter plane typical for

such a case is illustrated in Figure a by a diagram
for the Lyapunov exponent A A(A, e). The value
of A has been computed at each pixel and coded
by gray tones. Only regions corresponding to the
first period doublings are of somewhat complex
form. In smaller vicinity of the critical point the
lines of period-doubling bifurcations are parallel
and exhibit convergence to the limit critical line
according to the usual Feigenbaum’s law. This is
what we call scaling ofF type-a typical picture of
Feigenbaum’s codimension transition embedded
into the two-parameter space.
Now we come to the next, more interesting situa-

tion, when the frequency w, although rational,
is represented by an infinite binary fraction. Due
to the rationality, the binary fraction must contain
a periodic tail of some period rn. In this case the
dynamics of the renormalized frequencies wk after
a number of initial iterations of the RG trans-
formation also becomes periodic, with the same
period m. To exploit this periodicity we consider
the m-fold RG transformation (6): This means
that instead of the usual doubling in a course of
the procedure we increase the original time inter-

val by a factor 2m. Under subsequent application
of this transformation the evolution operators will
behave as

Xn+ g(Xn) + AA. (smh(Xn)
+ [cvZ0(Xn)exp(iw,n + iO) + c.c.], (11)

where the eigenfunction Z0(X), eigenvalue v, and
constant w, obey the set of equations

Zm(X)  Zo(X), WO Wm W,,

Z+I(X) cIZ(X)g(g’(X)) + Z(g(X))exp(iw)],

w+l=2w (mod 1), k=0,1,2,...,rn-1.

(12)
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(a)

(c)

FIGURE Charts of the Lyapunov exponent distributions on the parameter plane (c, ) of the periodically driven logistic map (1)
for w=1/8 (a), w= 1/3 (b), and on the plane (A=ecosqS, B=esinqS) at /=,. for w= 1/7 (c). Gray tones from dark to white
correspond to Lyapunov exponent values A from minus infinity to zero, and black designates positive A (chaos). Enlargement of
small fragments of the pictures illustrates scaling of F-type (a), P-type (b) and Q-type (c). For diagram (a) factors of the enlargement
along both coordinate axes are equal to the Feigenbaum constant (5---4.6692; for diagram (b) they are 52 and v(1/3)=58.96,
respectively, along the horizontal and vertical axes; for diagram (c) the factors are Iv(1/7)1-296.27. The magnification is
accompanied by a redefinition of the gray-scale coding rule to outline self-similarity of the Lyapunov exponent plots.

The eigenvalues can be computed from these
equations in a straightforward way. Namely, being
given a high precision, finite-order polynomial
representation of the Feigenbaum universal func-
tion g(X)- 1- 1.527633x2+0.104815x4+...(see
[1,2]), we construct an analogous representation

for functions Z, initially with arbitrarily coeffi-
cients. Then, a computer program operated with
sets of the polynomial coefficients is applied to
produce multiple subsequent iterations of the
Eqs. (12). After a sufficient number of the itera-
tions only a dominant eigenvector survive, and the
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corresponding eigenvalue may be estimated as the
ratio v- Z(k+ 1)m (O)/Zkm (0). In Table I we present
data for frequencies w represented by rationals
corresponding to levels 0-6 of the Farey-Stern-
Brocot tree [14]. Only data for 0 _< w _< 1/2 are

given because the other half of the unit interval is
arranged symmetrically.

Observe that for some values of w the eigenva-
lues appear to be real; for others they are complex.
In these two situations we will discuss scaling
properties of the parameter plane separately.

Let us turn first to the case of real eigenvalue v;
in particular, this is true for w- 1/3 and 1/5. Recall
that m designates a period of the binary fraction w.
The evolution operator defined for 2km iterations

of the original map is represented asymptotically
by Eq. (11) and depends on the combinations AA.
(5mk and evk. So, given some definite dynamical
regime at AA and e we will observe a regime of
the same nature at the point (AA/5m, e/v), but with
the characteristic time scale multiplied by 2m.
All quantitative characteristics of the dynamics
for both regimes are expressed one via another
in more or less trivial manner. Particularly, the
Lyapunov exponent at the second point will differ
by the factor 2 -m.
We conclude that the small-scale arrangement

of a neighborhood of the critical point exhibits
self-similarity. Suppose we have a picture of the
parameter plane and increase the resolution step

