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In this paper we consider a model of the dynamics of speculative markets involving the
interaction of fundamentalists and chartists. The dynamics of the model are driven by a
two-dimensional map that in the space of the parameters displays regions of invertibility
and noninvertibility. The paper focuses on a study of local and global bifurcations
which drastically change the qualitative structure of the basins of attraction of several,
often coexistent, attracting sets. We make use of the theory of critical curves associated
with noninvertible maps, as well as of homoclinic bifurcations and homoclinic orbits of
saddles in regimes of invertibility.
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1. INTRODUCTION

In this paper we shall develop, and investigate the
dynamic behaviour of a discrete time model of
asset price dynamics, which includes the one
presented in [9] (and analyzed also in [15]) and
can be reduced to the same two-dimensional
dynamical system partially studied in [11]. We
assume that the share market consists of two types
of traders: fundamentalists, who are forming
rational expectations on the fundamental value
of the asset, and chartists, a group which bases its
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trading decisions on an analysis of past price
trends. The chartist demand is assumed to be an S-
shaped function of the difference between the
chartists’ estimate of the price trend (obtained
through an adaptive expectations scheme on past
price changes) and the return on some alternative
asset. The model reduces to a two-dimensional
nonlinear map. We study the influence on the asset
price dynamics of the main parameters, such as the
fundamentalists’ strength of adjustment to the
difference between the rationally expected funda-
mental value of the asset and the current price, and
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the speed with which chartists adjust their estimate
of the trend to past price changes.
The stability analysis of the unique equilibrium

point of the map together with the regions of
invertibility or non invertibility give a good idea of
the dynamical behaviour locally, in a neighbour-
hood of the equilibrium point. However, it is only
through the global analysis of the basin of
attraction that we are able to understand how
the stable equilibrium may sometimes be consid-
ered as "practically unstable", in the sense that its
basin of attraction is very small and displays a
fractal structure, or the equilibrium point is in
competition with other attractors. The aim of the
paper is therefore mainly to show how situations
may occur that seem counter-intuitive: regions of
the parameters space where the equilibrium point
is locally stable are often characterized by practical
instability, because its basin is very small, often
with a complex structure, and/or in competition
with a coexisting attractor (either diverging
trajectories or another bounded attractor). It is
important to stress that this kind of analysis of the
basin structure can be performed only through
numerical simulations: this is in fact the only way
to detect global bifurcations occurring as a
consequence of contacts between curves (for
example critical curves and basin boundaries or
stable and unstable sets) whose analytical expres-
sion generally cannot be determined.

It was a very pleasant surprise for us to discover
that the economic model described in Section 2
leads to the same two-dimensional map governing
the dynamical behaviour of the model proposed in
[11], and there partially studied. This map also
generalizes the one analysed in [9]. Thus we shall
briefly recall some results on the local analysis of
the model, referring to [11] for comments and
explanations concerning some types of global
behaviour. In this paper we are particularly
interested in the study of dynamic behaviour
which turns out to be different to that analyzed
in the previous paper [11]. While in [11] attention
was focussed on the homoclinic bifurcation of a
repelling focus known as a "snap-back-repeller",

here we shall consider the homoclinic bifurcations
of saddle cycles, both in the case of invertible and
noninvertible maps. Moreover in [11] it was
observed, without however any explanation, that
a new kind of mechanism leading to fractalization
of the basins is associated with noninvertible
maps. In this paper we shall explain in detail
how this "route" works, in particular how it is
associated with contact bifurcations involving the
critical curves of the map and other invariant sets.
However we shall also see a "route" similar to the
one occurring in invertible maps.
The paper is organized as follows. Section 2

derives our model of fundamentalists and chartists
and recalls some general properties of the two-
dimensional map driving the dynamics. Section 3
gives the detailed analysis of the role of the
noninvertibility of the map in determining a
sequence of global bifurcations which profoundly
modify the basin of attraction of the fixed point
and lead to fractalization and to a situation of
"practical instability". Section 4 deals with a

global bifurcation causing the disappearance of a
closed invariant curve born at a Neimark-Hopf
bifurcation. It is due to a homoclinic connection,
not related to chaotic dynamics, differently from
the cases presented in Section 3. Section 5 presents
a different route to fractalization of the basins,
which is the standard one in invertible maps,
associated with the transverse homoclinic orbits of
saddle cycles. While in Section 6 we shall see how
the transition from a "wide basin" of the locally
stable fixed point to a "small basin" can occur via

the coexistence with several kinds of attracting sets
(regular cycles or chaotic sets) which dominate in
the Lebesgue measure, and undergo an interesting
sequence of "forward" and "backward" global
bifurcations. Section 7 offers some conclusions and
suggestions for further research.

2. THE MODEL

Let us denote by Pt the logarithm of the asset price
at time t. Excess demand for the asset at time (Dr)
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is composed of fundamentalist demand (Dr) and
chartist demand (dr), i.e."

D, Dt +dr.

differential assumes extreme values the demand
moves towards "all in the risky asset" or "all in the
alternative asset".
A possible choice for the function h(.) is

Fundamentalist demand is given by:

DOt a(Wt Pt),

where Wt is the logarithm of the price that clears
fundamental demand at time (i.e., the funda-
mental value at time t) and a (a>0) is the
fundamentalists’ strength of adjustment to the
difference between the rationally expected funda-
mental value of the asset and the current price.
Chartist demand is assumed to be a nonlinear
function of the anticipated return differential

(Pt,t+ gt), where pt, + is the chartists’ expecta-
tion at time of the price change between and
t+l, i.e.,

lt,t+l Et[Pt+l Pt] Et[Pt+l] Pt

and gt is the return on the alternative asset (bonds)
over the same period. In particular we write:

h(x) c arctan x

and this is the one used in our examples and
simulations. However, it is important to remark
that the qualitative analysis performed in the fol-
lowing sections (as also the qualitative dynamics)
are not affected by a change of function, because
these mainly depend on the properties of h(-)
given above.

Chartists are assumed to form their expectation
of the price change adaptively, i.e.,

lt,t+l 2Pt-l,t + c[Pt Pt-1 Pt-l,t], (1)

where c (c > 0) is the speed with which chartists
adjust their estimate of the trend to past price
changes.

Total excess demand for the asset at time is

given by:

Dt a(Wt Pt) + h(bt,t+l gt),

dt h(?t,t+l gt)

where, following [9], the function h(.) has the
following properties:

while the asset price is assumed to adjust with
some delay to excess demand,2 i.e.,

Pt+l Pt + flp[a(Wt Pt) + h(bt,t+l gt)], (2)

h’(x)> 0 for all x;
h(0) 0;
there exists an x* such that h"(x)< 0 (> 0) for
all x > x* (< x*);
limx_:h’(x) 0.

where /3p (a positive constant) is the speed of
adjustment of the asset price to excess demand.
Given the current price and the previous one (Pt

and Pt-1), and the most recent expectation of the
price change (Pt- 1,t), the system (1)- (2), i.e.,

The economic scenario behind the demand
function h is one in which chartists allocate their
wealth (fixed in the short term) between the risky
asset and the alternative safe asset depending on
the expected return differential (t,t+ 1-gt). As this

bt,t+l bt-l,t + c[(Pt Pt-1) bt-l,t]
Pt+l Pt + flp[a(Wt Pt) + h(t,t+l gt)] (3)

models the formation of the new expectation,
Jt,t+ 1, and then of the new price, Pt+ 1. We note

The further restriction c < (which requires that chartists cannot revise their estimate of )t,t + more frequently than they receive
information about price changes) is particularly relevant from an economic point of view (see [11]).
2The economic scenario behind Eq. (2) is that of a market maker announcing prices in one period as a function of excess demand

in the previous period. See [11] for more details.
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that by assuming Wt and gt constant, i.e., Wt W,
gt g, we are dealing with a system which seems,
at a first glance, a three dimensional one, while it
can in fact be reduced to a two-dimensional
system. We can rewrite (3) as:

