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It is commonly found in the fixed-step numerical integration of nonlinear differential
equations that the size of the integration step is opposite related to the numerical
stability of the scheme and to the speed of computation. We present a procedure that
establishes a criterion to select the largest possible step size before the onset of chaotic
numerical instabilities, based upon the observation that computational chaos does not
occur in a smooth, continuous way, but rather abruptly, as detected by examining the
largest Lyapunov exponent as a function of the step size. For completeness,
examination of the bifurcation diagrams with the step reveals the complexity imposed
by the algorithmic discretization, showing the robustness of a scheme to numerical
instabilities, illustrated here for explicit and implicit Euler schemes. An example of
numerical suppression of chaos is also provided.
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I. INTRODUCTION

The numerical solutions of a nonlinear set of
differential equations are discrete approximations
of closed form solutions, which are usually
difficult, impractical or impossible to obtain. The
reliability of such approximations will depend
largely on the integration algorithm and, accord-
ingly, the first effort is devoted to the search of an
accurate scheme. The stability of the algorithm
employed may become the next important issue,
followed, finally, by considerations regarding the
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computational efficiency in terms of computa-
tional speed. The unbalance of these three aspects
of a numerical scheme is mostly due in that the
interest in a system with a complex or even chaotic
dynamics is more of an object of study than a
matter of practical importance. Notoriously, con-
siderations on speed have been traditionally
relegated, as long as the scheme is accurate and
stable. These requirements are inconsistent with
the dynamical nature of the systems being solved,
and many problems may demand a fast as possible
computation of trajectories, because they are
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occurring in real time and/or because a simulation
is being modeled by a large number of equations, a
situation often found in engineering. A direct way
to explore the balance between accuracy, stability
and speed is by means of numerical integration
with conventional fixed-step schemes, in terms,
specifically, of the size of the integration step.
Typically, very "small" step-sizes usually guaran-
tee the fidelity of the solution (even though too
small steps may have the opposite effect [1]), but to
the expense of longer calculations.
Widely used fixed-step schemes are the second

and fourth order Runge-Kutta, and the explicit
and implicit Euler schemes. In the implementation
of these schemes a continuous system of differ-
ential equations is typically mapped into a discrete
representation of difference equations, which
hopefully will share most of the properties of its
continuous counterpart. Therefore, the diver-
gences produced by this algorithmic discretization
will be regarded as numerical instabilities, and the
algorithm is said to be numerical unstable.

This work presents a procedure to estimate the
largest possible integration step size of elementary
standard fixed-step algorithms, before the onset of
certain numerically instabilities arising in non-
linear systems of differential equations. The
instabilities considered here are the numerically
induction or suppression of chaos, because the
nonlinear nature of the system being integrated
allows the possibility of masking a chaotic or

periodic regime. Therefore, the method reported is
based upon a standard evaluation of the largest
Lyapunov exponent [2,3], on account of the
observation that this number changes distinctively
with the step size.
To this end we worked some numerical exam-

ples of physical importance known to have a limit
cycle, and/or a chaotic attractor, depending on the
parameter settings. Algorithmic discretization is

performed employing a standard forward Euler
scheme. This elementary scheme is important
because despite its simplicity, most sophisticated
methods are based on simple Euler routines and
used to solve very complex problems, such as

parabolic and hyperbolic partial differential equa-
tions [4]. Moreover, in many other numerous cases
combination with/from Euler schemes (like several
forms of predictor-corrector schemes) are com-
monly used to solve systems of ordinary differ-
ential equations. For comparison purposes, a
nonstandard backward Euler scheme is employed.
In Section II are presented the examples with the
Euler discretization. Section III presents results
illustrating the procedure and a discussion on the
relation of certain numerical effects to computa-
tional errors. Finally, in Section IV are given some
conclusion remarks.

