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We construct simple macrodynamic models with policy lag by means of mixed
difference and differential equations, and study how lags in policy response affect the
macroeconomic (in)stability. Local dynamics of the prototype model are studied
analytically, and the global dynamics of the prototype and the extended models are
studied by means of numerical simulations. We show that the government can stabilize
the intrinsically unstable economy if the policy lag is sufficiently short, but the system
becomes locally unstable when the policy lag is too long. We also show the existence of
cycles and complex behavior in some range of the policy lag.
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1. INTRODUCTION

In a classical paper, Friedman (1948) expressed the
view that the government’s stabilization policy
may be in fact destabilizing because of the
existence of the lags in policy response. However,
his argument is rather intuitive and his conclusion
is not derived ana.lytically from the formal model
of macroeconomic interdependency. Without
doubt, the analysis of policy lag is important from
the practical as well as theoretical point of view.
Nevertheless, even now there exist only a few

formal analyses of policy lag. In this paper, we
construct simple macrodynamic models with
policy lag and study how lags in policy response
affect the macroeconomic (in)stability. In the next
section, we formulate formal models with policy
lag by means of nonlinear mixed difference and
differential equations (delay differential equa-
tions). Prototype model is reduced to the system
with only one variable, real national income (Y).
Extended version of the model is expressed by the
system with two variables, real national income

(Y) and real capital stock (K). In section three, we

*Corresponding author, e-mail: asada@tamacc.chuo-u.ac.jp
e-mail: hyoshida@ngu.ac.jp
Phillips (1957); Asada (1991) and Yoshida (1999) are examples of such works.
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study the local dynamics of the prototype model
analytically, and the conditions for local stability,
local instability, and cyclical movement around the
equilibrium point are detected by means of
the linearization method. In section four, we study
the global dynamics of prototype and extended
models by using the numerical simulations. We
show that the government can stabilize the
intrinsically unstable economy if the policy lag is

sufficiently short, but the system becomes locally
unstable when the policy lag is too long. We also
show the existence of cycles and complex behavior
in some range of the policy lag and other
parameters.

2. THE MODEL

Basic system of equations in our model is
expressed as follows.2

(t)-a[C(t)+I(t)+G(t)-Y(t)]; a>O (1)

c(t) c(Y(t)- r(t))+ Co; 0<c<l, C0>0
(2)

l(t) I(Y(t),K(t),r(t));Ir OI/OY > O,

Ik OI/Og < O, Ir OI/Or < O

T(t)---r(t)-To; 0<-<1, To>0 (4)

M/p L(Y(t), r(t)); Ly OL/OY > O,
(5)

Lr OL/Or < 0

M/p const. > 0 (6)

G(t) Go /f(Y(t- 0)); f’(Y(t- 0))< 0; (7)

where Y= real national income, C= real private
consumption expenditure, I= real private invest-
ment expenditure, G= real government expendi-
ture, T= real income tax, K= real capital stock,
r nominal rate of interest, M= nominal money

supply, p price level, time period, 0 policy
lag.

Equation (1) is the quantity adjustment process
in the goods market. This equation implies that the
real output fluctuates according as the excess
demand in the goods market is positive or

negative. Equations (2) through (5) are consump-
tion function, investment function, income tax
function, and equilibrium condition for money
market respectively. Eq. (6) implies that the real
money supply (M/p) is fixed, which is merely a

simplifying assumption. Eq. (7) is the govern-
ment’s policy function with the delay in policy
response to national income.

Solving Eq. (5) with respect to r, we have the
following ’LM equation’.

r(t) r(Y(t)); rr r’(r) -Ly/Lr > 0 (8)

Substituting Eq. (4) into Eq. (2), and substituting
Eq. (8) into Eq. (3), we obtain the following
expressions.

C(t) c(1 -)Y(t) + Co + cTo (9)

I(t) I(r(t),K(t),r(r(t)))

Substituting Eqs. (7), (9), and.(10) into Eq. (1), we
have

g(t) a[I(Y(t),K(t),r(Y(t)))
{1 c(1 -)}Y(t) + Co

+ cTo + Go +f(Y(t- 0))].

This is single dynamical equation with two
endogenous variables (Y, K). Therefore, this sys-
tem is not yet complete. We need one more

equation to close the model. In this paper, we
shall consider two ways to close the model.

