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1. MOTIVATIONS

While chaotic economical systems have been
intensively studied over the last two decades, their
statistical properties in the long-run, especially
their relations to ergodic dynamical systems, did
not arouse enough attention from economists.
Limited studies were mainly performed by the
present authors (see references).

Chaotic economic processes are characterized
by sensitive dependence to initial conditions,
observation and measurement accuracy, and
computation errors, which makes long-term pre-
diction of their trajectories impossible. On the other
hand, if a chaotic process preserves an invariant
measure, that is, a probability density over its
domain, its long-term statistical behavior is robust
to the factors mentioned above. Especially when
such a chaotic process is also ergodic, the time
averages of any continuous function of system’s
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variables exist and can be obtained by the space
averages calculated with the invariant density.

In this paper, we reveal some important
statistical properties of ergodic processes, which
have never been discussed in the literature. These
properties not only help us to understand better
the internal mechanism of an ergodic process but
also provide new insights about dynamical eco-
nomic processes. It is found that, for a broader
class of one-dimensional, discrete time process
widely applied in economics, the average growth
rate of an ergodic process is always positive,
regardless of the explicit form of the process.

Section 2 briefly summarizes the characteristics
of an ergodic process. Section 3 introduces an

interesting statistical inequality that follows di-
rectly from the relevant definitions but has never
been pointed out. Section 4 turns to discussion of
the growth rate of an ergodic process. Section 5
provides an economic application to Walras’
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tatonnement process. Section 6 concludes the
paper.

2. CHAOTIC AND ERGODIC
PROCESSES

Let xt+l= O(xt) be an one-dimensional dynamical
process defined on a domain I [a, b]. Under some
rather weak mathematical requirements such as

period three, the process will exhibit chaos, that is,
perpetual and erratically fluctuations. Although
trajectories that start with two adjacent values will
diverge so as to become totally uncorrelated, the
frequencies of trajectory {xt}0 may converge to a
unique stable density function, say (x), which
enjoys the same properties as that of a stochastic
process, i.e., p(x) >_ 0 for all x and fp(x)dx 1.
Due to the sensitive dependence on the initial
condition, it is meaningless, in some situations, to
study an individual trajectory {xt}=0. Instead, we
are more concerned with the long-term character-
istics such as the observed density given by
limr_(1/T) }-tr_-0 A(Ot(xo)) for any subset A of
/, the time-average given by

-1 -,
lim -xt-lim-2_., Or(x)

T-c TT--+cx T t=o t=o

and other statistical characteristics, where XA(’)
denotes the characteristic function of A.
As Lorenz once pointed out, individual trajec-

tories are analogous to weather, while long-term
global properties such as invariant density are

analogous to climate (Lorenz, 1993). Long-term
dynamical properties reveal the whole picture of
dynamical process with much richer information
that is difficult to attain from individual trajectory.
Studies of long-term statistical characteristics can
be simplified if the chaotic process is also an
ergodic one (its asymptotical behavior can not be
studies in a sub-space).

It is clear to mathematicians now that a chaotic
dynamical process is also an ergodic process if and
only if the invariant measure preserved by it is

unique and absolutely continuous with respect to
the Lebesgue measure. Hence, through the invari-
ant measure (density), the two conceptually
different classes of dynamical characteristics are
linked together so that the long-term behavior of a
chaotic dynamical process can be investigated by
virtue of the fruitful results available in the field of
stochastic process (Lasota and Mackey, 1985).
An ergodic process 0 enjoys the following nice

properties:

(i) Ergodicity: for any continuous function of x,
its space average equals to the time average.
That is, the following identity holds for any

fE C and all most all x0 E/:

T-1

If(x))- lim ! -f(Ot(xo) i f(x)99(x)dx
T--cx T t=o

(ii)

(iii)

where (x) is the invariant density function.
Stochasticity: the time average will obey the
central limit theorem so that the observed
trajectory {xt}=0 behaves like a stochastic
process.
Invariance: the time average is invariant with
system’s iterates, that is, if 0 is an ergodic
process, then for any fC and positive
integer k, the following identities hold true:

(f(O:(x))) (f(x)) (f(O-c(x))). (1)

Property (i) implies that the time-average of any
statistical property is independent of trajectory
(initial point) so (f(xo)) can be written as (f(x)).
When f--- x, the identities (1) become

(O+k(x)) (x), for all positive integers k. (2)

3. AN INTERESTING STATISTICAL
INEQUALITY

With identity (2) in hand, we wonder how (xO(x))
behaves in general? Does there exist any qualita-
tive relationship between IxO(x)) and
Actually, we have
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PROPOSITION For any ergodic dynamical process
xt+l-O(xt), there exists the following inequality"

(Xm(O(x))m) < (x2m), (3)

where m is positive constant. If 0 (x) 0 for all x in
the domain, then the inequality will hold when m
takes negative value.

