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We present a lattice gas cellular automaton (LGCA) to study spatial and temporal
dynamics of an epidemic of SIR (susceptible-infected-removed) type. The automaton is
fully discrete, i.e., space, time and number of individuals are discrete variables. The
automaton can be applied to study spread of epidemics in both human and animal
populations. We investigate effects of spatial inhomogeneities in initial distribution of
infected and vaccinated populations on the dynamics of epidemic of SIR type. We discuss
vaccination strategies which differ only in spatial distribution of vaccinated individuals.
Also, we derive an approximate, mean-field type description of the automaton, and
discuss differences between the mean-field dynamics and the results of LGCA simulation.
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1. INTRODUCTION

Since the publication of Kermack and
McKendrick epidemic model (Kermack and
McKendrick, 1927), mathematical epidemiology
developed an extensive body of literature. A vast
majority of proposed models, to study dynamics of
epidemics, is based on ordinary differential equa-
tions. These models assume that the population
mixing is strong, hence concentrations of effected
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types of population (for example, susceptible,
infected, removed) are spatially homogeneous.
Thus, these models neglect spatial aspects of the
epidemic process. Models which rely on partial
differential equations (such as Murray et al., 1986),
abandon the assumption of homogeneous mixing
and allow to study the geographical spread of
epidemics, yet they still pose some serious prob-
lems. They treat the population as continuous
entity, and neglect the fact that populations are
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composed of single interacting individuals. This
can lead to very unrealistic results, such as, for
example, endemic patterns relaying on very small
densities of individuals, named by Molisson (1991)
“atto-foxes” and ‘‘nano-hawks”.

Models based on interacting particle systems
eliminate these shortcomings of traditional meth-
odologies. They treat individuals in biological
populations as discrete entities, allow to introduce
local stochasticity, and are well suited for compu-
ter simulations. Several models of this type have
been suggested in a recent decade, including
stochastic interacting particle models (Durret
and Levin, 1994), and models based on cellular
automata or coupled map lattices (Schonfisch,
1993; Boccara and Cheong, 1993; Ahmed and
Agiza, 1998; Duryea et al., 1999; Benyoussef et al.,
2000).

In this article, we present lattice gas cellular
automaton (LGCA) for SIR (susceptible-infected-
removed) type of an epidemic. Our aim is to
demonstrate that the LGCA approach provides an
interesting and potentially fruitful alternative to
other methods. In real biological populations,
both animal and human, contact processes among
infectious and susceptible individuals and their
movement play a vital role in spreads of epidemics
of an infectious disease. Infectious diseases spread
because infectious and susceptible individuals mix
together. They move, meet each other and through
a contact process they transmit an infection.
Hence, among other factors the spread of in-
fectious diseases strongly depends on patterns of
mobility in populations. In LGCA, population
mixing arises directly from motion of individuals
and susceptible individuals can become infected
only if they meet infectious individuals. Addition-
ally, a LGCA allows to investigate effects of
spatial inhomogeneities in population concentra-
tions on the dynamics of epidemic processes and
vaccination strategies. We will demonstrate exam-
ples of such effects. In this article we do not aim to
construct a LGCA of a particular disease but
rather we want to study generic features of LGCA
methodology and its suitability in the context of

epidemiology. To illustrate the ideas and discuss
further possible developments we selected SIR
(susceptible-infected-removed) epidemic type for
which we constructed a LGCA. We derived
approximate mean-field type description of the
automaton and simulated and analyzed the auto-
maton dynamics. We compared the predictions
obtained from the mean-field description with
those obtained from the automaton simulations.
Additionally, we used automaton to study various
vaccination strategies.

2. INDIVIDUAL-BASED SIR MODEL
ON A LATTICE

We will construct a LGCA for an epidemic of
SIR type, for which we can assume that a
population consists of three types of moving
and interacting individuals, of type 7€ {S, I, R},
susceptible, infected, and recovered. The pro-
posed automaton is a special case a lattice gas
cellular automaton for reaction-diffusion systems,
described in detail by Boon et al. (1996) and
Lawniczak (1999).