Pt Zt-1
Ct,t+l (1 c)t-l,t + c(Zt-1 Pt-1)
Zt Zt-1 + flp[a(W- Zt-1) + h(t,t+l g)]

or:

U-Z

’-- (1-c)+c(Z-P)
Z’ Z + flp[a(W Z) + h(’ g)]

(4)

where the symbol denotes the unit time ad-
vancement operator, that is, if P, and Z are
the state variables at time (t- 1), then U, ’ and Z
are the state variables at time t. The three
dimensional system (4) can be reduced by observ-
ing that the Z variable is simply an auxiliary, or
phantom, variable. In fact, by using the third
equation of (4) and the first one, we can explicitely
write the Z variable as a function of P and , as
follows:

Z P +/3p[a(W- P) + h(b g)]

and substituting this expression into the first two
equations of (4), we get"

P’ P +/3p[a(W- P) + h(- g)]

’ (1 c) + C/3p[a(W P) + h(- g)]’

while it is easy to check that the third equation in
(4) is redundant since it reduces again to the first
equation in (5).
Thus the original system (3) has been reduced to

the two-dimensional iterative process in (5), which
at each time models the formation of the new price
and then of the chartists’ expectation of the price
change over the next period, on the basis of the
actual price and of the most recently calculated

expectation. We also note that with the assump-
tion Wt and gt constant, system (5) is immediately
obtained from (3) by writing the iterative process
as follows:

This particular two-dimensional system (5) can
also be directly deduced following a different
approach, based on the concept of market maker,
as shown in [11]. Finally, it is worth noting that the
model includes, as a particular case, the one
developed in [9] (and analyzed also in [15]),
starting from different assumptions about the
chartists’ behaviour. This fact enhances the value
of the model and increases the importance of its
analysis.
The study of the dynamical properties of the

system (5) allows us to explore the long-run
behaviour of price and chartists’ expectations,
starting from a given initial condition. Besides the
situations already described in [11], new ones
will be shown in Sections 3-6 of this paper. But
let us first recall some basic properties of the
system (5).

2.1. Some General Properties

We shall now recall from [11] some simple
properties of the two dimensional map "driving"
the discrete dynamical system (5). That is, the local
stability analysis of the fixed point and the
discussion of the regimes of invertibility and non

invertibility of the map.
As it is easy to see the system (5) has a unique

equilibrium point, given by the solution of the
system:

{ p;(W- P) + h(,- g)] 0
+ cflp[a(W P) + h( g)] O’ (6)
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that is3 instance, [21], p. 159, or [17])

P W + 1/a h(-g)
-0

It is useful to rewrite the system (5) in an
equivalent form, by introducing the price deviation
p P (W+ 1/a h( g)), so that the time evolution
of the dynamic variables p and b is driven by the
two-dimensional map T: (h, p) (b’, p’) given by:

T p, p flp [ap (7)

where:

and

79(1) Tr + Det > 0
79(-1)=l+Tr+Det>0,
79(0) Det <

Tr 2 ap c + cpk’(0)

Det (1 a/3p)(1 c) + C/3pk’(O),

(10)

where:

k() h(,- g) h(-g),

whose unique fixed point is the origin O--(0, 0).

are, respectively, the trace and the determinant of
(9), and 79(A) A2 TrA + Det is its characteristic
polynomial. The first condition in (10) is equiva-
lent to:

a/3pC > O,

2.2. Local Stability Analysis
of the Fixed Point

It is well known that the local stability of a fixed
point depends on the eigenvalues of the Jacobian
matrix evaluated at the fixed point. If we denote by
k’(p) the first derivative of the function k(b), the
Jacobian matrix of T is given by:

DT(,p) [1- c + C/3pk’() -aCp
pk’() aflp (8)

which is independent of p. A sufficient condition
for the local stability of the fixed point O (0, 0) is
that the eigenvalues of:

DT(O, O) [ c + C/3pk’(O) -aCp
/pk’ O ap (9)

are inside the unit circle in the complex plane, i.e.,
that the following conditions are satisfied (see, for

always being true.4

As far as the second and third conditions in (10)
are concerned, elementary computations show that
they can be rewritten, respectively, as:

aflp(2 c) < 2(2 c) + 2CflpU(O); (11)

aflp(1 c) > c[/3pk’(O) 1]. (12)

Figure represents the region (indicated in green)
of local stability of the origin in the parameter
plane (e, a), c > 0, a > 0. The shape of this region is
affected by the remaining parameters, strength of
chartists’ demand at the steady state (k’(0)) and the
speed of adjustment of market price (tip). From a
qualitative point of view, we can distinguish two
cases: case A (represented in Fig. a), with

/3pk’(O) _< 1, and case B (Fig. b), with/pkt(O) > 1.
From Eqs. (11) and (12) it follows that starting
from inside the stability region in the parameter

3The equilibrium value of P seems counter-intuitive in that it is not equal to W, the rationally expected fundamental value. This is
entirely due to the fact that our economic analysis is a partial one. A proper modelling would require us to also model the dynamics
of the price of the alternative asset (see [12]). However since we ultimately work in terms of deviation from the equilibrium we feel
that the partial analysis is justified, particularly as it allows to work with a two-dimensional, rather than three-dimensional, map.
4We recall that only positive values of the parameters make sense economically.
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FIGURE The green regions in (a) and (b) represent the stability regions of the equilibrium point O in the plane of the parameters
c (speed of adjustment of chartists’ expectations) and a (strength of fundamentalists’ demand), while the grey regions represent the
domain of noninvertibility of the map T in the same (c, a) parameter plane. Figure (a) is obtained with values of the parameters
c,g such that 13pk’(O) pC/(1 + g2) <_ 1. In this case (case A) the domain of stability includes any value c (0, 1) for sufficiently
low values of a and the stability can be lost only via a Flip bifurcation as a is increased. Figure (b) describes the opposite case (case B,
pU(O) > 1), where stability can be lost also via a Neimark-Hopfbifurcation. This figure also shows that for sufficiently low values of a
the map is invertible for any value c (0, 1) and comparing (a) and (b) we see that the stability region is wider in case A than in case B.
(See Color Plate I.)

plane (c,a), and increasing the chartists’ adjust-
ment parameter c or the fundamentalists’ param-
eter a, a loss of stability may occur either via a flip
bifurcation, when crossing the curve

2 2ck’(0)a-pp+2-c (13)

or via a Neimark-Hopf bifurcation, when crossing
the curve

a (14)
-c)

In particular, in case A the Neimark-Hopf
bifurcation cannot occur when c ranges from 0
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to (i.e., for values of the chartists’ parameter
which are meaningful from an economic point of
view).

2.3. Invertibility Conditions

For particular values of the parameters, the map T
is a noninvertible map of the plane. This means
that while starting from some initial values for
chartists’ expectations and asset price, say (%,1,
P0), the iteration of (7) uniquely defines the
trajectory 0Pt,t+l, Pt)= Tt(P0,1, P0), t= 1, 2,...,
the backward iteration of (7) may be not uniquely
defined. In fact, a point (b, p) of the plane may
have several rank-1 preimages.

Let us assume:

h(-) aarctan(.) (a > 0),

so that

k(b) a arctan(p g) a arctan(-g).