II. NUMERICAL EXAMPLES

We employ three well-known examples of non-
linear oscillators, namely, the Lewis oscillator, the
Van der Pol oscillator and the two-well Dulling
oscillator. The two first systems undergo a Hopf
bifurcation, where a fixed point is losing stability
giving birth to a limit cycle; this type of bifurcation
is analytical found by examination of the eigen-
values when varying a system parameter. Likewise,
the forced Duffing oscillator is able to display a

periodic cyclic behavior in addition to a well
defined chaotic dynamics. The equations for these
systems are as follows:

(i) The Lewis oscillator is given by,

dt
y (la)

-x + e(1 Ix[)Y (lb)
dt

with e being a parameter.
(ii) The Van der Pol oscillator is given by,

d-- y (2a)- -x + ey- ex2y (2b)

where e is the parameter of the system.
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(iii) The driven two-well Duffing oscillator is given
by,

d2x
dt2

ax + bx + C--z- F cos cot
dt

(3)

In system form, the Duffing system is
represented by,

dt
dz
dt

m=y

ax bx + ey + F cos (z) (4)

where x is position, y is velocity and z and F
are the phase and amplitude respectively of
the periodic driving force. Parameters values
were taken as a 1, b 1, c-0.5, co= and
initial conditions x0 Y0 z0 0.01.

We employ the Duffing oscillator to illustrate
the algorithmic discretization. According to a
standard forward Euler scheme (SFE), the first
order differential equations (4) are mapped into
difference equations given by,

x+ x / hy (5a)

y/+l y/(1 hc)+ h(axl bx3 + Fcos (z/))
(5b)

z+ z + hco (5c)

where the derivative terms were modeled following
the basic calculus definitions xk+ xk/h y, with
the step size h--tg+l-t being the integration
time interval; x, yk and z are the discretized
variables. The discretization yields an iterative
structure (5) for the variables x+ 1, y+ and z+ l,

which is implemented straightforwardly.
Analogously, it was constructed a backward

Euler discrete representation for the Duffing
oscillator (4). Backward schemes are, in general,
based on the implicit representations Xk+a= Xg+
hf(Xk+ 1, tk+ 1), in contrast to the explicit

constructions as in Eqs. (5). In addition, a
nonstandard Euler construction is simply made
by replacing nonlinear terms by nonlocal repre-
sentations, such as yZ--+y+ly, or y3__+y2
(Yk+ +Yk)/2, etc. The derivative denominator,
given as h, can be replaced by a more elaborated
function ff(h) of the integration step; in this work
it was simply kept as (h)=h. For details on
nonstandard techniques, see Ref. [5].
An example of a nonstandard backward con-

struction is given by the Van der Pol equations (2);
here, it was only considered the replacement
Y --+ Yg- instead of y - Yk in the nonlinear term
of Eq. (2b), yielding the iterative equation,

Yk+I Yk (1 + he heXk+) hxk+ (6)

It will become manifest in the following discussion
of results that these apparently "innocuous"
changes provided great flexibility to the numerical
integration, by reducing considerably many of the
numerical instabilities founded in the standard
counterparts, including the usually more robust
implicit versions.

III. RESULTS AND DISCUSSION

Numerical instabilities are regarded as those
dissimilarities between the dynamical behavior of
the continuous system and the numerical solution
produced by a given scheme. In fixed-step schemes
there are a variety of numerical instabilities: the
most common, by far, is the threshold instability,
where beyond a critical step size, numerical
solutions began to differ [5]; creation instabilities,
because of the appearance of spurious additional
points and typically found in higher order
integrator [6]; chaotic instabilities [7-11, 14], were
chaotic output is generated by the numerical
discretization; numerical overflow, highly undesir-
able because of the dramatic outbreak of the
computation when a critical value of the step size
is reached [9]; and computational alterations of
Hopf bifurcations [10].
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In the present work we examine the onset of
unwanted chaotic/periodic behavior, which will be
monitored by the evaluation of the Lyapunov
characteristic exponents (LCE). These Lyapunov
exponents provide a powerful dynamical diagnos-
tic of the chaotic status of a system, as they are
related to the exponentially divergence or conver-
gence of nearby orbits in phase space [2, 3].
At this point is convenient to mention that in

one or higher dimensional maps is enough to have
one positive Lyapunov exponent for chaos, while
for continuous dissipative system chaos is present
for one or more positive Lyapunov exponents,
provided we have no less than a 3-dimensional
system [1- 3]. Therefore, the presence of a chaotic
attractor, that is, one LCE > 0 in the 2-dimen-
sional Lewis (1) or Van der Pol (2) oscillators, will
be considered a numerical breaking resulting from
a discretization effect.

