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1. INTRODUCTION

Recently, there are more and more authors to
study the various properties of solutions for lattice
dynamical systems, mainly are coupled map
lattices and lattice ordinary differential equations,
see [1-5] and the references therein. Lattice
systems can be found in many fields of applica-
tions, for example, in chemical reaction theory,
image processing and pattern recognition. Lattice
systems have their own forms, in some cases, they
arise in the spatially discretizations of partial
differential equations.

In this paper, we shall consider the asymptotic
behavior of solutions for the following second
order lattice dynamical system:

li -+- Oili (Ui-1 2Ui + Ui+l) + )Ui +f(ui) gi,

iEZ (1)

where a and A is a positive constants, gi is given,
f(s) _,jm=o ajs 2+1 with a > 0, j-0, 1,... ,m, is a
polynomial. By introducing a new weight inner
product and norm in the space g2= {u (ui)iz

2 }, prove the existence oflui R, -i Z Ui < we
a global attractor of system (1). The idea of
using such a technique is due to Zhou [6] and
Bates 1, the later considered the existence of a
global attractor for a first order lattice dynamical
system.

Equation (1) can be regarded as a discrete
analogue of the following continuous damped
semi-linear wave equation:

utt + oeut Uxx + Au +f(u) g. (2)

The global attractor and its dimension to Eq.
(2) in bounded domain and unbounded
domain have been studied in Hilbert spaces by

Peter W. Bates, Kening Lu, Bixiang Wang, Attractors for lattice dynamical systems, Preprint, 1999.
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many people, see [6-12] and the references
therein.

This paper is organized as follows. In the second
section, we present the existence and uniqueness of
solutions for system (1). In Section 3, we prove the
uniformly boundedness of solutions. In Section 3,
we prove the existence of the global attractor.

2. EXISTENCE AND BOUNDEDNESS
OF SOLUTIONS

In this section, we consider the existence and
uniqueness of solutions for system (1) with initial
conditions:

li + Oiti (Ui-1 2Ui + Ui+I) .qt_ U +f(ui) gi,

ui(O) Ui,o, iti(0) Uli,0, E Z,

(3)

where a, A > 0, g-(gi)i6z andf(s) jm=oajs2j+l
with aj > 0,j= 0, 1,... ,m. For any u-(ui)iezE
define

(nu)i Ui+l Ui, (U)i Ui_l

(mH)i --(Ui-1 2Ui q- Ui+l ), Vi Z.

Denote by g2, g the spaces with the inner products
and norms in (4), respectively
g (g2, (.,.), II" II), then g2 and g are Hilbert
spaces. Let E g g2, endowed with the inner
product and norm as: for j (u(J), v(J)) ((ulJ)),
(ulJ)))iezEE, j--1,2,

(1, 2)E (u(1) U(2))A -Jr- (V(1) V(2))
Z[(Btt(1))i(Bu(2))i

(1) (2) (1) (2)+ AU Hi _qt_ Yi li J’

I111 (, ), v e x e2.

(5)

It is convenient to reduce system (3) as an
ordinary differential equation of first order in time
on E. With above notations, problem (3) can be
written as

/J+ait+Au+Au+f(u)=g, > O,
u(O) (Ui,o)i6 Z go, it(O)--" (Uli,O)iEZ

where u (ui)i z, f(u) ( f(ui))i z, g (gi)i z.
Let v it + eu, where e is chosen as

aA
>0, (7)e=a2 +4A

Then B,/, A are linear operators from g2 to g2 and
satisfy A BB B/.
For any two elements u (ui)i z, v (vi)i z
g2, define two bilinear forms as

(U, IO=EiEzUili, Ilull --(u,u)--]iEzlui]
(u, v) Wu,v) + ,X(u, v),
Ilull-(u,u)-Ilnull / Allull Ei z(lU/+l-ui[ / Alu/12)