TABLE Eigenvalues of Eq. (12) and corresponding RGLE in dependence on the frequency parameter w

w w, binary fraction arg L Scaling

0 0.(0) 4.669201 0
1/7 0.(001) 296.2785 0.549255
1/6 0.0(01) 58.96056 0

2/11 0.0(1011101000) 1.28748.108 0
1/5 0.(0011) 2306.061 0
3/14 0.0(011) 296.2785 0.549255
2/9 0.(001110) 56319.15 0
3/13 0.(001110110001) 4.96957- 109 0
1/4 0.01 4.669201 0
4/15 0.(0100) 1195.90 -0.74177
3/11 0.(0100010111) 1.28748.108 0
5/18 0.0(100011) 56319.15 0
2/7 0.(010) 296.279 0.549255
5/17 0.(01001011) 6667570 0
3/10 0.0(1001) 2306.06 0
4/13 0.(010011101100) 4.96957.109 0
1/3 0.(01) 58.96056 0
5/14 0.0( 101) 296.279 0.549255
4/11 0.0(1011101000) 1.28748.108 0
7/19 0.0(101111001010000110) 2.97689.10TM 0
3/8 0.011 4.669201 0
8/21 0.(011000) 47425.2 --0.442733
5/13 0.0(110001001110) 4.96957.109 0
7/18 0.(011000) 56319.15 0
2/5 0.(0110) 2306.061 0
7/17 0.0(11010010) 6667570 0
5/12 0.01 (10) 58.96056 0
8/19 0.(011010111100101000) 2.97689. 1014 0
3/7 0.(011) 296.279 0.549255
7/16 0.111 4.669201 0
4/9 0.(011100) 56319.15 0
5/11 0.0(1110100010) 1.28748. 108 0
1/2 0.1 4.669201 0

1.54098
1.89710
2.03843
1.86734
1.93582
1.89710
1.82313
1.86055
1.54099
1.77166
86734
82313
89710
96410
93582
86055

2.03843
1.89710
1.86734
1.85150
1.54099
1.79449
1.86055
1.82313
1.93582
1.96410
2.03843
1.85150
1.89710
1.54099
1.82313
1.86734
1.54099

F

P
P
P
Q
P
P
F
Q
P
P
Q
P
P
P
P
Q
P
P
F
Q
P
P
P
P
P
P
Q
F
P
P
F
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by step, each step revealing the structure asso-

ciated with the next time-scale doubling. Then the
observed picture will repeat itself after each m step
of the procedure.

This type of behavior we call P-scaling
and illustrate it in Figure lb. Note the re-

production of the structure under enlargement
by a factor 5 along horizontal axis and by v

along the vertical one. (If the periodic tail of
the binary representation of w starts from the
M-th digit, this self-similarity is revealed only
in sufficiently small scales: deflection from the
critical point AA should be of order 5-M or

less.)
We must add now that the configuration in the

parameter plane (A, c) depends also on the phase
constant qS. However, this dependence remains the
same at all levels of the small-scale resolution
because the eigenvalue v is real.
When the property of scaling is stated, we can

use it to reconstruct the parameter space structure
near the critical point on an arbitrarily large
number of levels of resolution.

Let us turn to diagrams of the parameter plane
(AA, e) in double logarithmic scale. In such a plot
the parameter change AA--+AA/(5m, e-+/v cor-
responds to a shift along the two coordinate axes

by mln 5 and lnv, respectively. Accounting scaling,
we may perform the computations for one definite
interval of AA for a set of w values visited in a

course of the RG transformation, and then to

arrange the pictures in the double logarithmic plot
to cover the desirable range of A and e. In Figure 2
we present such collages. Now the gray tones code
the Lyapunov exponent normalized by factor

IAI, where /=log 20.4498. This rule is
selected on a basis of the well known scaling
relation for the Lyapunov exponent near the
Feigenbaum’ s critical point [1,2, 6, 7]. It ensures
uniformity of the gray scale coding in the whole
range of parameters including arbitrarily small
vicinity below the critical value of A. Compare
simple form of the chaos border in a case of F-
scaling (a) with periodic structure of the border
characteristic for P-scaling (b).

Another type of small-scale parameter plane
structure near the Feigenbaum critical point arises

when the eigenvalue v is complex, for example, at

w 1/7 or 1/15. In such case one should rewrite
Eq. (11) as

Xn+l g(Xn) @//(rnkh(Xn)
+ L l l z0(x )exp(iw,n / i@k) / c.c.J,

qSk- q5 + karg v. (13)

The numerically calculated arguments of the
complex eigenvalues are found not to be in
rational ratios with 2r. This means that the value
of phase qSk is different at each new step k. Hence,
there is no exact repetition of the evolution

operators, and, consequently, no exact reproduc-
tion of forms in the parameter plane under sub-
sequent enlargement in the neighborhood of the
critical point. These forms behave quasiperiodi-
cally, and we call it Q-scaling. To give evidence of
absence of the periodicity we present in Figure 2c
a collage in double logarithmic scale. It is con-

structed from a set of plots computed separately
in a similar way as it has been done above in the
context of P-scaling.