O(A)=A

-"

FIGURE Illustration of chaotic but non-ergodic processes.

01(x)
O(x) +4(x- 1)(2-x) O.(x,), O=(x) 2-4(x- l)(2-x)

"
(a). 01 (X) 1 + 4(x 1)(2 x) (b). 02(x) 2 4(x 1)(2 x)

03(X)
Oa(x)-l+(x-1)(4x-7)

,"

(c). Oa(:) 1 + (:- 1)(4z 7)

FIGURE 2 Ergodic processes.
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Proof The proof is straightforward. If 0 (x) is an
ergodic process, its time-average can be defined. It
follows from the inequality (xm- (O(x))m)2 >_ 0 that

{(Xm (O(X))m)2) > 0 (4)

where strict inequality holds because O(xt) xt in
general. Inequality (4) in turn implies that

(x2m) + ((O(x))2m) > 2(xm(O(x))m), (5)

which yields the inequality (3) because
(x2m) -((O(x))2m). Q.E.D.

Although inequality (3) seems trivial both in the
form and in its proof, it does not hold for a chaotic
process in general, since the existence of time-
average of the later may not be guaranteed
(Sigmund, 1992). Figure demonstrates two
examples of chaotic but non-ergodic processes.

Example 1

01 (x)- + 4(x- 1)(2- x) (6)

02(x) 2 4(x 1)(2 x) (7)

03(x) + (x- 1)(4x- 7)2 (8)

04(X) O1 (X)X[1,3/2) -- 02(X)X[3/2,2 (9)

These processes, illustrated in Figures 2a-2d, are

among the most frequently discussed chaotic maps
in the economic literature. Figure 3 demonstrate
the computer simulations of time averages under
the same initial condition x0= 1.3333 for initial
1000 iterations. We see that, for all i, we have

(xOi(x)) < (x2) and ((1/x0i(x))) < ((I/x2)). It can be
shown that chaotic processes listed in Exam-
ple share the same invariant density:
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FIGURE 3 Computer simulations I.
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TABLE Illustration of inequality (3)

2 3 4

fi xOi(x)(x)dx 2.25 2.25 2.25 2.3030

fi (tg(X)/xOi(x))dx 0.5051 0.4950 0.5009 0.5132

9(x)- (l/vv/(X-1)(2-x)). So we can verify
the inequalities with space averages, the results of
which are summarized in the Table I below.

4. GROWTH RATE OF DYNAMICAL
PROCESS

Economic growth rate and price inflation rate are
two most important concepts in economics, so are
income dynamics and price dynamics. Generally,
for a dynamical process xt + O(xt), if x E R+, we
define the (forward) growth rate as

xt+ x

xt
O(xt)
xt

Of course, we can similarly define a backward
growth rate as

xt Xt+l

Xt+l
xt (11)O(x )

Then the following inequality holds for any
process"

gt,t < O, for all t. (12)

If the trajectory of the process O(x) is mono-
tonic in the long-run, that is, there exists a time t*
such that either O(x) x, for all > t*. So we have
gt0, for all > t*. So the time-average of g,
denoted as (gt), may not exist.

If the trajectory of the process O(xt) is periodic in
the long-run, that is, there exists a time t* and
positive integer k such that 0(x+k)= xk, for all

> t*, then the growth rate g also fluctuates
cyclically. So long as the period k is finitely large,
the time-averages of g and ,, in contrast to the
monotonic case, do exist.

But if O(x) is chaotic, the growth rate gt will
fluctuate irregularly as does the inverse growth
rate . Numerical computer simulations, however,
show a paradoxical phenomenon: {g)>0 and
(’t) > 0, that is, both the forward and backward
growth rates are always positive, which seemingly
contradicts the inequality (12), a characteristic that
should be obeyed by all dynamical Process.