In [11] conditions on the parameters, a, tip, a, c,
are provided under which the map is noninvertible.
Precisely, it is easy to show with elementary
geometrical tools that, by defining:

rn- (ap- 1)(1-c), (15)
c

the map has a unique inverse for m_<0 or
m >_ a3p, while for 0 < rn < aflp the map is non-
invertible. In particular, by defining:

q, flpk(l mbl (16)

q2 flpk(P2) mb2 (17)

it is possible to show that the points (% p) of the
phase plane for which

ql < (aflpp-a/3p- b) < (18)

have three distinct rank-1 preimages, while the
points satisfying

a/3pp-
ap ) < ql

c

(aflpp-ap-lc b)>q2
or

have a unique rank-1 preimage. Thus, following
the notation used in [27], for 0 < rn < aflp this map
is of the type Z1- Z3-Z1, which means that the
phase plane is subdivided into different regions Zj
(j- 1, 3) each point of which has j distinct rank-1
preimages. Such regions are bounded by the so-
called critical curves of rank-1 (see [21]), defined as
the locus of points having at least two merging
rank-1 preimages. Then by defining:

q 2, P) aflpp
aflp

c

we can observe that for our map this set is defined
as follows:

LC-- {(b,p)RZ" q(,p) ql U q(,p) q2},
(19)

where q and q2 are given in (16) and (17)
respectively. The locus LC is therefore made up
of two straight lines, say LC L tA U, where L and
U have the equations:

aflp
b - ql (20)L" P= aflpC

L’ p
aflp

b-t- q__2 (21)apC a/3p

Each of the critical points (b,p)6LC has two
merging rank-1 preimages, and the locus of such
preimages, denoted by LC_I (critical curve of
rank-0), is made up of the two straight lines, say
LC-1 L-1 tA Lt l, of equation:

L_I" b g /-a- 1; (22)

-1" 3 g + 1, (23)
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The critical curve LC_ corresponds here to the
locus of points (,p) of the phase plane in which
the determinant of the Jacobian matrix DT(,p)
vanishes.

Also the images of this set are called critical
curves of higher rank. The curves:

LC T(LC) T+1 (LC_I) k O, 1,2,...

are called critical curves of rank-(k+ 1) (LC0=
LC). In our example we always have two branches:

LCtc L UL T+l (L_l) U T/+I (L_).

The important role of the technique of critical
curves in describing several bifurcation mechan-
isms has already been pointed out in the economic
literature (see for example [4,5] and the recent
monograph [31]). This technique will also play an
important role in the following sections.

In Figure 1, together with the bifurcation curves
in the parameter plane (c, a), we have drawn also
the region (indicated in grey) of non invertibility
of the map T. In the (c, a) plane the region in
which the noninvertibility condition 0 < rn <
is fulfilled is given by:

0<c<l
l/tip < a < l/tip + oc/(1 c)

c>lu
a< l/ep

3. COMPLEX BASIN BOUNDARIES
FOR THE NONINVERTIBLE MAP

In this section we shall consider a few examples of
"routes-to-complex-basins" related to situations
included in case B, which is described in Section
2.2 and illustrated in Figure lb. In that parameter
situation in fact, fixing a > l/tip, the stability
region of the fixed point O in the parameter plane
(c, a) mainly belongs to the noninvertibility region
for T, and as the parameter c increases the
Neimark-Hopf bifurcation curve is necessarily

met. However, even if we are in the region in
which the fixed point is locally stable, we may have
a surprisingly small basin of attraction and/or of
so complex a structure such that the local stability
may appear as "practical instability" from a global
point of view. We shall denote by 13(0) the basin
of attraction of the fixed point of T, when it is
locally stable. That is, B(O) is the locus of points
of the plane (states of the system) whose trajectory
converges to the equilibrium. By/3(oe) we denote
the points of the plane having divergent trajec-
tories. The existence of such trajectories denotes an
attracting set at infinity (on the so-called Poincar
Equator), so that we may also denote this set B()
as the basin of the points at infinity (or basin of the
Poincark Equator). As long as the fixed point is the
only bounded attractor, we have that the sets 13(0)
and B(oe) are a kind of complementary sets. To be
precise, B(oe)- C(B(O)), that is, the closure of
B(oc) is the complementary set of 13(0) (C(.)
denotes the complement and an overbar denotes
the closure). So that the two sets B(oc) and 13(0)
cover the whole plane and have the same fron-
tier (or boundary) OB(oc)=013(0) given by
B(O) Cl B(oc). This is no longer true when two
or more bounded attractors exist, as we shall see in
Section 6. When there are coexisting attractors the
set B(o) always denotes the set of divergent
trajectories, and its complementary set
the locus of points of the phase-plane having
bounded limit sets (or a-limits). Then C(13(oc)) is
shared between two or more attractors and
includes two or more basins.

In the present section we shall see how the
increasing complexity in the structure of the basins
of attraction may be caused by global bifurcations
(or contact bifurcations) involving the critical
curves of the map. Let us fix the parameters
tip-2.5, g-0.5, c-2.3, a-1.8, and increase c

from the value 0.49. The fixed point O is a stable
focus, and it will undergo a Neimark-Hopf
bifurcation at c- 0.5.

5We recall that the frontier of a subset A of the plane is given by the intersection between the closure of A and the closure of its
complementary set, OA ft fq CA. Or, stated in a different way, a point x belongs to the frontier of A if in any neighbourhood of A
there are points belonging to A as well as points belonging to the complement of A.
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But what about the global dynamics? What is
the nature of the basin of attraction of the stable
fixed point? In general it is difficult to give an
answer to such questions without the help of
numerical simulations: such "guided" experiments
on fixed examples are in fact the only way to detect
the occurrence of global bifurcations related to
contacts between curves (critical curves and basin

boundaries) whose analytical expression not only
cannot be found (this is the case, for example, of
the critical curves of high rank) but also often does
not exist (this case normally occurs for fractal
basin boundaries).
We shall see that in the regime of noninvert-

ibility of T the critical curves will play an

important role for the analysis of the basin of
attraction of the stable fixed point: in fact, this
basin will undergo global bifurcations, and the
basin structure will be deeply modified, as a

consequence of contacts with the critical curves.
In Figure 2a we can see that the basin of the origin
(the white region whose boundary includes the
stable set of a cycle of saddle type) is a connected
area, and the grey points denote the basin of
infinity/3(). However, from the same figure we
can see that there are arcs on the boundary
03(O) 0/3() which approach the critical curve
L (see the arrow in Fig. 2a). The strip between the
two critical lines L and U is the region Z3 of points
having three distinct rank-1 preimages, while the
regions outside are Z1 and Z, whose points have a

unique preimage. Each point of Z3 has one

preimage, say T(, in the strip between the vertical
lines L and L’ T-1, a second preimage, say on

the right of U_, and a third one, say T(, on the
left of L_ 1. The points x belonging to Z1 below
(resp. Z above) the strip Z3 only have the
preimage T((x)(resp. T(x)).
When 0/3(0) has a contact with U we have a

bifurcation in the structure of the basin/3(0). Such
a contact with LC will cause the appearance of
"islands" of/3(), or "holes" of/3(O), made up of
points having divergent trajectories also inside the
old white area, thus rendering the basin /3(0) a
multiconnected region (i.e., a region with holes).
This can be seen in Figure 2b, the frontier 0/3

intersects U and the portion of/3() below U,
denoted H0 in Figure 2b is a portion of
which has crossed the boundary U entering the

2.5

-2.5

1r,=2.5 g=0.5 t=2.3 a=l.8 c=0.49

-2.5 2.5

(a)

-0.5

13p=2.5 g=0.5 ct=Z3 a=l.8 c=0.51

-0.5 2

(b)

FIGURE 2 Basin bifurcations of the stable fixed point
O=(0, 0), observed in the regime of noninvertibility of the
map T, for tip 2.5, g --0.5, c 2.3, a 1.8 and by increasing c
from the value 0.49. As explained in the text, the critical curves
of the map allow one to explain the qualitative changes in the
basin structure. At c 0.49 in (a), where the basin of the origin,
the white region/3(O), is a simply connected area. At c =0.51 in
(b) and (c), where the grey region /3() crosses the critical
curve U, entering the region Z3 and /3(0) is a multiply
connected area. At c- 0.533 in (d), where a new crossing of the
boundary L causes the appearance of new holes. A different
dynamic effect is associated with a similar crossing by the hole
S_ 1: in (e), where c 0.534, it is shown that differently from the
previous cases the hole Q_ generated by the new crossing is
now in the region Z3, and thus it has three distinct rank-1
preimages, each of which has one or three preimages, so that a
drastic increase in the numbers of the holes is observed, leading
to an increasing complexity in the structure of the basin/3(0).
This kind of bifurcation also occurs in a "backward" way, with
the effect of decreasing the number of holes, as shown in (f),
obtained for c-0.55.
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-2.5

[p=2.5 g=0.5

-2.5

it=2.3 a=l.8 c=0.51

(e)

2.5

p

-2.5

Ip=2.5 g=0.5 x=2.3 a=l.8 c=0.534

-2.5 2.5

(e)

2.5

-2.5

p=2.5 g=0.5 t=2.3 a=l.8 c=0.533

FIGURE 2 (Continued).