(4)

then system (6) is equivalent to the following initial
value problem in Hilbert space E

qb + Cq F(q),

(0) (u0, v0) (u0, u0 + eu0)r, (8)

where - (u, v) r, v it + eu, F()- (0,
f(u)+g),

Obviously, the bilinear forms (.,.) and (.,.) in
(4) are both the inner products, moreover, the
norms I1"11 and I1"11 are equivalent each other
because

Allull 2 Ilull Z(lUi+l uil z + Aluil z)
iEz

< (4 + )llull =.

el -I
C= A + AI + e(e a)I (a e)l (9)

For any u (u)i e e2, luil Ilull,

) 1/2
II/(u) If(ui)l 2

iEZ

m

Ilull aillull,
j=O

(lO)
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thus, f maps g2 into g2, i.e., F maps E into itself.
Let B be a bounded set in E, j (u(J), v(J))-
((ulJ)), (vlJ)))iezEB, j= 1,2, similar to (10), there
exists L(ai, B) such that

Proof It is easy to check that

(Bu, v)=(u, Bv) and

(Au, v) (Bu, By), Vu, v e g2.

IIF(qgl) F(2)lle < Z(ai, n)llq91 992i1, and

thus, F() is locally Lipschitz from E to E. It
is easy to see that the solutions of problem (3)
is backward unique in time because if and
a are replaced by -t and -a, the Eq. (3) is
not changed. By the standard theory of
ordinary differential equations, we obtain the
existence and uniqueness of local solution o for
problem (8).

LEMMA If g (gi)i Z g2, then for any initial
data qo(0) (Uo, Vo)r E, there exists an unique local
solution q(t)-(u(t), v(t))r of (8) such that C
((- To, To), E) for some To > O. If To < + cx, then
limt-oli(t)lle- +.

From Lemma 3 below, it is obtained that the
local solution (t) of (8) exists globally, that is,
o CI(R, E), which implies that maps

s(t) vo) e

(u(t), v(t)) EE, t> 0 (11)

generates a continuous semigroup {S(t)}t > o on E,
where v(t) it(t) + eu(t).

But

ct ) O2E2
4(e-o-) --e-a A

Thus, the proof is completed.

We consider the boundedness of solutions
of (8). Assume that g Eg2. Let(t)

(u(t), v(t))r E be a solution of (8), where v(t)-
t) +
Taking the inner product (.,.)E of (8) with q(t),

we have

ld 2

2dt ]I]]E + (Cq, qo)E + (f(u),it) + e(f(u),u) (g, v).

(14)

By (12),

3. BOUNDEDNESS OF SOLUTIONS

LEMMA 2 For any qo (u, v)T E E,

where

(12)

o 2>_ o-I1,:,11 + llvll (15)

Write G(s) ff(r)dr jm__o(aj/(2j + 2))s 2j+2

then

(f(u), it) Zf(ui)it Z Z G(ui)
iEZ

(16)

cr (13)
V/o2 + 4A(a + v/a2 + 4A)

(f(u), U) f(ui)u G(.i)
iEZ iEZ

(17)
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and

2 Ct 2(g, v) _< IIg[[ + - Ilvll (8)

By putting (15) (18) into (14), we find

d [11112 + 2

/ [l[IE / 2 G(ui) <_ -Ilgll 2.
O

By Gronwall’s inequality,

I111 + 2Z G(u,)
iz

2 ] e-at<_ II(O)ll / 2Z a(uio)
iEZ

2 e-at/ IIg}l (1 ).
oo-

(19)

But

m

ZG(Uio) iZ aj 2j+2

E Z j=o
2j + 2 u io

_<f’(llu(O)ll). Ilu(O)ll =.
then,

11112 [11(0)112 + 2f’(llu(O)ll)l. Ilu(O)ll2]e-’
2 e-at)/ Ilg[I (1 (20)

From (20), for any initial data (0)= (u0, v0)rE E,
then the solution q)(t)=(u(t),v(t))r is bounded
for all E[0, +o), that is, the solution (t)
exists globally on [0,+ec), maps {S(t)t_>0}
defined by (11) form a semigroup on E.
Inequality (19) implies that the semigroup
{S(t)}t>_o possesses a bounded absorbing set
in E.

