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In this paper, we study the economic implications of the trade off between growth and environment in
the context of dynamic models of capital accumulation. The collective solution is formulated in terms
of dynamic optimization of the central planner, and the decentralized solution is formulated in terms of
differential game between workers and capitalists. We compare the economic properties of two
solutions.
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1. INTRODUCTION

Since the 1970s, a lot of works on environmental
economics from the dynamic perspectives have been
accumulated. Early pioneering examples are Keeler et
al. (1971), M/iler (1974), and Clark (1976). More
recent contributions are, among others, Forster (1980),
Uzawa (1995), Hartl and Kort (1996) and Hettich
(2000). They investigated the economic implications of
the government’s environmental policies by applying
mathematical techniques of dynamic optimization.
Usually, models in such a tradition are formulated in
terms of single agent optimization problems. Recently,
however, analyses of the conflict of interests between
several agents in terms of (dynamic and static) games
in the context of environmental economics have been
developed. We can refer to Dockner et al. (1989),
Dockner and van Long (1993), M/iler and de Zeeuw
(1998), Stimming (1999) and Uzawa (1999) as
important examples. They developed the game-
theoretical approaches, which can analyze the conflict
of interests between fishermen, between government
and private sector, or between countries, and the
effects of the cooperative and noncooperative beha-
viors of economic agents on the global environment

were investigated. Dynamic games (in particular,
differential games) are powerful tools to study such
a theme.f

In this paper, we also consider a game-theoretical
approach of the environmental economics from the
dynamic perspective, but we put much emphasis on a
rather neglected aspect in the environmental economics.
We focus on the conflict of interests between two major
classes in the capitalist economy, i.e. workers and
capitalists. We introduce the environmental factor into
the analytical framework of the "differential game of
capitalism" which was initiated by Lancaster (1973)’s
pioneering paper and developed by Hoel (1978), Pohjola
(1983), Mehrling (1986) and Ishigaki (1994) and
investigate the economic implications of the solutions.:

This paper is organized as follows. In second section,
we introduce the environmental factor into a very simple
model of capital accumulation in which the rate of
economic growth is determined endogenously, and the
"collective solution", which means the solution of the
central planner’s dynamic optimization problem, is
studied by means of the optimal control technique. In
third section, we formulate a "differential game of
capitalism" between workers and capitalists, and consider
the open loop Nash solution as a typical solution of such a
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’As for the survey of the differential game approach to the transboundary pollution problem, see Inoue (1998).
*As for the differential game of capitalism, see also Asada (1997).
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game. It will be shown that in general such a solution is
different from the collective solution, and we obtain some
paradoxical results. For example, it is possible that the
shift of the workers’ preference from the economic growth
to the environment may in fact raise the rate of economic
growth.

To simplify the analysis, we adopt the following
specification of the functional forms.

U(C/N)-- log(C/N)

V(P) aP; a > 0

qv(g)--/3(l+g); /3>0

(9)

(10)

()

2. THE COLLECTIVE SOLUTION

Let us consider the (hypothetical) planned economy in
which the social welfare functional of the central planner
is expressed as

W U(C/N)N V(P)}exp(-pt)dt
o

()

where C is the total real consumption, N is the labor
employment, P is the stock of pollution, p is the rate of
discount which is assumed to be a positive constant, and it
is assumed that

In this case, we have

U(C/N)N- V(P)- {log(C/U)}U- aP

[log{(1 s)(a/b)}]bK a/3(1 + sa)K

{log(1 s) + log a log b (a/b)(1 + sa)}bK

U(C/N)N V(P) =-- f(s; a)K

where

f(s; a) =- {log(1 s) + log a log b (a/b)(1

+ sa) }b.

(12)

(13)

U’(C/N) > O, U"(C/N) < O, V’(P) > O,

V"(P) >: O.
(2)

As for the technology, we assume the fixed technologi-
cal coefficients. That is to say,

Y/K: a > O, N/K: b > O, (3)

where a is the output-capital ratio and b is the labor-capital
ratio, and they are assumed to be constant.
We also assume that

R=I=S=sY (0=<s-< 1), (4)

C (1 s)Y (5)

where I is the real investment, S is the real saving, and s is
the saving rate which is to be controlled by the central
planner.

