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An approach to synchronize spatiotemporal chaos is proposed. It is achieved by
introducing a finite flat region in the local map. By using this scheme, a number of orbits
in both the drive and the response subsystems are forced to pass through a fixed point
in every dimension. With only an arbitrary phase space variable as drive signal,
synchronization of spatiotemporal chaos can be achieved rapidly in the response
subsystem. This is an advantage when compared with other synchronization methods
that require a linear combination of the original phase space variables.
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Recently, there has been a growing interest in the
dynamics and the synchronization of chaos due to
its potential application in various areas, such as
secure communications, neural networks and
pattern formation etc. [1-9]. The fact that
coupling between the drive and the response
subsystems can lead to synchronization was first
discovered by Pecora and Carroll [1]. This
approach has been further extended to cascade
synchronization of chaos with multiple stable

subsystems [10-12]. It has been shown that it is
possible to synchronize chaos with a high-dimen-
sional hyperchaotic coupled map lattice using a
single scalar variable that is a linear combination
of the original phase space variables [16, 17]. To
enhance the security, an auxiliary chaotic sub-
system is used as a common driver to synchronize
two identical subsystems [18]. However, these
feedback methods are effective only in a particular
range of parameters. To synchronize hyperchaotic
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systems, an approach utilizing convex combina-
tions of the drive and the response subsystems has
been proposed [19]. Nevertheless, an approach to
achieve synchronization of high-dimensional spa-
tiotemporal systems without the convex combina-
tions is not yet found.

Based on the drive-and-response synchroniza-
tion and the feedback methods, we propose to
introduce a finite flat region in the local map of
both the drive and the response subsystems.
Complete synchronization can be achieved for
hyperchaotic systems. A typical drive-and-
response system is described by the following
equations.

X(n + 1) F[X(n)] (1)

Y(n + 1) F[Y(n)] + g(r(n),X(n)) (2)

where the vector X(n)=(xl(n),x2(n),a, xi(n))
corresponds to the drive subsystem while Y(n)=
(yl (n), y2 (n), A, yi(n)) is the vector of the response
subsystem, g(Y(n),X(n)) is a driving term. Here

1,2, A M is lattice index and n is the iteration
index. For hyperchaotic systems with positive
conditional Lyapunov exponents, the drive-and-
response scheme cannot achieve synchronization.
In order to solve this problem, a finite flat region
is introduced in the local map of the drive and
the response subsystems in every iteration. This is
achieved by the following modification.

f p p-6<_xi(n)<_p+
xi(n)

xi(n) Otherwise
(3)

p p-5<_yi(n) <_p+6,

oth rwi  
(4)

In particular, p is a value chosen from the range of
the chaotic attractors while 6 is a sufficiently small
value that controls the width of the flat region.
With our method, the value of p can be selected
arbitrarily within the output range of the drive and
the response subsystems. However, it should have

the same value in both subsystems. If the output
value xi(n) or yi(n) fall between p- 6 and p+ 6, it is
set to the fixed value p. Otherwise it remains
unchanged. With this modification, the two sub-
systems can achieve synchronization.

In this paper, the one-way coupled map lattice

[20] that has been extensively investigated is
discussed as an example to show the effectiveness
of the proposed scheme. The systems can still
achieve synchronization even when noise is in-
duced. A typical M-dimensional one-way coupled
map lattice is described by the following equations.

Xi(gl nt- 1) (1 e)f(x’i(n)) + gf(xti+l(gl))

f p p 6 Xi(l’l p -Jr- (,
xti n)

xi(gl xi(gl < p 6, Xi(gl > p -Jr- 6,
XM+, (n) x (n) 1,2,... ,M (5)

Where x’i(n is the controlled result of xi(n) in each
iteration and e is the coupling strength in the range
0 < e < 1. Here we choose f(x) cx(1 x) with
c 4.0, M 100 and the scalar signal xl(n) is used
as the driving signal to replace y(n) in response
subsystem. As the value of x(n) is between 0 and 1,
we let p 0.8 and e 0.25. These settings are used
throughout this paper unless specified. When the
synchronization is achieved, the modification does
not vanish and the system’s attractors will still
be affected. However, if 6 is small, the effect is
negligible.