First, let us consider the ’short run’ model in the
sense that the real capital stock is fixed, i.e.,

K K. (12)

This formulation is essentially based on Asada (1991), and it is the dynamic version of rather standard Keynesian macroeconomic
model.
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Substituting Eq. (12) into Eq. (l 1), we obtain the
following prototype model.

Y(t) c[I(Y(t),R, r(Y(t)))
-{1-c(1--)}Y(t)
+ Co + cTo + Go +f(Y(t- 0))]

=F(r(t),r(t-O))

which is a simple type of mixed difference and
differential equation (delay differential equation).
We shall call the model which is summarized in the
system ($1) ’model 1’.
An extended version of our model is the

’intermediate run’ model in which the capital
stock becomes an endogenous variable. In this
case, we allow for the fact that the investment
contributes to change the level of capital stock,
so that we replace Eq. (12) with the following
equation.

(t) l(Y(t),K(t),r(Y(t))) (3)

This model, which we call ’model 2’, is reduced to
the following system of equations.

(i)

Y(t) [I(Y(t),K(t),r(Y(t)))
{1 c(1 -)}Y(t) + Co + cTo + Go

+f(Y(t 0))] F1 (Y(t), Y(t O),K(t))
(ii)

k(t) I(Y(t),K(t),r(Y(t))) F2(Y(t),K(t)) ($2)

’Model 2’ is more akin to Kaldor (1940)’s business
cycle theory than ’model 1’ in spirit. We shall
study ’model 1’ analytically and numerically, but
we shall study ’model 2’ only numerically.

3. LOCAL DYNAMICS OF ’MODEL 1’" A
MATHEMATICAL ANALYSIS

In this section, we shall investigate the local
dynamics of ’model 1’ analytically by means of
the linear approximation method.

Let us assume that there exists an equilibrium
solution Y* > 0 of the system ($1) which satisfies

F(Y*,Y*) c[I(Y*,2,r(Y*)) {1 c(1 -)}Y*
4- Co 4- cTo 4- Go 4-f(Y*)] 0.4 (14)

Expanding the system (S) in a Taylor series
around the equilibrium point Y* and neglecting
the terms of higher order than the first order, we
have the following linear approximation of the
system (S).

19(t) cay(t) fly(t- 0); (15)

where a [O(t)/OY(t)]*/c I, +Ir) {1 c

(1 -)}, /3--[O}’(t)/OY(t-O)]*/c--f’(Y*)>O,
y(t)- Y(t)- Y*, and y(t-O)- Y(t-O)- y,.5 Now,
let us assume

ASSUMPTION A

a I, + Ir, {1 c(1 -)} > 0.

Assumption A1 implies that the propensity to
invest (I}) at the equilibrium point is considerably
large, which is a basic assumption of Kaldor
(1940)’s business cycle theory.
We can study the local dynamics of the system

(S) in the vicinity of the equilibrium point by
studying the dynamics of the linearized system
(15). Substituting y(t) y(O)ept into Eq. (15), we
obtain the following ’characteristic equation’.

r(p) p- ca + ofle-’ 0 (16)

3As for the mathematics of such an equation, see Bellman and Cooke (1963); Kuang (1993) and Gandolfo (1993) Chap. 27. There
are a few examples of the applications of such an equation in economic literatures. See, among others, Kalecki (1935); Steindl (1952);
Johansen (1959); Lange (1969); Mackey (1989); Asada (1991, 1994); Ioannides and Taub (1992); Asea and Zak (1999), and Yoshida
(1999).
4We need not assume that Y* is unique. In fact, we shall present a numerical example with multiple equilibria in Section 4.
5The asterisk (*) shows that the values are evaluated at the equilibrium point.
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or equivalently,

(1/0)A ca 4- c/3e- 0 (17)

where A=_Op. If all the roots of Eq. (17) have
negative real parts, the equilibrium point of the
system ($1) is locally stable. On the other hand, it
becomes locally unstable if at least one root of Eq.
(17) has positive real part. 6 First, let us consider
the characteristics of the real roots of Eq. (17).

3.1. Characteristics of the Real Roots7

We can rewrite Eq. (17) as

=_ -( + =_ (18)

We can see from Figure that Eq. (17) has one

positive real root and one negative real root when
0</3<a.

Figure 2 illustrates the case of/3 a. In this case,
A=0 is always one of the roots of Eq. (18). In

addition, (i) we have one negative real root when
0 < 1/oa and/3 a, and (ii) we have one positive
real root when 0 > 1lena and/3 a.