LEMMA 3 Ifg g2, then there exists a bounded ball
0 OF(O, ro), centered at 0 with radius ro, such
that for every bounded set B of E, there exists

T(B) >_ 0 such that

S(t)B C O, gt >_ T(B), (21)

where ro2 (2/ccr)llg[I 2.

Therefore, there exists a constant To _> 0 de-
pending on O such that

S(t)O c O, Vt >_ To. (22)

4. GLOBAL ATTRACTOR

Let H be a complete metric space and {S(t), > 0}
be a continuous semigroup on H.

DEFINITION A set X of H is called a global
attractor for the semigroup {S(t), >_ 0} if (i) X is

invariant set, i.e., S(t)X=X, gt >_ O. (ii) X is a

compact set. (iii) X attracts any bounded set of
H, i.e., for any bounded set BcH, d(S(t)B,X)-
SUpx e s(0 infy e xd(x, y)-+O as too.

To obtain the existence of a global attractor for
the semigroup {S(t)t >_ 0} associated with (8) on E.
We need prove the asymptotic compactness of
{s(t), > o}.

LEMMA 4 If g g2 and qo(0) (Uo, Vo) O, then

’v’r/> 0, there exists TO7) and K(rl) such that the
solution (t)=(oi)iez ((ui(t)), (vi(t)))i6z E of
problem (8), v(t) =/t(t) + eu(t), satisfies

2 12 2[li(t)[[ [l(Bu(t))i /A[ui(t)l
Iil >- K(r/) Iil >- k(r)

/ Ivi(t)l 2] <_ rl, Vt >_ T(rl),
(23)

where (Bu(t))i ui_b (t)- ui(t).

Proof Choosing a smooth function 0 E C(R+, R)
satisfies:

O(s) O, O_<s_< 1,
O<_O(s)<_l, <_s<_2,
O(s) 1, s >_ 2,

(24)
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then there exists a constant Co such that
IO’(s)l <_ Co for s 6 R+.

Let (t) (u(t), v(t)) (i)i z ((ui(t)), (vi
(t)))iz be a solution of (8), where v(t)=
it(t) + eu(t), i= (ui, vi), e is as in (7).

Let k be a fixed integer and set wi =0
(lil/k)ui, Z O(lil/k)vi, y (w, z) ((wi) (zi))i Z.

Taking the inner product (.,.)e of (8) with y, we
have

(b, y)e + (C, Y)e (F(q), y)e. (25)

It is possible to check that

dizO(li-lk)llqoill2E,(, Y)E 2 dt (26)

where

Ilqil12 -I(nu)il 2 + luil2 + [vii 2

lui/ nil + luil2 + Ivil, (27)

and

(C,y)e (Bu, Bw) (Bv, Bw) + /k(u, w)

,k(v, w)+ (Au, z)+/(u, z)

(28)

(Bu, Bw)(t)-/z { [0( Ii- II )
(Ui+l-Ui)tti+l+

(+ i)I
_> 4Cor

k - izO() ui)2

t >_ To,

(Bv’Bw) iz IO( li + ll

(re+ re)hie+

(nu’Bz) iz [o( li + ll ) (ui+k

--o(ik)(Ui+ bli)li]
(Bu’Bz) (Bv’Bw) i (o( li + ll

(b/i+l li bliVi+

10’(-i)1->-- k
iz

lUi+l li lili+l

> 4Cor
k

Vt>_To.

thus,

(C, y) _> 8Cor -. 0 rllillE /lvl2

Vt _> To. (29)

and

(F(q),y)e -(f(u),z) + (g,z)

(f(u), z) >_ - = 0 G(ui)

l- C iz O ( lilk ) G(bli), (30)

(g, z) _< -. 0 v/2 -+-
l/I-> k

(31)
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Putting inequalities (26), (29)-(31) into (25), we
obtain

d

8Cor 1- 2<
k +- gi.

c
Iil > k

Since g g2, then V > 0, there exists K(r/) such
that

8Cor g2 < 7, Vk > K07T-]-’- i--
C

Iil __> k

by Gronwall’s inequality,

where Mo If’ (ro)l. Taking

T() max To, To +-ln-(1 + 2M0)r02

then for > T() and k >_ K(r/), we have

Iil-> 2k
O"

(32)

which implies Lemma 4. The proof is completed.