Let 6=0.01, simulation results show that the
synchronization occurs between the drive and
the response subsystems. Figure gives the plot
of time versus the average absolute difference p
between the two subsystems. The measure p is
defined as

M

p - lx(n) yi(n)l
i=2

(6)

We observe from Figure that with the increase
of iteration time, p as well as the amplitude of
the perturbation decreases continuously. At time
n 27,550, all the fields in the coupled map lattices
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FIGURE A plot of time versus the average absolute dif-
ference p with e =0.25, p =0.8 and M 100.

are in synchronization and the average absolute
difference is smaller than 10-18, which cannot be
distinguished in our computer.

After the synchronization has been reached,
the modification does not vanish. As a result, the
dynamical structure of the modified local map
will be different from the original one. In order to
investigate the corresponding consequence, we
calculate the percentage of the fields in the drive
subsystem that are set to p.

NM (7)

Here N is the total number of iterations required
to achieve full synchronization. In order to show
the relation between N and k, we plot these two
variables against 6 in Figures 2(a) and (b), respec-
tively, with precision A6 =0.0005. When -0, it
is a typical drive-and-response system without
any finite flat region and so no synchronization
is observed for positive conditional Lyapunov
exponents. In this case, the percentage of the
modified fields is zero and the iterations required
can be considered as N--, +oc. When 6-0.005,
the percentage of the modified fields is k- 1.89%.
This means that the systems are only slightly
modified and so the number of iterations to
achiev6 synchronization is very large (N=
86,706). In the case of a relatively large flat region
such as 6=0.05, 15.6% of the fields are affected.
The corresponding number of iterations required

N
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FIGURE 2 (a,b) Plots with the parameter versus (a) the
number of iterations N required for synchronization, and (b)
the percentage of modified fields k. The two subsystems are
one-way coupled map lattices with M 100 and e- 0.25. The
location of the finite flat region is p--0.8.

is only 3,698, which is very fast for a 100-
dimensional system. If 6 is further increased, the
synchronizing speed can be even faster. However,
the effect caused by the flat region will be so
apparent that the resultant systems will become
considerably different from the original one.
Without the modification, the two subsystems

can only achieve synchronization when e > 0.358.
However if the scheme is applied, synchronization
can be achieved for all e in the range 0 < e < 1. A
typical synchronization process with 6--0.01 is
shown in Figure 3. In this figure, we observed that
the iteration time required for synchronization
decreases rapidly with e.

In order to show the effect caused by the finite
flat region, we take 6--0, 0.02 and 0.05 and mark
the location of the iterating points in the xi-xi+l
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FIGURE 3 A plot of the coupling strength e versus the
number of iterations N required to achieve synchronization.
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plane. They are plotted in Figures 4(a)-(c), respec-
tively. In all the three cases, i= 1, e=0.25 and
p 0.8. The data in these figures are obtained from
6,000 iterations, after omitting 1,000 initial tran-
sients. In Figure 4(a), no flat region is introduced
and the points are solely produced by the one-way
coupled map lattices. Although there are two thin
lines in Figure 4(b), the distribution of points are
approximately the same as that in Figure 4(a).
This shows that the effect introduced by the finite
flat region is not obvious. In Figure 4(c), there are
two obvious straight lines perpendicular to each
other, with crossing point at (0.8, 0.8). The width
of the finite flat region near the two straight lines is
2(N0.1). Comparing with Figure 4(a) that with-
out the introduced flat region, the points in
Figure 4(c) are evidently less evenly distributed.
This is caused by the relatively large flat region.

In order to explore the mechanism to synchro-
nization, a two-dimensional system is analyzed. At
first, the drive and the response subsystems are
independent but both have finite flat regions. The
mechanism is shown in Figure 5 in which the flat
regions in the dimensional space of x-x2 plane
are marked by horizontal and vertical solid lines.
Figure 5(a) represents the drive subsystem while
Figure 5(b) corresponds to the response one. An
orbit of the drive subsystem enters the x-axis flat
region at time tl and is changed to a new start
point (p, x2). At a later time t2, suppose that the
orbit of the response subsystem is also in the flat

FIGURE 4 A plot of iterating points in the xi- xi+ plane
when (a) 6--0, (b) 6 =0.02 and (c) 3 0.05. The other param-
eters are M 100, and e 0.25.
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FIGURE 5 The path to synchronization in the flat region of
the (a) drive subsystem and (b) the response one.