The case of/3 > a is illustrated in Figure 3. This
figure shows that

(i) Eq. (17) has two negative real roots when 0 is
sufficiently small,

(ii) it has two positive real roots when 0 is
sufficiently large, and

(iii) it has no real root at the intermediate values
of 0.

Next, we shall consider the mathematical con-
dition for the existence of the multiple real roots of
Eq. (17). This condition is given by

f(A) =--e-h=-(1/0) U(/X) (19)

or equivalently,

e" 0c/3. (20)

A

FIGURE1 (0</3<a).

6As for the proof, see, for example, Bellman and Cooke (1963) Chap. 11. As for the significance of the characteristic root approach
to the mixed difference and differential equations, see Frisch and Holme (1935) and James and Belz (1938).

Subsections 3.1 and 3.2 are essentially based on Asada (1997) Chap. 2.
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FIGURE 2 (/3--- a).

fl (/), f2()

a

0< 0< 02< 0a<""

FIGURE 3 (/3 > a).
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This condition is also equivalent to

A log (0c3). (21)

Substituting Eqs. (20) and (21) into Eq. (18), we
have

(1/0c/3) -(1/0c/3) log (0c/3) + a/ (22)

or equivalently,

log (Ocfl) Oca 1. (23)

Solving Eq. (23) with respect to /3, we obtain the
following expression.

/3 (1/0)eOca-1 99(0);
’(0)- {(Oca-- 1)/(y02}eOca-1

> 0 = 0 1/ca;

(1/aa) a, i (0)
We can summarize the results of the
analysis as in Figure 4 and Table I.

(24)
above

3.2. Local Stability/Instability Analysis

Table I shows that the equilibrium point of the
system (S1) is locally unstable in the region A U B.
But, it is necessary to obtain the information on

the complex roots to study the local stability/
instability in the region CUD. For this pur-
pose, we can utilize the following math-
ematical result which is due to Hayes (1950) to

get full information on the local stability of the
system.

LEMMA (Hayes’ theorem) All the roots of
H(A) =pc +q- Ae O, where p and q are real,
have negative real parts if and only if

(i) p < 1, and
(ii) p < q < v/(x.2 +p2),

where x* is the root of x=p tan x such that
0 < x < 7r. Ifp O, we take x* 7r/2.

Proof See Hayes (1950) or Bellman and Cooke
(1963) Chap. 13.

1

A

0 a

=(0)

C

FIGURE 4 Four regions.

In fact, we can show that Eq. (17) has infinite number of complex roots.
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TABLE Classification of the regions

Characteristics of
Region the real roots

A one positive,
one negative

B two positive
C no real root
D two negative

where x* is the solution of g(x)=(1/Oca)x=
tan x _= g2(x) such that 0 < x < rv.

We can illustrate the solution x* as in Figure 5
when the inequality (26) (i) is satisfied. 9 Further-
more, we can see from Figure 5 that tan x*
becomes a decreasing function of 0. Therefore, we

have

We can rewrite the characteristic Eq. (17) as
d d(tanx*) < 0 (27)
dO (x*/Oc) a

dO

H(A) Ooae + (-Ooefl) Ae -peA + q Ae 0

(25)
We can derive the following relationships from

Eq. (26) (iii) and Eq. (27). 1

where p-Oaa and q--Ooefl. It follows from
Lemma that we can express a set of the necessary
and sufficient conditions for local stability as
follows.

(i) 0 < 1/aa,

(ii) a </3,

(iii) /3 < x/{ (x*/0c)2 + a2 } b(0), (26)

(i) b’(0)

(ii)

(x* /Ooz) d

v/{(x,/O0)2 + a2 } dO
(x*/O0) < O,

il (0) il av/( tan 2X* nt- 1) nt-OO

(iii) lim b(O)- lim
0--+ 1/oza 0--+

av/(tan 2X* + 1) a.

(28)

gl(X

tan x

0

1gz(x)=tanx g(x)= OaaXg(x) ,Z/,[/

’T
x,

x tan x

x

FIGURE 5 Solution of gl(x)=g2(x).

9Note that d(tan x)/dx= +tan20= when x=0, and the inequality (26)(i) implies that 1/Ooza > 1.
lWe can see from Figure 5 that limo_o tan x*= +oc and lim0_,l/a tan x*= 0.
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Now, let us define the ’stable region’ S as

2S- {(/3,0)ER++ All the roots of Eq. (17)

have negative real parts}
2_-- {(/3, 0) ER++IO < 1,/ca, a </3 < b(0)}. (29)

We can express the region S as in Figure 6
(boundary points are excluded). We can summar-
ize the result of the above analysis as the following
proposition.