In fact, what is observed is a two-dimensional
cross-section of a higher-dimensional periodic
structure. Indeed, let us consider the extended
three-dimensional parameter space (A, A, B), where
A e cosqS, B- c sinqS. Let us have some dynamical
regime for given AA, A and B. Now take another
point in the parameter space, namely, (AA/6m,At,
Bt), where A and B are defined via A +iBt=
(A + iB)/v. The scale change of AA is accompanied
by a rotation by an angle (-argv) in (A,B)-plane.
Then the form of the evolution operator at
the (k/ 1)-th step coincides with that at the old
point at the k-th step, and, so, the regimes at

both the points will be of the same nature. In
Figure c we present an illustration. A cross section
of the three-dimensional parameter space by the
plane A-A is shown with gray-scale coding of
the Lyapunov exponent distribution. Observe
that two pictures representing the structure in



(a)

(b)

(c)

(d)

FIGURE 2 Collages built from sequences of plots in double logarithmic scale (lgl,-,,l, lgc). Gray tones from dark to white
designate values of the rescaled Lyapunov exponent A/Ik- k,,I v, T 0.4498, from minus infinity to zero, black designates positive A
(chaos). Observe the simple self-similarity of the picture at small scales in the case of F-scaling, w 1/8 (a), periodic repetition of the
forms- P-scaling, w=1/3 (b), quasiperiodic evolution of the forms Q-scaling, w= 1/7 (c), and chaotic evolution for randomly
chosen w (see (18)) S-scaling (d).
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different scales coincide up to rotation through a
definite angle.

4. RENORMALIZATION GROUP
LYAPUNOV EXPONENT,
IRRATIONAL FREQUENCIES
AND CHAOTIC SCALING

Now we are going to consider the case of irrational
frequency parameter. Let us suppose that it is
chosen by chance on the unit interval. With
probability 1, the binary representation for such
a number will be a random sequence of symbols 0
and 1. Subsequent iterations of the Bernoulli map
for the frequency parameter will be chaotic, so, the
relation for Zk (see (12)) becomes a functional
equation with random coefficient. Nevertheless, in
average, the solution will grow exponentially in
dependence on the renormalization time k. We
may introduce a quantitative characteristic of this
growth as

L- lim_ln IZ(0)l. (14)

This reminds the definition of the Lyapunov expo-
nent, and we call this value the renormalization
group Lyapunov exponent (RGLE). (It should not
be confused with usual Lyapunov exponent, which
we designate A.)
To reveal the meaning of the RGLE we note

that under subsequent iterations of the RG
transformation the term proportional to c in the
evolution operator grows, in average, as ekc, while
the term proportional to AA grows as k. If we
wish to realize a dynamical regime approximately
similar to the original one, we have to rescale AA
as 5 -k and c as e -kL. In the double logarithmic
scale it corresponds to a shift along two coordinate
axes by kln 6 and kL, respectively. Approximately
similar regimes will be placed, hence, along the
straight line of the slope L/ln& In particular, the
border of chaos, which is of rather complicated
form, goes in average along such a straight line.

Obviously, the RGLE may be defined for
rational frequencies too. In particular, for the case
of F-scaling, we have simply

L ln5 1.54098... (15)

In the cases of P- and Q-scaling the RGLE is easily
found to be

L In lul/m, (16)

where v is the dominant eigenvalue, and m is the
period of the periodic tail for the binary fraction w.

In Table I, besides the eigenvalues v, we have
presented also the corresponding RGLE. Note
that they differ one from another not so much
as the eigenvalues. From Figure 2 one can see that
the border of chaos indeed follows approximately
the line of slope L/ln&
For a typical irrational w, randomly chosen from

the unit interval, the value of L must be a universal
constant. According to estimates of Refs. [8, 9],

L----- 1.82 and L/ln5 - 1.18. (17)

In Figure 2d we present a collage similar to
those previously discussed, but for irrational
frequency parameter chosen as a random binary
fraction, namely,

w 0.101001111000101111001001100

111111100111101... (18)

It may be seen that the forms do not repeat each
other, so there is no scaling in usual meaning.
However, it is possible yet to speak about approxi-
mate repetition and scaling in a weaker, statistical
sense ("renormalization chaos"). The border of
chaos runs along the straight line of slope 1.18, as
predicted.

5. CONCLUSION

In this paper we have discussed scaling properties
of the parameter space for the forced logistic map
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near Feigenbaum’s critical point, which follow
from the RG analysis [9]. The character of scaling
behavior depends on the mathematical nature of
the frequency parameter w, namely, on the struc-
ture of its binary representation. We distinguish
several types of scaling:

usual Feigenbaum scaling (F-scaling) for w

being a multiple of 2 -k"

periodic scaling (P-scaling), when the structures
in the parameter plane reproduce themselves in
smaller scales after several steps of the scale
change;
quasiperiodic scaling (Q-scaling), when the two-
dimensional parameter plane structure appears
to be quasiperiodic, although it may be con-

sidered as the cross-section of a periodic three-
dimensional structure;
statistical scaling (S-scaling), which takes place
for typical irrational numbers, when the forms
of structures in the parameter plane are repro-
duced only approximately, being similar in a
statistical sense.

As follows from the RG analysis, the forced
logistic map may be regarded as a representative of
the universality class, which contains numerous

period doubling systems under external periodic or

quasiperiodic force. All of them are expected to

manifest the same regularities as the logistic map.
It would be interesting to observe these regularities
in numerical and experimental studies on higher
dimensional systems.
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