We tile the physical space, in which an epidemic
takes place, by regular hexagonal cells A(r) with
centers at discrete space variables r. We chose
the hexagonal cells in order to avoid spurious
invariants in the dynamics of the automaton,
also known as parity problem (Boon et al., 1996;
Lawniczak, 1999). However, other types of tiling,
such as square cells, can be used as well. We assume
that the distance between centers of adjacent cells
is 1. Let

¢; = (cos (i — 1)7/3, sin (i — 1)7/3) (1)

be a unit vector, foreach i=1, ..., 6. If we connect
the center of every hexagon A(r) with the centers
of the neighbouring hexagons r+c¢; where
i=1,...,6, then we obtain a hexagonal lattice
structure £, with the lattice coordination number
m=26. In the case of square cells the lattice
coordination number would be m=4. Figure 1
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FIGURE 1 The array of hexagonal cells with a dashed lattice superimposed on it. The lattice depicts the channels through which
the individuals are transported from cell to cell. The figure is reproduced from Voroney and Lawniczak (2000).

(reproduced from Voroney and Lawniczak, 2000)
shows that the centers of the hexagons A(r) become
the nodes of the hexagonal lattice £;. The cells
represent some area of the physical space in which
the individuals mixed, interact and can move from
one place (cell) to another. The individuals can
move among the cells only along the channels
corresponding to edges of the lattice £,. Except
where confusion might arise, we will identify a cell
h(r) with its center r, hence with the node r of the
lattice £;. Hence, we can say that the individuals
reside at the nodes of the lattice and move along its
edges (channels). While extensions to arbitrary
boundary conditions are straightforward, we limit
our considerations to periodic boundary condi-
tions.

At the initial time, k=0, particles representing
individuals S, 7 and R are distributed randomly
and independently, among the cells A(r), r€ Ly,
according to probabilities given by their initial
concentrations. The initial distribution of parti-
cles is such that there are at most six particles,
regardless of the individual type, per cell A(r)
(four when the cells are squares). The LGCA
discrete dynamics is constructed in such a way

that the total number of individuals at a given
node is restricted to stay between 0 and m (m=6
or 4, respectively, for hexagonal or square lattice)
per each cell during the time evolution of the
automaton. Since a single lattice node represents
a small region of space, this means that m can
be interpreted as the carrying capacity of
that region. In other words, the number of
individuals that this region can support cannot
exceed m.

The time evolution of the automaton takes place
at discrete time steps. At each time step k, an
evolution operator £ is applied, simultaneously
and independently of the past, to all lattice nodes.
The evolution operator £ governs the dynamics
of the automaton, which arises from sequential
applications of the three basic operations contact
C, randomization R and propagation P. Hence, the
evolution operator can be written in terms of these
operations as the superposition

E=PoRol. 2)

Each of the operations C, R and P captures some
aspects of the epidemic process and their actions
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are described as follows.

(1) As a result of an application of the contact
operation C, individuals can change their type,
meaning that susceptible individuals can be-
come infected, and infected individuals can
recover. More precisely, each susceptible
individual at a node r, independently of other
individuals, can become infected with prob-
ability 1 — (1 —r)", where ny is a number of
infected individuals at the node r, and r €[0, 1].
Similarly, each infected individual at the node
r, independently of other individuals, can
recover with probability a, where a € [0, 1].

(2) As a result of using the randomization opera-
tion R, applied at each node independently of
the other nodes, a population of individuals
residing at a node r is randomly redistributed
among edges/channels originating from the
node r. Through the selected channels, allow-
ing at most one individual per channel,
individuals will move in the propagation step
from the node r to the neighbouring nodes.
The process of redistribution of individuals is
purely probabilistic one and it contributes to
modeling the mixing process of individuals.

(3) In the propagation step, governed by the
operator P, individuals simultaneously move
from their nodes to the neighbouring ones
through the channels assigned to them in the
randomization step. The movement of indivi-
duals is purely deterministic in the propaga-
tion step.

The rationale behind the probability of becom-
ing infected in the first step being 1 — (1 — 7)™ can
be explained as follows. We assume that, at a given
node, a susceptible individual contacts all infected
individuals at that node and that all infected
individuals are infectious one. If the probability of
infection per contact is r, then the probability of
not getting infected after contacting each of ny
infected individuals is (1 — r)". The probability of
getting infected, therefore, is 1 — (1 —r)"™.

Note that the mechanism of -contracting
an infection described here implies that the

incubation period is short enough to be negligible,
meaning that a susceptible who contracts the
disease at time k becomes infectious immediately,
and can infect others at time k+ 1. While this is a
convenient assumption, it will have to be relaxed
in more realistic models, or in models tailored for a
specific disease. Also, note that the duration of the
disease (number of time steps from contracting an
infection to recovery) has geometrical distribution
with a mean value of 1/a time steps. Again, in
realistic disease-specific models a different distri-
bution will have to be adopted, depending on the
particular disease. As we said earlier the spread of
infectious diseases strongly depends on mixing
patterns in the populations. In the LGCA that is
being presented here, mixing is of diffusive type. It
arises from randomization of directions of motion
of individuals in the randomization step R and the
movement of individuals in the propagation step
P. In the more realistic models the movement of
individuals will have to be appropriately modified
and additionally, we will have to include inflow,
outflow, birth and death processes.