III.1. Detection of Numerical Chaos

The 2-D Lewis oscillator provides a typical
example of computational chaos. The real part
of the eigenvalues A [1,3] of the continuous sys-
tem (1) is given by Re[A] =e/2. The system has a
fixed point at the origin which is stable for e < 0
and a stable limit cycle for e > 0. That means
that the computed largest LCE for this system
should be negative for e < 0 and equal to zero for
>0.

Figure shows the largest Lyapunov exponent
for the Lewis oscillator (1) as a function of the step
size when integrated according to a standard
forward Euler algorithm ( =0.1 and initial con-
ditions x0=Y0=0.01). This figure shows unequi-
vocally that up to a step size h*0.45 the
computed LCE remains approximately zero, as
expected for the limit cycle. Beyond that value
begins an increasingly intricate dynamics, due to
an assortment of numerically induced instabilities,
that includes numerous n-periodicity windows,
chaotic regions and finally a breakdown at
h 1.178 due to numerical overflow. This complex
dynamics is easily visualized with the help of the

corresponding bifurcation diagram, which com-

plements the information provided by the LCE vs.
h plot, see Figure 1.

Figure shows the start of instabilities, clearly
indicated by evident changes in the LCEs for
h > h*. Furthermore, is important to notice that
this step size h* is more than a mark signal to limit
computations; these limiting steps values were
found to be usually larger than the "typical"
setting h 0.0001 0.01. This means that if the
step size could be safely increased by one or more
orders of magnitude, there will be a substantial
reduction on the CPU time, which may be a
crucial factor of practical importance.
The Duffing oscillator offers an interesting

example of deterministic chaos appearing in
systems with a nonlinear potential. In the present
example, the amplitude F of the driving force will
determine a behavior ranging from periodic, at
F <_ 0.1, to fully chaotic, as in F--0.4. In Figure 2
are plotted the largest Lyapunov characteristic
exponent as a function of the step size for various
values of F. For F-0.1 the computed LCEs are
approximately zero, as expected for the limit cycle.
At a step size h* 0.16 the LCEs becomes positive,
explicitly indicating the onset of computational
chaos. Again, a complex dynamics sets in and
finally, at h-0.391, numerical overflow stops
further calculation.
A chaotic dynamics is expected for F--0.4 and,

in agreement, the computed LCEs are positive.
However, for h > 0.03, the shape of the computed
attractor in phase space becomes different, and a
more broaden and/or "scattered" chaotic attractor
takes place as the step size approaches the value
that overflows calculations. In fact, the scattered
appearance of the attractor appears to be a

frequent feature of numerically induced chaos, as
observed in other systems in our work [9-11]. This
increased degree of chaoticity (reflected by an
increase of the LCEs) in which a chaotic attractor
is changing its shape, may be caused by the
occurrence of an internal crisis [12] forced by
round-off and/or truncation errors [1, 4, 13, 14].
For the same reason, a (internal) crisis may
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FIGURE Largest Lyapunov characteristic exponent and bifurcation plots as a function of the step size of the standard forward
Euler scheme used to integrate the Lewis oscillator (1) for e --0.1. The onset of numerical instabilities is marked distinctively about
h* 0.45.
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FIGURE 2 Largest Lyapunov characteristic exponent as a function of the step size of the standard forward Euler scheme used to
integrate the two-well Duffing oscillator (3) for various values of the amplitude of the driving force. For F=0.1 (where a limit cycle is
expected) is clearly observed the numerical induction of chaos at h* 0.16. In contrast, for F=0.7 (where a chaotic regime is
expected) it is shown a numerically suppression of chaos at h* 0.05, followed at h** 0.14 by a numerical transition periodicity/
chaos similar to that for F--0.1.

produce other type of attractors, like the very
pronounced quasiperiodic regime shown in
Figure 2 for the valley in F= 0.4.