(d)

2.5

-2.5

[p=2.5 g=0.5 t=2.3 a=l.8 c=0.55

-2.5 2.5

FIGURE 2 (Continued).

region Z3 with three distinct preimages, and thus
the small portion H0 has three distinct rank-1
preimages, two of which are on opposite sides of
the line Lt_l, one on the right and one on the
left, connected through a segment of L’ consti--1,

tuting the set denoted as H_I in Figure 2b,
The third preimage

T(33{(Ho) is in the grey region on the left of
The "island" or "hole" H_ is a new portion
which did not exist before the contact bifurcation
between OB and LC, and is made up of points
having divergent trajectories, and the same holds
for an infinite sequence of "islands" obtained by
taking all the preimages of any rank of H_ 1, only
a few of which are visible in Figure 2c. Since H_

is completely included in Z1, below the strip Z3, its

preimage is TJ(H_I)- H-2 again in Z1, and so

on, TJ(H_2)--g_3,..., an infinite sequence
exists, given by T(H_I), for k-1, 2,..., which
are "islands" appearing further and further from
the origin and approaching the Poincar6 Equator.

This bifurcation structure has been discussed for
the first time in [25] (see also [27, 1,26]). It is clear
that other contacts of OB(oc) with LC shall create
other "germs" crossing LC_I, whose infinitely
many preimages are other new "holes" of diver-
gent trajectories.
From Figure 2b we can see that H_I is

approaching the region Z3 from below and, as
the parameter c is increased, a new contact
bifurcation between OB(oc) and the critical curve
LC is expected to occur. And in fact the same kind
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of bifurcation occurs, now with a contact on the
branch L of LC, which causes the crossing of this
critical curve by the basin /3() and a portion
denoted by So in Figure 2d appears. The rank-1
preimages of this portion So create a new "hole" of
/3(0) (or "island" of /3()) given by S-1-
T(So) U T3(So which are connected through a

segment of the critical line L_ (see Fig. 2d). The
third rank-1 preimage of So, T( (So)is on the right
of U in the grey region. Clearly S_ has further-1’

preimages of any rank, and since S_ is com-

pletely included in Z1 (as in the previous case), its
preimages are given by T((S_I), for k-1,2,...,
and all are in the region Z1, and are approaching
the Poincar6 Equator.
We may expect that a different effect would be

associated with a similar contact bifurcation
between 0/3() and LC, but giving rise to a new

hole crossing LC_ inside the strip Z3 (instead of

Z1 as in the previous two bifurcations). Indeed this
can be seen in the next bifurcation occurring as c is
slightly increased. In Figure 2d we can see that the
hole S_ is already quite close to the critical curve
L which bounds Z3, and a new contact and
crossing of L will occur. But now the portion of L
close to S_ is the image of a portion of L_ inside
Z3, so that the crossing will give rise to a region,
say Q0, whose preimages T(Qo) to T (Qo) create
a new hole Q_ belonging to the strip Z3. This is
different from the previous cases because now Q_
has, in its turn, three distinct rank-1 preimages,
each of which has one or three preimages, and so
on. It is clear that a contact bifurcation giving a
new hole in Z3 shall cause a drastic increase in the
number of connected components of/3() inside
the white area. An example is shown in Figure 2e.

Also the "reverse bifurcations" in holes may
occur, i.e., holes in Z3 which cross LC and enter

Z1, causing the merging of their preimages
(through a contact on LC_ 1), and producing a
decrease in the number of holes but increasing the
dimension of the holes. These bifurcations
further modify the basin, creating wider connected
components, which can be seen in Figure 2f. Thus
all these kinds of contact bifurcations lead to a

more and more complex structure of the basin

/3(). In Figure 2f we see that the basin
boundary of the fixed point, which is still locally
stable, has a fractal structure and from a global
point of view (for example with respect to the
Lebesgue measure) the basin is quite a deal smaller
than the simply connected one represented in

p=2.5 g=0.5 ct=2.3 a=l.8 c=0.57

(a)

initial condition: (0.01, 0.01)

0 time I00

(b)

FIGURE 3 With the same values of the parameters as in
Figure 2, tip--2.5, g =0.5, c- 2.3, a 1.8, and by increasing c
further, the crossing of the Neimark-Hopf bifurcation curve is
observed for c 0.5, which gives rise to an attracting closed
invariant curve P, around the unstable focus O, represented
together with its basin/3(F) in (a), obtained with c 0.57. The
structure of the basin /3(F), which includes the whole area
bounded by F, is the same as the one of the basin /3(0) in
Figure 2f, and the dynamic effect of this local bifurcation is
simply that of replacing the convergence to O with an
oscillatory motion, as shown in (b), where the state variable p
is represented as a function of time.
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FIGURE 4 Basin bifurcations observed for the same parameter values as in Figure 3, tip 2.5, g 0.5, c 2.3, a 1.8, by further
increasing c (c 0.57835). Holes are now also inside the area bounded by the attracting set (a). Figure (b) is an enlargement of (a),
and shows that the attractor is no longer a closed invariant curve homeomorphic to a circle.

Figure 2a. It is clear that if we allow possible
exogenous shocks which can move the state
points, as in a "true dynamic state", we can

easily say that such a stable regime of O is
almost unstable, because nearby states belong
to B().
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It may be interesting to investigate the dynamic
behaviour of T also for higher values of c,
although we know that it is an almost unstable
regime from an applied point of view.
As c crosses the bifurcation value on the

Neimark-Hopf curve (c-0.5), a supercritical
bifurcation occurs, giving rise to a closed invariant
attracting curve, say F, around the unstable focus
O. Roughly speaking we can say that the "old
basin" /3(0) changes into the basin /3(F), an

example of which is shown in Figure 3a. In that
figure it is evident that, although the frontier
has a complex structure, the basin /3(I) includes
the whole area bounded by the curve 1. That is, any
initial condition close to the fixed point, now an
unstable focus, will have a trajectory asymptotic to
F, that is the convergent states are now replaced by
an oscillatory motion, as shown in Figure 3b.

But the contact bifurcation of the type described
above may change further the basin/3(1). In fact,
a crossing of/3() through L may give rise to a
new hole crossing L_ in the portion inside the
area bounded by F, as the new hole R_ in the
example shown in Figure 4a at a higher value of c.