3. MEAN-FIELD APPROXIMATION

In order to gain some insight into the dynamics
of the LGCA defined in the previous section, we
will now proceed to construct approximate equa-
tions describing the automaton dynamics. Using
the formalism and methodology introduced by
Lawniczak (1999), it is possible to write com-
pact microdynamical equations corresponding to
the evolution operator £. Moreover, by making
appropriate approximations, it is possible to derive
the LGCA discrete lattice-Boltzmann equations
and the corresponding partial differential equa-
tions describing the automaton macroscopic
dynamics. Since rigorous derivation of these
equations is rather involved, we refer the interested
reader to Lawniczak (1999). We take here a less
rigorous, but more intuitive approach.

Let us assume that the total number of nodes in
the lattice £, is N, and at time k there are Ng(k)
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susceptible, N;(k) infected, and Ng(k) recovered
individuals on the entire lattice. Since we do not
allow for inflow, outflow, birth and death processes,
the total population, denoted by Ny, remains
constant in time. Define n.(r, k) to be a number of
individuals of type 7 at a node r at time k. If we
assume that the automaton dynamics is spatially
homogeneous (well stirred), then the expected
value of n.(r, k) is independent of r and equals

N: (k)
(k) = ——. 3
(1 (1, K)) = =2 )
Under the same assumptions, regardless at which
cell the susceptible individual is located, the
expected number of infected individuals at his cell
is Ny/N, thus the probability that he becomes
infected is
1— (1 —p)M®n, (4)
Hence, the expected number of susceptible indivi-
duals who become infected in a single time step is
equal to
Ns(k)[1 — (1 — )M, (5)
Similarly, the expected number of individuals who
become recovered in a single time step is aN; (k).
When the population is well stirred this yields that

the expected number of individuals of each type
T7e€{S,I,R} at time k+1 is

Ns(k + 1) = Ns(k)(1 — p)MO/N
Ni(k + 1) = Ny (k) + Ns(k) ©)

x [1 = (1 = MM _ any(k),
Ng(k 4 1) = Ng(k) + aN;(k).

For small r, taking Taylor expansion

Ny Ni(N; — N)r?
1 — Nt/ o M i — )
( r) 1 N + 2N2 )

(7)

and by keeping only the first two terms and
defining p.(k) = N.(k)/N, we obtain

ps(k + 1) = ps(k) — rps(k)pi(k),
pi(k +1) = pi(k) + rps(k)pr (k) — api(k), (8)
pr(k + 1) = pr(k) + api (k).

The above equations are quite similar in their
structure to the ordinary differential equations
obtainable from the classic Kermack-McKendrick
model,! as described, for example, by Murray
(1989). The similarity lies in the fact that the gain
in the class of infected individuals occurs at a
rate proportional to the density of infectives and
susceptibles, in analogy to the mass action law in
chemical kinetics. Of course, this is valid only for
small values of r and under the assumption of
strong mixing, which is not always realistic.

In reality, the epidemic process spreads quite
differently than the mean-field approximation (8)
predicts. Figure 2 compares the number of infected
individuals as a function of time as observed in the
LGCA simulations with the mean-field approx-
imation (8). The simulations have been performed
on a hexagonal lattice with 10* nodes, using
r=0.3, a=0.2. The initial configuration consisted
of 16000 susceptibles and 100 infected individuals
for each simulation. At the initial time for each
simulation the individuals were randomly and
uniformly distributed on the lattice. The simula-
tion curve in Figure 2 represents average over
50 experiments. The mean-field approximation
(MFA) predicts much faster initial spread than
observed in the LGCA simulations. This can be
easily explained by realizing that the MFA
assumes perfect mixing, meaning that an infected

- individuals can always infect some susceptibles

residing at their node. In simulations, since the
mixing is limited, it often happens that the number
of infected individuals in the vicinity of an infected
individuals is larger than average and, similarly,
the number of susceptibles is smaller than average.

!The Kermack-McKendrick model (Kermack and McKendrick, 1927) is based on integral equation with general time-kernel for
infectivity. System of ODE we are referring to can be obtained from this integral equation as a special case.
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FIGURE 2 Number of infected individuals as a function of time, comparison of LGCA simulation results with the mean-field
approximation. The simulation curve represents average of 50 LGCA experiments. Each LGCA simulation has been performed on a
hexagonal lattice with 10* nodes with r=0.3, a=0.2, and with 16000 susceptibles and 100 infected individuals uniformly and

randomly distributed on the lattice at k=0.