PROPOSITION

(i) If 0 > 1lena, the equilibrium point of the system
($1) becomes locally unstable irrespective of the
value of > O.

(ii) If 0 < 0 < 1lena, the equilibrium point of the
system (S1) is locally stable for/3 (a,b(O)) and
it is locally unstable for [0, a) U (b(0), + oc),
where (0) is a continuous decreasing func-
tion of 0 and limo_,ob(O) + oc and
limo__, 1/ca)(O) a.

1

FIGURE 6 Stable region.

3.3. Hopf-bifurcation and the Existence
of the Closed Orbits

Proposition says that (i) too long delay in policy
response must fail to stabilize the economy, (ii)
too strong policy as well as too weak policy is
unsuccessful to stabilize the economy even if the
policy lag (0) is relatively short, and (iii) the
stabilization policy is successful at the intermediate
range of the strength of the policy response (/3) if 0
is relatively short. These analytical results seem to
suggest that the pure cyclical movements will occur
at the intermediate values of/3 when 0 is not too
large. 11 Now, we shall prove mathematically that
this conjecture is in fact correct. We can make use
of the following version of the Hopf-bifurcation
theorem. 12

LEMMA 2 Let 5c(t) F(x(t),x(t- 0); c), x R,
c R be a mixed difference and differential equation
with a parameter c. Suppose that the following
properties are satisfied.

(i) This equation has smooth curve of equilibria
F(x*, x*; c) O.

(ii) The characteristic equation F(p) p- a-
be-P=O has a pair of pure imaginary roots

p(c0),/(c0) and no other root with zero real
part, where a =_ (OF/Ox(t))* and b (OF/
Ox(t-O))* are partial derivatives of F which
are evaluated at (x*(Co), Co) with the parameter

(iii) d{Re p(c)}/de 0 at c Co, where Re p(c) is the
real part of p

Then, there exists a continuous function c(’),) with
c(0)=c0, and for all sufficiently small values of
70 there exists a continuous .family of non-

constant periodic solutions x(t,’,/) for the above
dynamical equation, which collapses to the equili-
brium point x* (Co) as "y - O. The period of the cycle

1 This phenomenon may be called the ’policy cycle’.
12 Usually the Hopf-bifurcation theorem is applied to the system of differential equations (cf. Gandolfo (1996) Chap. 25 and Asada

(1997) Chap. 3). However, this theorem is also applicable to the mixed difference and differential equation (cf. Rustichini (1989) and
Kuang (1993) Chap. 2). Mackey (1989) and Asea and Zak (1999) are examples of the application of the Hopf-bifurcation theorem to
the mixed difference and differential equation in economic theory.



MACRODYNAMICS WITH POLICY LAG 289

is close to 27r/Im p(co), where Im p(co) is the
imaginary part of p (Co).

Now, it is clear from the analyses in Sections 3.1
and 3.2 that there exists the value 0 E [0, 1/ca) such
that the following property (P) is satisfied (see
Fig. 7).

(P) For all 0 E (0, 1/ca),

2z {(, 0) /++1 (0)} c c (30)

Proof See Appendix.

COROLLARY OF PROPOSITION 2 There exist some

non-constant periodic solutions of the system ($1) at

some parameter values > 0 which are sufficiently
close to o (0o). The period of the cycle is close
to 27r/Zo > 200.

Proof It directly follows from Lemma 2 and
Proposition 2.

where C is given by Figure 4, i.e.,

2 13c {(, 0) ++1; > (0)}. (3)

PROPOSiTiON 2 Let us fix the parameter
00 (0, 1lena) and select/ as a bifurcation para.m-
eter. Then, at /30=(00) the Hopf-bifurcation
occurs. In other words, at o, the characteristic
Eq. (16) has a pair ofpure imaginary roots p(o)
zoi,(/3o) -zoi(i =- x/Zl,z0 - 0) and no other
root with zero real part, and d{Re p()}/d/ > 0 at

/3=/3o. Furthermore, Zo < 7r/Oo so that we have
27r/Im p(/3o)-- 27r/Zo > 200.

4. NUMERICAL SIMULATIONS

In the previous section, we presented some

analytical results on the local dynamics of ’model
I’ around the equilibrium point. However, we
must resort to the study of the numerical simula-
tions to get some information on the global
dynamics of the system. Furthermore, it is difficult
to get even the information on the local dynamics
by means of analytical approach if we consider
more complicated system such as ’model 2’. In this

section, we shall present some results of the global
dynamics of ’model 1’ and ’model 2’ by means of
numerical simulations.