It is clear that now, since R_ is in Z3, more and
more holes are created, but the new peculiarity is
that the infinite sequence T(R_I), k-1,2,...,
must necessarily spiral towards the fixed point O,
thus infinitely many holes now exist also in the
area bounded by the attracting set. This means
that in any neighbourhood of the fixed point there
exists a set of positive measure of points having
divergent trajectories. As it is evident in the
enlargement of Figure 4b, the attracting set in
Figure 4a is no longer a closed invariant curve
homeomorphic to a circle, as was the set in
Figure 3a. In fact, as often occurs, the closed
invariant curve F undergoes a sequence of
bifurcations. Besides quasiperiodic orbits as in
Figure 3a, several "periodic windows" are ob-
served as c is increased. For example, an attracting
cycle of period 13 exists for 0.576 < c < 0.5768,
and several periodic windows can be observed
which alternate to the quasi-periodic regimes. A
particular one, an attracting cycle of period 16, is
shown in Figure 5a, which undergoes the usual

flip-bifurcations leading to chaotic motion. A cycle
of double period is shown in Figure 5b, and
cyclical chaotic pieces of period 16 are shown in
Figure 5c (an enlargement in Figure 5d shows that
the pieces are all disjoint). Then the bifurcation

leading from 16 chaotic pieces to one single
attractor of annular chaotic shape (as the one
already shown in Figure 4 for a slightly increased
value of c) is generally of homoclinic type
(probably here it occurs when the stable and
unstable sets of the saddle cycle of period 16,
which separates the basins for the map T16,

p=2.5 g=0.5 ot=2.3 a=l.8 c=0.57765

0

-1 !1

p=2.5 g=0.5 ot=2.3 a=I.8 c=0.5777

0

oO

(a)

(b)

FIGURE 5 The transformation of the closed invariant curve
represented in Figure 3 into the attracting set represented in

Figure 4 is related to the appearance of "periodic windows"
observed as c increases. A particular cycle of period-16 is
represented in (a) for c=0.57765, which undergoes the usual
flip-cascade leading to chaotic motion. Figure (b), obtained for
c=0.5777, shows a cycle of double period and (c) for
c 0.57781 shows cyclical chaotic pieces of period-16, which
are disjoint, as evidenced in the enlargement in (d).
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FIGURE 5 (Continued).

(e)

4.2

-3.2

(d)

intersect one another), and gives rise to attracting
sets also called "weakly chaotic rings" in [16, 27].
Such kinds of homoclinic bifurcation6 related to
chaotic sets, lead to attracting sets with a complex
structure: another example is obtained in Figure 6
in a different regime of parameters.
We remark that the complex attractor observed

here, although typical, is not the only possible
destiny of a closed invariant curve F. In the next
section we shall see that the disappearance of F
may also occur by a homoclinic bifurcation not
related to chaotic sets.

]p=3 g=0.3 0=2.75 a=l.5 c=0.4725

-3 3

FIGURE 6 A different example of a chaotic attractor of
annular shape, obtained for /3p= 3, g--0.3, =2.75, a= 1.5,
c=0.4725: the basin of the attractor is the white area, while
the grey points have divergent trajectories. The presence of
only few "holes" is due to the fact that arcs on the boundary
of B() have "just" crossed the critical curve LC.

We close this section noticing that if we fix lower
values of a, then the Neimark-Hopf bifurcation
curve is crossed at lower values of c (as it can be seen
from Fig. b) so that in the regime of c-values in
which the basin of bounded trajectories C,(B()) is
simply connected we can see the changes in the
attracting set, from a stable focus, to a closed curve
F, to a chaotic ring or a chaotic annular area, and
the first contact bifurcation between 0B() and
LC may occur when the attracting set is any one
of these. In the example shown in Figure 6 the
first island of B() is created when the attractor
is already a wide chaotic area.

4. HOMOCLINIC CONNECTION
AND DISAPPEARANCE OF F

It is well known that the theorem associated
with a pair of complex eigenvalues, known as
Neimark-Hopf, is only valid locally. Thus the
crossing of a Neimark-Hopf bifurcation curve of

6We recall that a homoclinic orbit whose points come from the transverse intersection of the stable and unstable sets of a cycle has
the peculiar property (see [32, 20], and the references therein) that in any neighbourhood of the homoclinic orbit there exists a closed
invariant Cantor set A on which the restriction of the map is chaotic in the sense of Li and Yorke (see [23]), that is, the map has the
same properties as the shift map.
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supercritical type proves the existence of an

attracting closed curve, say I, only for a "small"
range of values of the parameter which is allowed
to vary (considering the map as a function of one

parameter). What is the fate of such a closed curve
I (whose existence is associated with oscillating
behaviour near the fixed point) is an open prob-
lem. Its appearance and disappearance is related to
the kind of noninvertibility of the map, and often
associated with global bifurcations. In Section 3
we have already seen one of the typical mechan-
isms causing its destruction (as a closed invariant
set homeomorphic to a circle), that is, the appear-
ance of a particular cycle leading, via a sequence of
bifurcations (flip bifurcations and homoclinic

bifurcations), to a chaotic set of annular shape. In
this section we shall see a second kind of mechan-
ism leading to the destruction of 1, which is asso-

ciated with a homoclinic connection, not related to
chaotic dynamics. Let us consider a different
parameter set (always giving an example belonging
to case B, i.e.,/3pk’(O) > 1, as in the previous sec-

tion), fixing/3p-- 1.2, g--0.5, 1.2, a 2.5, and
increasing the parameter c in the stability region.
Now the interval of c-values in which the fixed

point is stable is wider, the Neimark-Hopf
bifurcation occurs at c___0.95178, and the fracta-
lization of the basin does not occur in the range
c < 1. However, instead of the divergent trajec-
tories, a second attractor appears. That is, we shall
see that the basin/3(0) shares the phase plane of
interest (given by the complementary set of/3(),
i.e., the set of bounded trajectories) with a

coexisting attractor, namely a cycle of period
three, labelled C3.7

In the case shown in Figure 7a, the fixed point O
is still the only attractor. The dark grey points
belong to/3() and its complementary set is/3(O),
in which we distinguish the white region, given by
the points whose trajectories enter a neighbour-
hood of O of radius r=0.001 in less than 300

FIGURE 7 /3p= 1.2, g-0.5, c= 1.2, a--2.5. In (a), for
c=0.8881, the fixed point is the only attractor, with a wide
and connected basin, in which the white region is given by the
points whose trajectories enter a neighbourhood of O of
radius r--0.001 in less than 300 iterations, while the red area
is made up of the points which converge to O more slowly. A
trajectory starting in the red region moves cyclically for a long
time inside the three balls, before converging to O (inter-
mittency) and this behaviour anticipates the appearance, via
saddle-node bifurcation, of a 3-cycle attracting node {N1, N2,
N3} and a 3-cycle saddle {$1, $2, $3}, which are represented in
(b) for c--0.8882. The red area in (b) represents the basin of
the attracting 3-cycle C3 {N, N2, N3 }, while the white area is
the basin of the attracting fixed point O. The basin of the
attracting node C3 may be subdivided further into three
different regions, by considering the periodic points as
fixed points of the map T3, as shown in (c), obtained for
c--0.95. From the same figure we see that the competing
attracting set C3 attracts now most of the points with bounded
trajectories. (See Color Plate II.)

We recall that for a two-dimensional map the existence of a periodic orbit of period three is not related to the existence of chaotic
dynamics, as it occurs in one-dimensional maps. This example is precisely a demonstration. In the case shown in Figure 7b the f-limit
set of T (which includes the limit set of all the trajectories of the plane) includes only a few cycles of T.
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FIGURE 7 (Continued).

iterations. Also the other points (the red area)
converge to O, but in a greater number of
iterations. A trajectory starting in the point
(-0.6,-0.5) is shown, which reveals three balls
in which the points are more dense (see Fig. 7a).
The trajectory cycles for a long time between -2

points in these balls before finally converging to O.
This behaviour (also known as intermittency)
anticipates the appearance, via saddle-node bifur- 0.3
cation, of cycles of period-3.

In fact, at a value of c just slightly increased, two P

different cycles of period-3 exist: an attracting
node C3 {N1, N2, N3 }, whose basin /3(C3) is
shown as the red area in Figure 7b, and a 3-cycle
saddle whose points $1, $2, $3 belong to the
boundary of the immediate basin of the attracting
3-cycle (and are very close to the points of the
attracting cycle C3 in Fig. 7b). For the map T all
the points Ni, i-1,2, 3, are fixed points,s attract- -0.3
ing nodes, and the boundary of their basin is made
up of the stable sets of the saddles Si, i--1,2, 3,
and separates the basins 13(Ni), i= 1,2, 3, from the
basin 13(0).