Or, in other words, infected individuals are often
grouped together in small regions of space, while
in other spatial regions there are no infected
individuals at all. Therefore, the effective force
of infection is smaller than predicted by MFA.
We should also note that the fraction of suscepti-
bles who eventually became infected is 67% for
simulations and 94% for mean-field, meaning the
epidemic is less severe when the mixing is weaker,
even though it lasts longer, as can be seen in
Figure 2.

4. EFFECTS OF SPATIAL DISTRIBUTION

In order to illustrate the importance of spatial
distribution of individuals in spread of epidemics,
let us consider the following problem. Let us
assume that in some region of space, to be denoted
by A, several cases of an infectious disease have
been reported. In order to limit the spread of the
disease, we would like to vaccinate the population.
However, we have only M doses of a vaccine at
our disposal, where M is less than the number of
susceptible individuals in the population. The

natural question arises how should these doses
be distributed in the population to minimize the
severity of the epidemic? To simplify the problem,
we assume that the vaccine is immediately
effective, therefore vaccinated individuals become
members of the recovered group immediately after
vaccination. Additionally, we assume that the
region A4 is a circle of radius 20 on a hexagonal
lattice of 10* nodes.

We compare two alternative vaccination strate-
gies. In the first one, to be referred to as a
“uniform strategy”, we vaccinate M individuals
selected from the entire population of susceptibles
randomly and independently of each other. In the
second strategy, to be called a ““barrier strategy”,
we vaccinate all individuals in a ring surrounding
the region 4. The thickness of the ring is selected
in such a way that the total number of vaccinated
individuals to be M. In all subsequent discussions
we assume M =1000. Figures 3a and 3e show
initial distribution of individuals in both these
strategies, “uniform” and ‘“barrier”, respectively.
Note that the number of individuals in S, I, and R
classes is the same in both cases, so that the spatial
distribution of individuals is the only difference
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(a) k=0 (e)
(b) k=20 (f)
(c) k=100 ()
(d) k = 1000 (h)

FIGURE 3 Snapshots of LGCA dynamics evolution under “uniform” (left) and “barrier” (right) vaccination strategies. (See Color

Plate 1.)

between configuration in Figures 3a and 3e. The
color coding used is green for S, red for I,
and black for R. Consecutive snapshots of the
LGCA dynamics in Figure 3 reveal that the time
evolution of these two initial configurations is
quite different. One immediately notices that the

final configuration in the case of the “uniform”
vaccination strategy, after 1000 time steps
(Fig. 3d), contains many more blue pixels than
the corresponding final configuration of the
“barrier” vaccination strategy (Fig. 3h). This
means that many more susceptible individuals



198 H. FUKS AND A. T. LAWNICZAK

200 T T T

180
160 -

140 t

120
100
80
60

Number of infected individuals N,

40

20F N e Ao,

uniform

0
0 100 200 300

400 500 600 700 800
Time step k

FIGURE 4 Number of infected individuals as a function of time, under “‘uniform” and “barrier” vaccination strategies. Each
simulation curve represents average of 100 LGCA experiments. For each type of vaccination strategy each simulation has been
performed on a hexagonal lattice with 10* nodes with r=0.3, @=0.2, and with 16000 susceptibles uniformly and randomly
distributed on the lattice at k=0, and 10 infectives uniformly and randomly distributed in the circle of radius 20 on the lattice

at k=0.

contracted the disease in the course of the
epidemic when the ““‘uniform” vaccination strategy
was used than in the case of the ‘“barrier”
vaccination strategy. To be more precise, out of
initial 16000 susceptible individuals out of whom
1000 have been vaccinated at the start of epidemic,
52% became infected when the vaccination was
“uniform”, and only 12% when the “barrier”
vaccination strategy was employed. This can be
seen from Figure 4, where the number of infected
individuals is plotted as a function of time step,
averaged over 100 LGCA experiments.