LEMMA 5 If g g2, then the semigroup {S(t)) > o
is asymptotially compact in E, that is, if {gn}
is bounded in E and tn +cx3, then {S(tn)n} is

precompact in E.

Proof Let {qOn} C E g /?2 be bounded, as-
sume that IIqnllE r for some positive constant

r, n--1,2, By Lemma 3, there exists T such
that

S(t)n C O, Vt >_ Tr, (33)

where O is the absorbing set. By tn---+-k-a,
there exists Nl(r) such that tn >_ Tr if n >_ Nl(r),
thus,

S(tn)qOn C O, gn >_ N1 (r), (34)

Since E is a Hilbert space and by (34), there exists

oEE and a subsequence of {S(tn)n} (denoted
still by {S(tn)n}) such that

S(tn)qOn ---+ qo0 weakly in E. (35)

In what follows, the convergence here is a strong
one, i.e., V > 0, there exists N() such that

IlS(tn)qOn qOO[IE Zl, Vn >_ N(rl).

For r/> 0, by Lemma 4 and (33), there exist KI(f/),
T(r/) such that

2 < > T(T]),II(S(t)(S(Z))n)),ll_ -Iil-> gl (W)

By tn---+ +o, there exists N2(r, rl) such that

tn >_ Tr+ T(I) if n >_ N2(r, ), hence,

II(s(t,)qn)ill2
Iil >- g (W)

2II(S(t- Tr)S(Tr)qn)ill < -. (36)
Iil-> g (r)

Again, since o E, there exists K2(r/) such that

T]2ll(0)i[[2 8
Iil-> K2(W)

(37)

Let K(r/) max{K(), K2(rl)}, by (35),

((S(tn)qn)i)[i[ < K(l) --+ ((qO0)i)[il < K(r/)

strongly in Rr()+l x R2r()+1, n +oe,
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that is, there exists N3(r/) such that

II(S(tn)n)i- (o)ill Vn g3().
Iil-< g(w)

(38)

Setting N(n) max{N1(r), N2(r, 7), N3(r/)},
(36)-(38), then for n _> N(r/)

from

in the space g2 g2 with the usual inner product

andnorm. SinceSo(t)-R_S(t)R,R-( 1 0)1
is an isomorphism on 2 2 and {S(t)}t >_ o
possesses a global attractor 13 in E, the global
attractor of {So(t)}t > o in E is R_ 13, which implies
that {So(t))t>o possesses a global attractor in
2 because gxg2 and E have the same
elements and their norms are equivalent.

IIS(tn)qn 011
II(S(tn)qn)i- (0)il12e

Iil< K(W)

2+ ]l(S(tn)n)i--
Iil >

< -+ 2 (]]S(tn)n)ill2e I1(0)/11)
Iil > K(W)

The proof is completed.

As a direct consequence of Lemmas 3, 5 and
Theorem I. 1.1 of [8], we obtain the existence of a
global attractor for semigroup {S(t)}t >_ o.

TIEOREM Ifg E g, then the semigroup {S(t)} > o
associated with (8) possesses a global attractor fl
in E.

Remark Since the solutions of problem (8) are
backward unique in time, the invariance of the
global attractor 13 means

S(t)t5 f5 for ER. (39)

We can consider the mapping So(t)" (UO, UlO) T-’-+
(u(t),/t(t))r g2 g2 associated with problem (3)
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