In fact (see Fig. 7c at a higher value of c) for any
i, i=1,2,3, the stable set W(Si) gives the
boundary O13(Ni), while the two unstable branches
W(Si) go towards Ni from one side (entering the

coloured basins) and towards the fixed point O
from the other side (entering the white area/3(0)).

In this configuration of the basin structure we
have the crossing of the Neimark-Hopf curve in
the plane (c, a) of the parameters, which gives rise
to a closed invariant curve F. The basins are
shown in Figure 8a, and we can see that the
structure is the same as that of Figure 7c except
that the white area now denotes /3(F) instead of

r,=l.2 g=0.5 =1.2 a=2.5 c=0.953

(a)

2

enlargement

-0.4 V 0.3

(b)

FIGURE 8 Starting from Figure 7c, where tip 1.2, g =0.5,
c= 1.2, a=2.5, c-0.95, the crossing of the Neimark-Hopf
bifurcation curve observed by slightly increasing c leads to the
creation of a closed invariant curve F, represented in (a) for
c-0.953. The enlargement in (b) shows that the basin of F is
bounded by the stable sets W(Si) of the saddle points Si,

1,2, 3, while the unstable set Wu(Si) of each saddle Si has
one branch converging to N; and the other converging to F. (See
Color Plate III.)

From now on we will speak, indifferently, of k-cycles of T or fixed points of Tk, k--2, 3
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/3(0). In the enlargement of Figure 8b we can see
the structure of the stable and unstable sets of Si,
i--1,2, 3. Note that now the unstable set of Si,

1, 2, 3, goes on one side to Ni and on the other
side to I, converging to I from the outside of the
curve. As often occurs, as c increases the area
enclosed by I increases, i.e., F becomes wider. In
Figure 8b we can see that I is approaching the
boundary of its basin, and in fact a global
bifurcation is about to occur, which shall cause
the destruction of the curve I (and thus of the
oscillating, quasi-periodic behaviour around O).
This can be seen in Figure 9a, at a very close value
of c: the curve I disappears and the 3-cycle C3 is
the only surviving attractor; this cycle corresponds
to three fixed points for the map T whose basins
are shown in Figure 9a, together with a trajectory
starting very close to the repelling focus O. The
enlargement in Figure 9b clearly shows that the
old "white area" constituting/3(I) is now shared
between the three fixed points Ni of T3, whose
basins are still bounded by the stable sets of the
saddles Si, 1,2, 3. Something has changed in the
behaviour of the unstable set emanating from each
Si, i= 1,2, 3: for instance, the unstable branches
issuing from $2 are going to N2 from one side and
to N1 to the other side. We can also see from
Figure 9b that Ws(S) now separates/3(N2) from
/3(N1), and one branch of the stable set Se
emanates, spiralling, from the origin. The same
occurs for the other saddle points (being of cyclical
behaviour for the map T).
The global bifurcation which causes the destruc-

tion of I is called a "homoclinic connection" or
"saddle connection" of the saddle cycle {$1, S, $3}
and it is not related to complex dynamics (because
it does not give rise to transverse intersection
between the stable and unstable sets of the saddle).
The qualitative behaviour associated with this
global bifurcation is shown in Figure 10. Let us
call cv (cv_0.954) the bifurcation value which
causes the disappearance of I, that is, for c close to

cv and c < cv (resp. c > cv) the invariant curve 1
still exists (no longer exists). Consider the beha-
viour of the stable and unstable sets of the saddle

FIGURE 9 With the parameters of Figure 8, by further
increasing c, I increases in size approaching the boundary of its
basin and a global bifurcation causes the disappearance of ,
leaving N1, N2, and N3 as the only surviving attractors of T3,
shown in (a), obtained for c-0.955, where also a trajectory
starting near O is represented, converging to N1. The basins of
N, N2, and N3 now share the old white area (see the
enlargement in (b)). It is also shown in (b) that these basins
are still bounded by the stable sets of the saddle points, while
the two branches of the unstable set of each saddle converge to
two different attracting nodes. (See Color Plate IV.)

point $1 (the same also holds for the other points
by cyclically changing the indexes). In Figure 10a,
before the bifurcation, when I exists, the stable set
Ws(SI) is the only one which gives 013(N1) and
both the branches of W(S1) come from far away.
One of the unstable branches of S goes to N and
the other to I.
At the bifurcation value c cv (see Fig. 10b), the

closed invariant curve I no longer exists, or, we
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FIGURE 10 Qualitative sketches of the behaviour associated with the global bifurcation causing the disappearance of I. (a)
represents the behaviour of the stable and unstable manifolds of the saddle points Sg, i= 1, 2, 3, immediately before the bifurcation:
the stable sets Ws(Sg), 1,2, 3, bound the basin of I’, while the unstable set WU(Si) of each saddle S has one branch converging to I
and the other converging to N;, 1,2, 3. (b) shows what happens at the bifurcation value er of the parameter e, where F merges with
the homoclinic connection given by the union of three heteroclinic trajectories connecting the saddle points: one branch of the stable
manifold of $1 is also a branch of the unstable manifold of $2, and so on cyclically. (c) describes the situation existing soon after the
bifurcation: I’ has disappeared and the only surviving attractors of T are N1, N2, and N3, whose basins now share the old basin of F.
The boundary of the basin of each node Ng, i-- 1,2, 3, now includes two saddles, together with their stable sets. For each saddle point
Sg, 1, 2, 3, one branch of the stable set Ws(Sg) comes from far away, while the other branch emanates, spiralling, from the origin.
Also the behaviour of the unstable set emanating from each saddle S, 1,2, 3 is changed. One branch of Wu(s1) converges to N
and the other branch to N1, and so on cyclically.
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could say, it merges with the homoclinic connec-
tion given by the union of three heteroclinic
trajectories, made up of invariant sets connecting
the saddle points. That is, one branch of W(S1) is
also a branch of Wu(s2) and one branch of Wu(s1)
is also a branch of W(S3) (see Fig. 10b). And so
on cyclically.

It is clear that the union of these trajectories
connecting $1, $2 and $3 gives a closed invariant
curve, which attracts the trajectories ofpoints inside
this area, but repells the trajectories outside. This is
the last value in which a closed invariant curve
(degeneracy of the attracting P) exists.

After the bifurcation (see Fig. 10c, which is a
qualitative sketch of Fig. 9b), we have a bifurca-
tion of all the basins: B(P) has disappeared and its
old area is shared between the three basins 13(Ni),
i= 1,2, 3, for the map T3. The boundary OB(N1)
now includes two saddles, $1 and $2, together with
their stable sets; one branch of W(S1) and one of
W(S) come from far away, while the other two
branches emanate from the origin.

It is clear that both before and after the
bifurcation value Cr the stable and unstable sets
of the saddles Si, 1, 2, 3, never intersect (thus no
transverse homoclinic points exist). Only at the
bifurcation value cr do we have a homoclinic
connection of the saddle cycle, which is a kind of
"homoclinic tangency" not followed by crossing,
and thus not related to chaotic behaviour. In fact
for the map T we have a unique attractor, the 3-
cycle C3 {N1, N2, N3 }, an attracting node, whose
basin is such that B(C3)= C(B(cxz)) (i.e., B(C3) U
/(o0)

5. FRACTALIZATION OF BASINS
IN INVERTIBLE MAPS
AND WADA-BASINS

In the same example considered above, in Section
4, for higher values of c there exists either the
3-cycle C3 as a unique attractor, or a 6-cycle C6

flip-bifurcated from C3. Although the range of
economic interest of the parameter c is mainly
restricted to the interval (0, 1], we investigate
the dynamic behaviour of the map up to c--1.2
in order to demonstrate interesting dynamic
phenomena.
As we have seen in Section 2.3, for c > the map

becomes invertible, thus the complex structure of
the basins is no longer related to global bifurca-
tions of contact with the critical set LC, but
complex behaviour appears only via the standard
mechanisms of homoclinic bifurcations creating
transverse intersections9 between stable and un-
stable manifolds of saddles.
An interesting example is related to the case we

are here analyzing, because it gives rise to the
phenomenon of "Wada-basins", as introduced in
[29,28]. These are invariant sets, or frontiers,
having the property that any neighbourhood of
any of their points contains points of at least three
different basins.