1

00

I o(0)

=0(0)

FIGURE 7 Hopf-bifurcation curve (Z).

’3The functions /(0) and (0) are given in Eq. (26)(iii) and (24) respectively.
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4.1. Simulation of ’Model 1’

First, let us study ’model 1’ by adopting the
following specifications of the functional forms
and the parameter values.

{1 c(1 r)}Y(t) + Co
+ cTo + Go +/3(400 Y(t- 0))]

F(Y(t), Y(t 0)) (32)

I(Y(t),,r(Y(t)))
4OO

+ 9 exp[-0.1(Y(t) 400)]
+0.2-40 (33)

c(1-r)-0.5, Co+cTo+Go-200, a-0.9

(34)

Eq. (33) is an example of the Kaldorian S-shaped
investment function.

Figure 8 is the phase diagram of this system in
(Y(t), Y(t+0.3)) plane in the case of/3=6.6 and
0-0.2.14 Because of the S-shaped investment
function, there exist three equilibrium points
and three limit cycles. One equilibrium point

(Y* 400) is unstable and two equilibrium points
(Y**< 400, Y*** >400) are locally stable. One
(large) limit cycle is stable and two (small) limit
cycles are unstable. Figure 9(a) and (b) are the
bifurcation diagrams of this system with respect
to the parameter corresponding to the initial
conditions Y(0)= 420 and Y(0): 390 respectively.
These figures show that we have different bifurca-
tion diagrams corresponding to different initial
conditions because of the multiple equilibria, is

In other words, this system has pathdependent
characteristics. Figure 10 is the bifurcation dia-
gram with respect to the policy lag (0) when/3 is
fixed at/3 5.6.

4.2. Simulation of ’Model 2’

Next, we shall consider the numerical study of
’model 2’ by using the following data.

’(t) a[I(Y(t),K(t),r(Y(t)))
(1 c(1 n-)}Y(t) + Co + cTo + Go

+/3(400 Y(t- 0))]
F1 (Y(t), Y(t O),K(t)) (35)

;(t)--I(Y(t),K(t),r(r(t)))--F2(Y(t),K(t)) (36)

Y(t+0.3)

490

470

450

430

410

390

370

350 370 390 410 430 450 470
y

490

FIGURE 8 One stable limit cycle and two unstable limit cycles (/3 6.6, 0-0.2).

t4We adopted the approximation of Eq. (32) by means of ’Euler’s algorithm’, i.e., Y(t+At)= Y(t)+(At)F(Y(t), Y(t-O)),
At----0.01.
SIn Figure 9, 0 is fixed at 0-0.2 and only the maximum and minimum values of Y(t) are plotted.
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Y
1200

900

600

300
0

Y
600

2 3 4 5 6

(a) Y(0) 420

500

400

300

0 2 3 4 5 6 7

(b) Y(0)=390

FIGURE 9 Bifurcation diagrams of Y when 0=0.2 (parameter:/3).

Y
570

500

400

300

250 0
0.i 0.2 0.27

FIGURE 10 Bifurcation diagrams of Y when/3 5.6 (param-
eter’0).

(37)

400
I(Y(t), K(t), r(Y(t)))

+ 12exp[-0.1(Y(t) 400)]
-0.01vt 0.5X(t)

C(1--T)--0.5, Co + cTo + Go 200, --0.9

Figure 11 shows that behavior of this system
can be chaotic for some parameter values. This
figure illustrates a strange attractor which is

produced when/3-4.1 and 0-0.3.16 Figure 12(a)
is the bifurcation diagram with respect to
the parameter /3 when 0 is fixed at 0-0.3.
Figure 12(b) is the same bifurcation diagram
at the interval 4.0</3<4.2. These figures
show that the limit cycles are produced for
both of sufficiently small values and sufficiently
large values of /3. At the intermediate values
of /3, the equilibrium point becomes stable,
and at the vicinity of the parameter value
/3-4.1, the behavior of the system becomes
complex. Finally, Figure 13 is the bifurcation
diagram with respect to the policy lag (0) when , is
fixed at/3-4.1.