All these dynamical behavior could be conven-
tionally understood as derived from the new

system created by the algorithmic discretization,
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with the "parameter" h as our control parameter.
But more interesting is the connection of this
dynamics with the ideas of shadowing [15, 16].
Formally, the critical step h* that signals the onset
of the new dynamics, could be related to the
maximum step value defined in the shadowing
theories of Refs. [15-17]. According to these
ideas, a true or suitable solution fi of a dynamical
system du/dt- F(u) follows closely or "shadows" a
computed solution, or more specifically, a pseudo-
orbit Pn, which is the computed solution together
with the computational errors (round-off and local
errors). In single-step and multi-step discretiza-
tion, the numerical method will reproduce, within
a tolerance, the true orbit for h _< [17], such that
It(nh)-pn] <_ ChI’:, where C and are positive
constants and K is the order of the numerical
method. In the context of the present work, clearly

h*. For h > h*, the computed solutions are no
longer reliable and a complete new dynamics takes
place, as shown distinctively in Figures and 2.
Therefore, this h* represents a limit between (ap-
proximately) continuous and discrete dynamics.

III.2. The Numerical Suppression of Chaos

This procedure of examining the LCEs as a
function of the step size also helps in the detection
of the numerical suppression of a chaotic dy-
namics. And like the numerical induction of chaos
on the previous examples, the actual suppression
occurs in a well-located range of step-sizes. This
situation is illustrated in Figure 2 for the thick
curve F 0.7. Here is possible to see that for a
step size lower than h* 0.05, the computed LCEs
are positive, as expected, but thereafter they
sharply become negative for an extended range
of steps sizes, where a numerically induced
periodicity takes place [13, 18]. And again, towards
the values of numerical overflow (h 0.168 for
F= 0.7), a numerical crisis occurs, and the
characteristic scattered numerical chaotic attractor
takes place. In Figure 3 is shown the bifurcation
diagrams for the Duffing oscillator for F E [0.1, 1]
(eliminating 5000 first points), for h 0.001 and
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FIGURE 3 Bifurcation plots as a function of the amplitude of
the driving force for the Dutting oscillator (3), integrated with a
standard forward Euler scheme with step size h 0.001 and
h 0.147. Arrows indicate the suppression of chaos by the
advance of a numerically induced periodic front.

h 0.147. Notice the initial region for F < 0.3 at
the left of the bifurcation plots, where the expected
periodic behavior is sustained. From then on, the
rough borders in Figure 3 indicate chaotic regions
and the subsequent smooth borders corresponds
to periodic regions. The effect of the computa-
tional suppression of chaos in the Euler scheme
is strikingly clear in these plots: in the upper plot,
at F 0.7 the system is well within a chaotic
region, which becomes artificially periodic with h
increasing, because a periodic front beginning at
F 0.82 literally swallows the chaotic region up
to F 0.490 (so then F 0.4 still remains chaotic)
as indicated by the arrows pointing to the left.
From Figure 3, is observed that at F the

Duffing system will be unaffected by the advance
of this numerical periodicity and will remain in the
periodic region for the range of step-sizes con-

sidered, including for the value h 0.147, very
close to the step that overflows F= 1. In
consequence, the LCEs for F 1, are approxi-
mately zero, see the gray curve in Figure 2.
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111.3. Nonstandard Scheme

In Figure 4 is shown both the LCEs vs. h and the
bifurcations plots for the Van de Pol system (2);
integration is done according to the nonstandard
implicit scheme (6) described in Section II, for
e 0.1 and initial conditions x0 y0 0.01. The
same integration carried out with a forward Euler
standard algorithm produced a much more com-
plex bifurcation diagram (similar to Fig. 1) than
that shown in Figure 4 for the nonstandard
backward Euler scheme. Compared to the bifurca-
tion plots obtained for an explicit SFE, Figure 4
shows the improvements of the nonstandard
scheme, because the limit cycle is sustained for
larger values of the step, and the chaotic and
bifurcations regions are much more reduced,
preserving a more uniform dynamics. In the
integration of the Van der Pol system with
the nonstandard backward Euler scheme (6), the
deviation from the limit cycle was observed at
about h* 1.20 (omitting a small region at
h 0.9) compared to h* 0.3 for the standard

tu -0,2

-0.4
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0 0.26 0.6 O.TS 1.26 1.6 1.7
h