Let us consider the same example of the
previous section at a greater value of c with
respect to the one considered in Figure 9. In
Figure la we show the basins of the map T3, for
which the attractors are now three cycles of
period-2 (i.e., the 6-cycle for T, flip-bifurcatedl

from C3). In the enlargement of Figure b we see
that the "tongues" of the basin bounded by the
stable set W(S) are approaching one branch of
the unstable set Wu(s2). At a value of c in the
interval (1.04,1.05) the homoclinic tangency be-
tween W(S) and Wu(s2) occurs (and similarly
for the other saddles $1 and $3), followed by a
transverse intersection, as it can easily be seen in
Figures lc, d, where the "tongues" have now
crossed Wu(s2).

This homoclinic bifurcation is related to chaotic
behaviour by means of the horse-shoe mechanism,
as explained by Smale (see [32,20]), giving rise to
the characteristic "tangle" in the neighbourhood
of the saddle, as also described in [6] and [14]. This
is the standard route to fractal basins in invertible

9We recall that for invertible maps a basin is said to befractal if it includes at least one transverse homoclinic point ([30, 24, 3, 19]).
1That is, each Ni has become unstable giving rise to an attracting 2-cycle.
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FIGURE 11 An example of the route to fractal basins, observed in the same regime of parameters considered in Figures 7-9,
i.e., p= 1.2, g--0.5, c= 1.2, a=2.5, and for values of c > 1, in the region of invertibility of the map T. For e= 1.03 the
attracting sets of the map T are three cycles of period-2, flip-bifurcated from the three fixed points represented in Figure 9, whose
basins are represented with different colours in (a). The enlargement in (b) shows that the "tongues" of the basins, bounded by the
stable set Ws(S2) of the saddle $2 are approaching one branch of the unstable set, Wu(S2). At a value of e in the interval
(1.04, 1.05) the homoclinic tangency between Ws(S2) and Wu(S) occurs, followed by a transverse intersection, as shown in (c)
and (d), obtained for c 1.05. This homoclinic bifurcation gives rise to the characteristic "tangle" in the neighbourhood of the
saddle. (See Color Plate V.)
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FIGURE 11 (Continued).

maps. Clearly for the map T the fractal frontier,
say ’, where the map is chaotic, is almost
"invisible". In fact, considering the map T, we

have that the basin of attraction of the stable
6-cycle C6 is a simply-connected region, the com-
plementary set of/3(), except for the invariant
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set U of zero Lebesgue measure on which the
dynamics of the restriction of T is chaotic. The
global behaviour is essentially as shown in

Figure 12a, where only /3() (the grey region)
and (6) (the white region) are shown. It is well
known that the dynamic effect of the existence of

p=l.2 g=0.5 t=l.2 a-2.5 c=1.09

(a)

10

[r,=l.2 g=0.5 a=2.5 c=l.1

-15 g 10

(b)

FIGURE 12 The fractal structure of the basins highlighted in Figure 11 becomes "invisible" if we consider the map T instead of T
and represent the basin/3(C6) of the 6-cycle as a whole, as shown in (a), obtained for/3p 1.2, g 0.5, c 1.2, a 2.5 and c 1.09. As
c increases another homoclinic bifurcation, similar to the one observed in Figure 11, but now involving a saddle cycle belonging to
0/3(), causes the spread of portions of/3() inside the old white area, as shown in (b), obtained for e--- 1.1. (c) represents the
structure of the basins for the same parameters values, but considering the map T3.



FIGURE 12 (Continued). (See Color Plate VI.)

2
p-l.2 g=0.5 -1.2 a=2.5 c=1.19

P

-3 3

FIGURE 13 The effect of a reverse flip bifurcation observed by increasing c further with respect to the parameter situation of
Figure 12. For/3p 1.2, g =0.5, c 1.2, a= 2.5 and c= 1.19, an attracting 3-cycle C3 is again the only attractor, as in Figure 9a, but
its basin is now very small as compared to/3().
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the chaotic invisible set " is related to the transient
behaviours of the trajectories, which may have a
chaotic part before converging to the 6-cycle,
especially for initial conditions in the chaotic
"tangle", near the homoclinic saddles.
As c increases we can observe another homo-

clinic bifurcation, now associated with a saddle
cycle belonging to 0B(). The dynamic effect for
the map T is more "dangerous" in this case
because it causes the spread of portions of B()
inside the old area of bounded trajectories. An
example of the basin structure of B() after this
homoclinic bifurcation is shown in Figure 12b.
Clearly the region of white points of Figure 12b
must further be divided if we consider the map T3,
as it is shown in Figure 12c. It is worth noting that
now the frontier of all the four basins of T3 has the
peculiar property that in any neighbourhood of
any of its points we can find points belonging to
four different basins (the attractors are the three 2-
cycles and a point at infinity). As a final dynamic
curiosity of this example let us see what happens if
c is further increased: the 6-cycles of T undergoes a
reverse flip bifurcation leaving again an attracting
3-cycle C3, whose basin becomes smaller and
smaller, being B() the dominating one, as shown
in Figure 13.

6. PERSISTENT COEXISTENCE
OF ATTRACTING SETS

While in Section 3 we have seen a competition
between the basin /3(0) of the stable fixed point
and the basin of divergent trajectories B(), and
in Section 4 the competition between/3(0) and a
coexistent 3-cycle C3 for a short range of c-values,
in this section we shall see how, considering the
map T as a function of the parameter a for a fixed
value of c, we can observe a persistent competition
between /3(0) and the basin B(A) of a different
attracting set A, a stable cycle or a cyclic chaotic
set. Let us consider the fixed values c-0.95,
/3p--1, g and c 1.9 and increase a, starting
from low values in the stability region, whose

shape is qualitatively similar to the one repre-
sented in Figure a (this example being included
in case A). We also note that by increasing a

the map T always remains in the region of non-

invertibility.
At low values of a the origin O seems to be

the only attractor with a wide and connected
basin, but as a increases the nonlinearity of T
brings about saddle-node bifurcations, thereby
creating other attractors, coexistent with O. A
"periodic window" associated with a stable 4-
cycle C4 is obtained in the range given approxi-
mately by aE[1.775,2]. In Figures 14a, b we
see how the basin of bounded trajectories is
shared between 13(0) and B(C4). Two 4-cycles
appear via a forward saddle-node bifurcation at
a___ 1.775, one attracting node and one saddle,
whose stable set belongs to the basin boundaries
for the map T4. As the parameter a increases, a
backward saddle-node bifurcation causes the
merging and disappearance of the two cycles at
a
_

2, leaving again the origin as the only attractor
of bounded trajectories. As a is further increased
another saddle node bifurcation is observed at
a_2.355 associated with a pair of 3-cycles.

In Figure 15a we see the basin 13(0) together
with the basin /3(C), whose frontier is given
by the stable set of the 3-cycle saddle. Dif-
ferently from the previous window, in which
we have seen only a coexistent 4-cycle, in this case
the 3-cycle will undergo a route to a chaotic
attractor, up to its destruction via a contact
bifurcation (also called "crisis" in [19]), leaving a
"strange repellor" (see also [27]).