5. BARRIER’S PERMEABILITY
AND SEVERITY OF THE EPIDEMICS

Since the barrier appears to be a very effective
strategy, one could ask how permeability of the
barrier influences the dynamics of the epidemics.
In what follows, we will vary permeability of the
barrier by vaccinating not all susceptibles in the
ring surrounding the region A4, but only a fraction
f of randomly selected susceptibles in the ring.
Thus, if f=0, there is no single vaccinated

individual in the ring, while f=1 corresponds to
the “barrier” described in the previous section,
where all susceptibles in the ring are vaccinated.
We define the severity of an outbreak of an
epidemic of an infectious disease as (Ng(co)—
Nz(0))/Nior, where Ng(oco) denotes a total number
of removed when a total number of infected
in LGCA simulation reaches a steady state
and Ng(0) denotes the total number of removed
(vaccinated individuals) at the start of an epidemic
(in an initial configuration in our case). Since
in our model we do not allow for birth, death
and migration of individuals then the number of
removed will remain constant from the moment
when the number of infected reaches zero. Let
Ng(o0) be a total number of susceptibles at
the end of an outbreak of the epidemic. Since
Niot=Ns(0) + N;(0) + Ng(0) = Ng(00) + Ng(c0),
then Ng(00) — Ng(0) = Ng(0)+ N;(0) — Ng(oo) gives
us the total number of susceptibles who got
infected in the course of the epidemic. Hence, the
average severity of an epidemic of infectious
disease can be measured by taking the average
((Ng(00) — Ng(0))/Nyo,) of the severities of out-
breaks of specific epidemics of the infectious
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FIGURE 5 Auverage severity of epidemics of an infectious disease (Ng(c0) — Ng(0)/Niot), calculated as average over seventies of
outbreaks of epidemics of the disease, as a function of barrier permeability f. For each f the average (-) has been taken over 100
LGCA simulations of outbreaks of epidemics, each starting with identical initial configuration, and r=0.3 and a=0.2.

disease. It tells us on average what chance a
susceptible has to become infected in a course of
an epidemic. The severity of an epidemic or of an
outbreak of the specific epidemic of an infectious
disease depends on many factors including the
infectivity probability per contact r, the recovery
probability a and spatial distribution of infected
and removed at the outbreak of an epidemic.

In order to examine how the average severity of
an epidemic of an infectious disease depends on
the barrier permeability we performed a series of
simulations varying f. For each f we measured the
average severity of an epidemic as the average over
severities of 100 epidemic outbreaks each with the
infectivity probability per contact r=0.3 and
the recovery probability a=0.2 and starting from
the initial conditions described as follows. For
each barrier permeability f each simulation has
been performed on a hexagonal lattice with 10*
nodes, and with 10 infectives uniformly and
randomly distributed in the circle 4 of radius 20
on the lattice at k=0, and with 16000 susceptibles
uniformly and randomly distributed on the lattice,
from which in the ring surrounding the circle and
consisting of 1000 susceptibles we ‘“vaccinated”, at
k=0, randomly and independently a fraction f of

them. Results of this LGCA experiment, which
show the average severity of an epidemic of SIR
type as a function of barrier permeability f are
presented in Figure 5. It is rather remarkable that
as f approaches zero, the average severity of an
epidemic of SIR type comes close to 49%, not
much different than the corresponding value for
the “uniform” vaccination strategy, when r=0.3
and a¢=0.2. This means that the ‘“‘uniform”
vaccination strategy, is practically not better than
no vaccination at all in this case. Even quite sparse
“barrier” is much more effective than uniform
random vaccination.

6. CONCLUSIONS

We presented a lattice gas cellular automaton for
studying spreads of epidemics of SIR type. We
derived an approximate mean-field type descrip-
tion of the automaton, and discussed differences
between the mean-field approximation and the
results of the simulation using LGCA. We also
investigated what effects can have spatial inhomo-
geneities in the distribution of various types of
populations on the dynamics of the epidemic
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process. We demonstrated that the severity of an
epidemic can strongly depend of an initial spatial
distribution of vaccinated individuals.

The lattice gas cellular automaton discussed in
this work is certainly simplistic. It does not take
into account many complexities which have to be
considered when one attempts to construct a
more realistic automaton model for an epidemic.
However, the important feature of our model
is explicitness of mixing and contact processes.
Unlike models based on partial differential equa-
tions, our model is individual-based, and the
spread of the infection occurs due to the motion
of individuals and their interactions. In such
models it is quite straightforward to introduce
different, non-diffusive type of motion, and
investigate the effects of resulting mixing on the
dynamics of the epidemic process. For example,
we are currently investigating periodic motion
with some amount of randomness, that might
better represent the behavior of individuals in
human populations. Results of such experiments
will be presented elsewhere. Here we would like
only to reiterate that the description of non-

diffusive motion with partial differential equations .

is usually very difficult or impossible, excluding
trivial cases such as linear transport. Individual-
based models are much more suitable for this
purpose, and we hope that they eventually will
help to built epidemic spatial models, tailored for
specific diseases, with high degree of realism.
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