FIGURE 4 Largest Lyapunov characteristic exponent and
bifurcation plots as a function of the step size of the
nonstandard backward Euler scheme used to integrate the
Van der Pol oscillator (2) for 0.1. Expected limit cycle and a
mostly instability-free dynamics is sustained for an extended
range of steps, about h* 1.20.

explicit version. And the nonstandard implicit
scheme overflows the calculations at a step
h 1.71, which is comparatively much larger than
h 0.73, of the SFE integrator. Although is well
known that implicit schemes are usually more
robust [1], superior results were obtained with the
simple nonlocal replacement already mentioned.
In our work, the effect of nonstandard replace-
ments was almost always to enhance stability and
to allow larger steps before the onset of instabil-
ities, which usually were greatly reduced or even

eliminated, see Refs. [5, 7, 9, 19]. Accordingly, this
example confirms such properties by means of the
LCEs vs. (h) and the bifurcation plots technique,
see Figure 4.

III.4. Effect of the Computational Errors

Although there is an increasing evidence of the
incidence of numerical chaotic instabilities due to
computational errors [10, 13, 14, 18, 19], the exact
mechanisms are still poorly understood. In part,
because it is not well defined the build-up of such
errors, and how the interaction model/scheme
affects the numerical output [9]. The relation of
computational errors (mainly truncation and
round-off) to the step size has been regarded
mainly as deterministic, like 0(hK), where K is an
integer, usually the order of the scheme [1,4];
however, some evidence points out to a chaotic
buildup of errors with the step size [10], probably a
more consistent approach when dealing with
nonlinear dynamics.
The algorithmic discretization of a continuous

nonlinear system introduces the step size as an
extra parameter, affecting the dynamic of the
"equivalent" difference system, which has now the
dynamical properties of a nonlinear map, see Eqs.
(5) and (6). For certain values of the h parameter,
the spurious apparent chaos is presumably trig-
gered by round-off errors in a mechanism similar
to sensitivity to initial conditions. From this per-
spective, it may be possible to explain the manifest
crisis events, that is, collisions with saddle-type
objects being artificially generated and producing
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the many bifurcations shown in the bifurcation
plots of Figures and 4.

In the other hand, the forced periodicity ob-
served in Figure 2 for the Duffing system with F
0.7, as well as the numerous periodic windows
shown in the bifurcation plots of Figures and 4,
could be explained in terms of the finite arithmetic
precision of the computation, which forces chaotic
trajectories to became periodic [18]. This could be
because the truncation and round-off errors ex-
cludes the possibility of an aperiodic (infinite
digits) dynamical evolution and after some time
of computing, the numerical trajectories may begin
to repeat themselves.

In short, the combined effects of computational
errors, enhanced by larger values of our parameter
h in the discrete system, could affect the computed
trajectories by washing out the correlation (shad-
owing) with a "true" trajectory after some time.

IV. CONCLUDING REMARKS

The manifest changes experienced by the LCEs
with the step size provide explicit information
about the numerical effects over periodic and
chaotic dynamics. Construction of the LCEs vs. h
plots allows establishing a range of workable
values for step-sizes before instabilities, and shows
a characteristic way to undergo numerical chaos.
To complement the LCEs plots, the examina-

tion of the bifurcation diagrams facilitate the
visualization of numerically induced instabilities as
a function of the step size and thus help to assess
the robustness and/or quality of the integration
scheme.

In summary, the procedure outlined in this work
provides a simple and direct criterion for the
selection of much-larger-than-usual step-sizes of
commonly used fixed step algorithms, under the
premises of minimum instabilities for the shortest
computation time possible.
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