Actually, (gt)> 0 and (’t)> 0 amount to the
concurrent existence of the inequalities:

(0(x))>l and ( x )-- > 1. (13)

Figure 4 demonstrates the computer simulations
for the process defined in Example with the same
initial condition x0= 1.3333 for initial 1000 itera-
tions. We see that, for all i= 1,2,..., 4, we have
((Oi(x)/x)) > and ((x/Oi(x)))> 1. This can be
verified by the invariant density: (x), the results
of which are summarized in Table II:
The question arises whether the paradoxical

behaviors just illustrated are exceptional or a

generic property of ergodic processes. The positive
answer is proved for a class of one-dimensional
ergodic processes, to which all four processes
mentioned in Example belong.

Actually, a stronger and more general result can
be shown as follows.

THEOREM 2 Let 0 be an one-dimensional ergodic
dynamical process defined on a domain I [a, b]. If
there exists a unique dividing point yc in the interior

of the interval I such that,

O(x)x forx 2, (14)

then for any functions fE C and g C that are
monotonic andfinite in I, the following inequalities
hold:

(f(x)g(O(x))) (f(x)g(x)), if f’ g’ <>- 0. (15)
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FIGURE 4 Computer simulations II.
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TABLE II Illustration of inequality (13)

2 3 4

I (Oi(x)/x)(tg(x)dx 1.0503 1.0711 1.0589 1.0336
fi(x/Oi(x))(x)dx 1.0607 1.0607 1.0607 1.0348

Proof Let (x) be the ergodic invariant density
function of 0. Due to the ergodicity, the time
average should be equal to the space average, so

<f(x)g(O(x))) f(x)g(O(x))cp(x)dx

(f(x)g(x)) f(x)g(x)cp(x)dx

(f(x)g(O(x))) (f(x)g(x)}

f(x)[g(O(x)) g(x)]cp(x)dx

+ f(x)[g(O(x)) g(x)]cp(x)dx

Referring to Figure 1, the existence of a unique
dividing point 2 guarantees that O(x)x for x 2.

We start with the case that both f and g are
monotonic increasing functions of x, i.e., f’ (x) > 0
and g’(x) > 0, for all x:

(x)[g(O(x)) g(x)]cp(x)dx

<_ f(2)[g(O(x)) g(x)]cp(x)dx,

bf(x)[g(O(x)) g(x)]cp(x)dx

<_ f(Yc)[g(O(x)) g(x)]cp(x)dx.

Therefore,

(f(x)g(O(x))) (f(x)g(x))

<_ f(2)[g(O(x)) g(x)]cp(x)dx

b

+ f(2)[g(O(x)) g(x)]cp(x)dx

b

=f(2) (g(O(x)) g(x))cp(x)dx

=f(2)({g(O(x)) {g(x))) 0.

Here we utilize the fact that Ig(O))- {g(x)).
The rest cases with different signs of derivatives

off and g follow the same principle. Q.E.D

The following proposition concluded directly
from Theorem 2.

PROPOSITION 3 For any one-dimensional ergodic
process 0 that satisfies the condition specified in

Theorem 1, the following inequalities hold for any
positive integer m and n.

Ixm (O(x))") < (16)

<

if O(x) 7 0 for all x E I and 0 I. (17)
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(O(X))m I >
Xn

if O I, (18)

(O(X))n > if O(x) 7 0 for all x E I.

(19)

Inequalities (13) then follows directly for m n 1.

Although the result stated in our theorem are
restricted to "one-turn" type of dynamical pro-
cesses, they actually cover almost all one-humped
continuous processes so far discussed in the
economic literature.
Due to the fact that, if a property holds for an

ergodic process 0, it also holds for its iterates 0k,
k > 1. The latter, however, is multiple-humped. So
it would be expected that the inequality (15) holds
for quite a broader class of dynamical processes.

Example 2 Consider a piecewise linear process
defined on the unit interval I= [0, 1]:

(7x if x < 1/(7
(20)T(x)

(1 / ((7 1))((7x 1) otherwise,

where (7> 1. The process is illustrated in
Figure 5(a) and satisfies the "above-below" con-
dition. Suppose that f(x) e and g(x) e- x, it
follows (f(x)g(T(x))) > and (f(T(x))g(x)) > 1,
for f’ > 0 and g’ < 0.

Actually, T(x) possesses a constant invariant

density o(x)-1X[0,1] that is independent of the
parameter (7. Therefore, we have

(f(x)g(Ta(x))) ex-(yxdx

+ eX-((x-1)/(-l))dx

-e-((-l)/)
+

(21)

(f(T(x))g(x)) o 1/
e(yX-Xdx

_}_ e((ax-1)/(a-1))-Xdx

e((-1)/)
--(e-(I/") I)((7-- I).