region. Although the two orbits may be different
when entering the flat region, they both have the
same start point p on the x-axis. Similarly, when
the orbit enters the xz-axis flat region, it is changed
to a new start point (xl,p). Thus, the orbit in every
dimension is forced to pass the particular value p
at different time. When the process continues, both
the orbits of the drive and the response subsystems
will become nearer and nearer. At last, they follow
the same path, but with a certain amount of time
delay. If a drive signal such as x or x2 is sent from
the drive subsystem to the response one, this time
delay vanishes rapidly and finally the two sub-
systems will be in synchronization. The proposed
method makes the orbits of the two subsystems
restart at the same value in each dimension
within a limited number of iterations. This can
be achieved by keeping p so small that cannot be
distinguished by the computer. Thus the synchro-
nization can be maintained.
The mechanism of synchronization in higher-

dimensional systems is similar to that described
above. As flat regions are introduced in every
dimension, an increase in the number of dimen-
sions only results in a longer iteration time
to make the drive and the response subsystems
run on the same orbit. Similarly, the time delay
in the drive and the response subsystems can be
reduced to zero by a single drive signal since the
response subsystem is coupled in a cascaded
manner x(M)--, x(M- 1) A- x(1). For
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high-dimensional hyperchaotic systems, their
orbits are more unstable or sensitive and hence a

longer iteration time is required. This is proved by
the simulation results. Let the number of dimen-
sions is raised from 3 to 100, the number of
iterations N required for synchronization increases
from 832 to 25,528, as shown in Figure 6.
The robustness of the synchronization can be

tested by noise perturbation. There is a study that
if a small perturbation E(-10-3,10 -3) is
added to the drive signal xl(n) with restriction
0<Xl(t)+< 1, the synchronization is totally
destroyed when e < 0.32. In our study, we use a

stronger perturbation E (- 10-18, 10-18) to test
the robustness of the synchronization caused by
the flat regions. After the synchronization is
achieved, the perturbation is added to the drive
signal. Different simulations are carried out and
the results are plotted in Figure 7. In Figure 7(a),
the parameters chosen are M-4 and 6 0.01. The
corresponding graph shows that ln(p) approaches
zero at n- 1,500 and thus the synchronization is
destroyed. However, if 6 is increased slightly to
0.02, the synchronization becomes more robust, as
shown in Figure 7(b). This implies that increas-
ing he value of makes systems more robust.
Furthermore, if 6 is kept at 0.02 and M is increased
from 4 to 10 (Fig. 7(c)), the synchronization lost
again. This is due to the increased number of
dimensions. From the above result, it is reasonable
to predict that a further increase of will cause the
two subsystems with dimension M-- 10 to synchro-
nize again. The plot in Figure 7(d) has proved this.
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FIGURE 6 A plot of the number of dimensions in both
subsystems versus the number of iterations N required for
synchronization.
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FIGURE 7 (a-d) Plots of the number of iterations versus
the logarithm of the average absolute difference p under the
perturbation E (--10-18,10-18). Both the two identical
subsystems are simulated with e --0.25, p 0.8. (a) The number
of dimension of two subsystems is M=4 and 6=0.01.
The synchronization is destroyed. (b) With M=4 and
6--0.02, the synchronization is robust. (c) M= 10 and 6=
0.02, the synchronization is destroyed. (d) M-- 10 and 6 0.03,
the synchronization is robust again.

As a result, we conclude that by introducing flat
region in the local map, increasing the value of
can strengthen the robustness of synchronization
while an increase in the number of dimensions will
destroy it.
As the introduction of finite flat regions only

deals with the output of subsystems, the exact
dynamics of the subsystems can be unknown. This
characteristics is important in certain practical
applications that the system dynamics are not well
understood.

In conclusion, following the drive-and-response
scheme proposed by Pecora and Carroll [1], we
introduce finite flat regions in the local map in
order to synchronize hyperchaotic systems using
only a single scalar signal. The relation between
the width of the flat region and the time required
for synchronization is investigated. The larger the
flat region the faster the synchronizing process. A
tradeoff is that the dynamics of the attractors
may be affected. Furthermore, a two-dimensional
system is chosen as an example to analyze the
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mechanism to synchronization when the proposed
approach is applied. The relations between the
number ofiterations for synchronization, the width
of the flat region and the number of dimen-
sions in the subsystems are analyzed. Finally,
the synchronization with noise perturbation is
investigated. Simulations show that with appro-
priate width of flat regions and suitable number of
dimension, the synchronization can be robust.
This synchronization method is useful to models
whose exact dynamics are not well understood.

This work was supported by the Strategic
Research Grant provided by the City University
of Hong Kong.
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