In Figure 15b we see the 3-piece cyclical chaotic
attractor, whose basin is much wider than 13(0),
and we also see that the width of the attracting set

{4,A,A3} increases with a, so that it comes
closer and closer to the frontier of its basin, given
by W(Si) where {S1, S, S} is the 3-cycle saddle.
In Figure 15c we see how several branches of the
chaotic set Ai are approaching W(S), 1,2, 3. It
is clear that a contact bifurcation will occur, as a is

increased, between the chaotic set Ai and Ws(s),
1, 2, 3 (see the enlargement in Fig. 15d), causing
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FIGURE 14 Competition between attracting sets observed for particular combinations of parameters, included in case A of
Figure 1. For e 0.95,/3p 1, g 1, c 1.9, and increasing a starting from low values inside the stability region, the origin O is
initially the only attracting set, but as a is increased a saddle-node bifurcation is observed. In (a), where a 1.775, and in (b), where
a 2, there is coexistence of the stable fixed point O and a stable 4-cycle C4. (See Color Plate VII.)

the disappearance of the chaotic attractor (after
which the origin is again the only attractor), but
leaving also a chaotic repellor.

Let us briefly recall the main properties asso-
ciated with this contact bifurcation, which often is
called "crisis" in the literature on dynamical



FIGURE 15 The phenomena of persistent coexistence of attracting sets, observed by increasing a further from the situation
represented in Figure 14b (where c- 0.95, tip- 1, g-- 1, c 1.9). After the disappearance of the 4-cycle represented in that figure, a
new competing attracting set appears, a 3-cycle C3 shown in (a), at a= 2.355, whose basin becomes much wider than B(O). This 3-
cycle undergoes a flip-bifurcation sequence, which finally transforms it into a 3-piece chaotic attractor, as shown in (b) for a 2.75.
This attracting set increases in size, and it approaches the boundary of its basin, as shown in (c), obtained for a--2.84675. The
enlargement in (d) shows that a "contact bifurcation" or "crisis" is about to occur, destroying the chaotic attracting set, leaving O as
the only attractor but leaving also a chaotic repellor in the region of bounded trajectories. The effect of the presence of this chaotic
repellor on the transient part of the trajectories is shown in (e), where a-- 3.2225. By increasing a further, the observed sequence of
global bifurcations also occurs in a "backward" way: a reverse contact bifurcation transforms again the chaotic repellor into a 3-
piece chaotic attractor: see (f), obtained for a 3.225. It undergoes a sequence of reverse flip-bifurcations, up to the restoration of a
3-cycle C3 shown in (g), where a= 3.3. A reverse saddle-node bifurcation occurring at a

_
3.363 causes the disappearance of the

competing 3-cycle, leaving again the fixed point O as unique attracting set, but now with a smaller basin than the one observed for
low values of a. By increasing a further, a flip bifurcation "replaces" the attracting fixed point with an attracting 2-cycle represented
in (h) for a= 3.9196, whose basin is however reduced to a narrow strip. (See Color Plate VIII.)
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p=l g=l t=1.9 a=2.84675 c=0.95
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(c)

enlargement

-0.6 0.6

FIGURE 15 (Continued).

(d)

systems, following [19]. It is associated with the
homoclinic bifurcation of the saddle 3-cycle on the
boundary of the basin. Indeed, the unstable set

W’(Si), i= 1,2, 3, of the saddle cycle is dense on

the attractor {.Al,2,,z[3) and thus a contact
between 2[ and Ws(Si) also means a tangent
bifurcation between Ws(Si) and Wu(Si), i= 1, 2, 3,
followed by transverse intersection of these
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p=l g=l c=1.9 a=3.2225 c=0.95

chaotc transient
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(e)

]]p=l g=l a=l.9 a=3.225 c=0.95

-2

FIGURE 15 (Continued).

unstable and stable sets. Moreover, we are in a

regime of noninvertibility of T, and we know, as

already remarked in [11] (see also [27]) that such
chaotic sets are bounded by images of critical
curves, and thus a tangency between A and WS(Si)

also denotes a contact between a critical curve LCz:
and W (S/).
The occurrence of this contact indicates that the

first homoclinic orbit of a cycle, in noninvertible
maps, is often associated with critical homoclinic
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FIGURE 15 (Continued).

(h)

orbits (i.e., all the homoclinic orbits necessarily
have one critical point belonging to LC_ 1), as it
occurs in one-dimensional maps (see [13, 18]). It is

worth noting the difference between the homo-
clinic bifurcation of the 3-cycle {S1, $2, $3} on the
boundary of the basin, commented in Section 5,
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with respect to the one just observed. In Section 5
the homoclinic bifurcation only changed the basin
boundary without involving the attracting sets

(which were the same before and after the
bifurcation) while the one described in Figures
15c, d also involves the attracting sets.
The destruction of the chaotic attractor leaves

a strange repellor in the set of bounded trajec-
tories. This means that the white points in
Figure 15e all converge to the origin except for
an "invisible" set of zero Lebesgue measure, on
which the restriction of T is chaotic. The
existence of such a strange repellor is revealed
by the transient part of the generic trajectory,
which behaves chaotically before settling down
on the origin, as in the example reported in
Figure 15e. As the parameter a increases, this
forward route to chaos is also observed in the
backward way: in Figure 15f we see that a 3-piece
chaotic attractor appears again. This means that
the homoclinic orbits of the saddle {$1, $2, $3}
have disappeared, the intersections between
Wu(Si) and Ws(Si), i= 1,2,3, have caused a
backward route leading again, after a homoclinic
tangency, to an empty intersection. The backward
homoclinic tangency causes the transition of a
chaotic repellor into a chaotic attractor (see
Fig. 15f).
The three piece chaotic attractor, in its turn,

undergoes all the backward bifurcations up to the
restoration of an attracting 3-cycle {N1, N2, N3}, as
shown in Figure 15g, and up to its backward
saddle-node bifurcation causing the merging of
the 3-cycle {N1,Nz, N} and the 3-cycle saddle
{S,S2, S} and the consequent disappearance of
these cycles at a

_
3.363. The fixed point is again

the only attractor, but we can see that its basin is
now much smaller than the one existing for low
values of a. Now we are very close to the boundary
of the stability region. At a

_
3.719 the fixed point

O undergoes a flip bifurcation giving rise to a
stable 2-cycle, but its basin is quite narrow,
decreasing more and more as a increases (see
Fig. 15h), up to a complete disappearance of
attracting sets.

7. CONCLUSIONS

We have formulated a discrete time model of a

financial market whose dynamics are driven by the
interaction of rational fundamentalists and trend
chasing chartists, the proportions of these two

groups being held fixed. We have analysed the
dynamic behaviour of the model by using local
stability analysis and performing global inspec-
tions of the basins of attraction by means of the
theory of critical curves and various numerical
tools. We have focussed our attention on the
several bifurcations which a basin of attraction,
whose size and shape may be considered a kind of
"measure" of the "practical stability" of the
attracting set, may undergo.
We have also highlighted the crucial trade-offs

which affect the dynamics. These being on the one

hand the trade off between the strength of
fundamentalists’ demand (a) and the speed of
adjustment of chartists’ expectations (c), and on

the other hand between the speed of adjustment of
market prices (/3p) and the strength of chartists’
demand at the steady state (k’(0)).

In recent years a number of models of financial
markets based on interacting heterogeneous agents
have been developed, we cite in particular [7, 22, 8
and 10]. These models are richer and more realistic
than ours in that, in one way or another, they
allow the size of the different groups of agents to
vary according to the evolution of the financial
market. These models are therefore of necessity
not very mathematically tractable. We believe that
our model complements these other studies be-
cause it contains the essential elements of the
heterogeneous interacting agents paradigm whilst
still remaining mathematically tractable. For this
reason we have been able to obtain, in Sections 3-
6, a more complete characterization of the global
dynamics than is possible in the richer and more

realistic models.
Future developments of the model introduced

here could focus on attempts of each group to
learn about their economic environment in the
face of stochastic factors (capturing for example
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the random arrival of new events in the market).
Some initial attempts in this direction are
outlined in [2], and will be the object of future
research.
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