16 Also in this case, we adopted Euler’s algorithm for the approximation of equations (35) and (36), i.e.,
Y(t+ At)= Y(t)+(At)FI(Y(t), Y(t-O),K(t)), K(t+ At)=K(t)+(At)F2(Y(t),K(t)), At=0.01. Contrary to the case of ’model 1’ this
system has only one equilibrium point Y*, K* (400, 61.1).
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Y
500

,...,,,:"

400

300
50 250

FIGURE 11 Strange attractor (/3=4.1, 0-0.3).

K
450

550
Y

250
2.0 3.0 4.0 4.5

(a) 2.0B4.5

550

250

Y

4.0 4.1 4.2

(b) 4.0<= fi G4.2

FIGURE 12 Bifurcation diagrams of Y when 0=0.3 (parameter:/3).
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550

400

250

Y

0.26 0.27 0.28 0.29 0.30 02

FIGURE 13 Bifurcation diagram of Y when/3= 4.1 (parameter: 0).

5. CONCLUDING REMARKS

In this paper, we formulated simple macrodynamic
models with policy lag by means of mixed
difference and differential equations, and investi-
gated the effects of the policy lag on the dynamic
behavior of the system analytically and numeri-
cally. We found that the too long lag must fail to

stabilize the system, and in some situations cyclical
movement occurs. Furthermore, we found that
even the chaotic movement is possible for some

parameter values in a model with variable capital
stock. Nevertheless, it is not correct to say that the
government’s stabilization policy is entirely in-
effective to stabilize the intrinsically unstable
economy. In fact, the government can stabilize
the economy when the policy lag is relatively short.
In this sense, macroeconomic stabilization policy
does not lose its significance even in the system
with lags in policy response.
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APPENDIX

Proof of Proposition 2 Substituting p w + zi

(i- x/C-l) into the characteristic Eq. (16) in the
text, we have

(w ca) + c3e-we:zi + zi O. (A1)

Rewriting Eq. (A1) by using the following ’Euler’s
formula’

e + ix COS X -1-- sin x, (A2)

we have the following expression.

w ca + c/3e-w cos Oz + zk z c3e-w sin Oz]i O.

(A3)

From Eq. (A3) we obtain the following nonlinear
system of equations with two unknowns, w and z.

w ca c/3e-w cos Oz (A4a)

z c/3e-w sin Oz (A4b)
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We can solve this system of equations by adopting
the method by Frisch and Holme (1935). 17 We can
rewrite Eq. (A4b) as

ew (0o sin Oz)/Oz (AS)

or equivalently,

w [log 03 + log sin Oz/Oz)]/O. (A6)

Substituting Eqs. (A4b) and (A6) into Eq. (A4a),
we obtain the following equation with only
unknown, z.

(Oz) (Oz/ tan Oz) + log sin Oz/Oz)
Ooa log 0a/3 E(O, ) (A7)

Let us fix (0o,/30)- (0o, (0o))c C. In the region C
there is no real root, and in this region we have

/3 > (0), which implies that

E(Oo, 30) Ooom log 00c/30 < 1. (A8)

In this case, we obtain Figure A1. This figure
shows that there exist the solutions zh such that

2hr/O < zh < (2h + 1)7/0 (A9)

for all hE {0, 1,2,3,...}. In other words, there
exist infinite number of solutions. Substituting zh
into Eq. (A6), we have the solutions for w, i.e.,

wh { log 00c3 + log sinOoz/Ooz)}/Oo,

hE {0, 1,2, 3,...}.
(A10)

Eq. (A10) shows that w is the increasing function
of sin Ooze/Ooze. This implies that

W0 W1 W2 W3 (All)

in other words, the smallest imaginary part z0
corresponds to the largest real part w0 among the
solutions (see Fig. A2).

It is clear that (when 0 is fixed at 00) at the values

of/3 which are slightly smaller than/3o, the system
is locally stable so that the real parts of all roots
are negative, and at the values of /3 which are

larger than 30, the system is locally unstable so
that the real part of at least one root is positive.
This implies that w0=0 and dwo/d/3>O are
satisfied at /3=/30, which means that the point

(0z)

E(Oo,Bo) ,,"
Zo 00 +

FIGURE A1 Solution of z.

Ooz2

e2

17As for the method which is adopted here, see also Asada (1994).
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sin 0 z

-i

FIGURE A2 sin Oozh/Oozh (h 0, 1,2 ).

/3=/30 is in fact the Hopf-bifurcation point.
Furthermore, from Eq. (A9) we have

0 < z0 < r/00 (A12)

so that the inequality

27r/Imp(/30) 27r/zo > 20o (A13)

is satisfied. Q.E.D.
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