(22)

The graphs of (f(x)g(T(x))) and f(T(x))g(x))
calculated from (21) and (22) with respect to (7 are

given in Figure 5(b). Both of them are shown to be
greater than unity, which are consistent to our

expectations. Due to the space limits, computer
simulations are omitted.
The significance of statistical inequalities pro-

vided in this paper are yet to be explored. We
provide a direct but interesting application in
Walras’ tatonnement process as an example.

To.(x) o’XXto,x/,,.) + (o’x 1)/(o" 1)X[/.,]
1.05 t

.f(x)g(T,(x))

0.95
1.5 5.5 9.5

FIGURE 5 Piecewise linear map; (a) Piecewise linear process; (b) Illustration of time-averages.
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5. ECONOMIC APPLICATION:
TATONNEMENT PROCESS

Let S(p), D(p) be supply and demand functions
for a given commodity with price p, such that
D’(p) < 0, and S’(p) > 0, for anyp > 0. The market
excess demand is defined by z(p) D(p) S(p).
By tatonnement, we mean the following price

adjusting process:

Pt+l O(pt) Pt + Az(pt) (23)

p, + S(pt)), (24)

-,max

(b).Tatonnement Process

where A is a constant reflecting the adjustment
speed.
Under conventional assumptions that D’(pt)<

0, D"(pt) >_ 0 and S’( pt) > O, S"( pt) <_ O, O( pt)
often appears as a U-shaped curve as depicted in
Figure 6b. Such process is apt to induce chaos as
shown by Day (1994), so there exist situations
that Tatonnement process specified is a chaotic
and ergodic process.
When 0 is ergodic, statistical characteristics

such as time average exist. Proposition reveals
that (pO(p))< (p2), which is equivalent to
(p2)+A(pz(p)) < (p2). Therefore, we have

(p z(p)) < 0 (25)

The inequality (25) resembles to the famous
Walras’ law in the static general equilibrium

8

6

4

2

0 20 40 60 80 O0
(c).Trejectory with Po

0.05-

0.04

(a).Demand and Supply

FIGURE 6 Tatonnement process.

0.03-

0.021
0.01

0 2 4 6 8 10
(d).Density with Po

FIGURE 6 (Continued).

analysis, which states that the identity P. Z(P)= 0
always holds true for all P (regardless whether the
economy is in the equilibrium state or not), where
P (Pl,P2,... ,Pro) is a price vector and Z(P) the
excess demand vector for rn commodities.
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are positive constants. Figure 6(a) illustrates their
graphs with a- 1, h- 3, b- 2, d- and c- 10.

The tatonnement process defined by Eq. (23)
with A 0.5 is shown in Figure 6(b).

For a fixed initial price P0--1, computer
simulations have been performed and presented
in Figure 6(c) for trajectory of first 100 iterations,
Figure 6(d) for simulated invariant density,
Figure 6(e) for average (pz(p)), and Figure 6(f)
for average ((0(p)/p)) and ((p/O(p))), respectively.

O(p)

p

o 200 460 600 860 00o

FIGURE 6 (Continued).

In term of the dynamical process defined by Eq.
(24), if the tatonnement process converges to a

stationary equilibrium b, we always have z(/5) -0
and so b z(/5) 0. But if the process is chaotic and
ergodic, then in the long-run, its average (p z(p)) is
negative in general. So the inequality (25) provides
further insight about long-run dynamical charac-
teristics of an ergodic tatonnement process, and
hence will be referred to as dynamical Walras law.

Define the inflation rate as

Pt+l --Pt
7r

Pt

Since O(pt) satisfies the conditions specified in
Theorem 2, we therefore conclude that the average

inflation rate is always positive.

Example 3 (Huang, 1999) Let D(pt)= ae-(p’-h)

and S(pt)= ceb(p’-h) -d, where a, b, c, d, and h

6. CONCLUSION

Some interesting statistical inequalities of ergodic
dynamical process are discussed and illustrated with
computer simulations. It is shown that, for a
broader class of one-dimensional discrete chaotic
process, the average growth rate is always positive.
Future research will directed to whether such
property is shared by all chaotic and/or ergodic
processes, and to the necessary or sufficient condi-
tions for its validity in high-dimensional processes.
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