Substituting Eq. (3) into Eqs. (4) and (5), we have

g =- R/K sa (6)

C/N-- (1 s)(a/b) (7)

where g =-- R/K is the rate of capital accumulation (the
rate of economic growth).
We further assume that the stock of pollution (P) is

proportional to the capital stock (K), but P also depends
positively on the rate of economic growth (g). Namely,

Now, we can formulate the optimal program of the
central planner as follows.

subject to

Max
s(t) [0,1

f(s(t); a)K(t) exp(-pt)dt
o

if(t) s(t)aK(t), K(0) K0 given. > 0. (14)

To solve this problem mathematically, we can make use
of the Pontryagin’s maximum principle.
The current value Hamiltonian (H(t)) in this system

becomes

H(t) f(s(t); a)K(t) + A(t)s(t)aK(t) (15)

where A(t) is the costate variable. Then, we can write a set
of necessary conditions for optimality as follows.

Max H(t) for all >-- 0.
s(t)[0,1]

ii)

Jr(t) -OH(t)/OK(t) + Oh(t)

-f(s(t); a)+ {p- s(t)a}h(t) for all _--> 0.

iii)

P q(g)K; qg(0) > 0, qg(g) > 0, q(’(g) --> 0. (8) limA(t)exp(-pt)--0. (16)
t--o

It will be shown in third section that in our model the open loop Nash solution is also the feedback Nash solution.
}Y is the real national income (real output) and K is the real physical capital stock. It follows from Eq. (3) that N bK, which implies that the labor

employment is constrained by the existing capital stock, so that in general the full employment of labor will not be satisfied. We assume the labor-surplus
economy in which the labor supply does not become a constraint of the production. Obviously, unemployment in our model is not the "Keynesian"
unemployment which is due to insufficient effective demand but the "classical" unemployment which is due to insufficient capital stock.

IIAs for the Pontryagin’s maximum principle, see, for example, Chiang (1992).
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It follows from Eq. (15) that

dH(t)/ds(t) {f(s(t)) + A(t)a}K(t)

[-b/{ 1 s(t)} afla + A(t)a]K(t), (17)

-b/{ 1 s(t)} e < 0ifs(t)6[0, 1). (18)

If we assume the internal solution, Eq. (16)(i) is reduced
to dH(t)/ds(t) 0, i.e.

h(t)-- (b/a)/{ 1 s(t)} + a/3 Ms(t)) > 0. (19)

Substituting Eq. (19) into Eq. (16)(ii), we obtain

[(b/a)/{ 1 s(t)}]i(t) -f(s(t); a) + {p

s(t)a A(s(t))

F(s(t)), (20)

which is a differential equation with only variable, s(t).
We obtain

F’(s(t)) -f’(s(t)) + {p s(t)IA’(s(t)) aA(s(t))

{p- s(t)a}(b/a)/{ 1 s(t)} 2, (21)

F(s(t))

0
S*

F(0)

x s(t)

FIGURE The stationary solution of Eq. (20).

PROPOSITION Under Assumption 1, the only optimal
solution of the problem Eq. (14) is given by

s(t) s* for all >-- O, (25)

where s* (0, 1) is the unique stationary solution of Eq.
(20).

F(0) -f(0; a/3) + p)t(0)

loga + logb + p/a}b + aft(1%- p)
PROOF See Appendix A.

{log(b/a) + p/a}b + a/3(1 + p),

lim F(s(t)) lim log{ 1 s(t) log a
s(t)--,1 s(t)--,1

log b b + aft(1%- a) + (p a)

[!im (a/b)/{ 1 s(t) + a].
s(t)---,1

(22)

(23)

PROPOSITION 2

0s*/0(cq3) < 0.

PROOF We have

OF(s(t); afl)/O(l) 1%- s(t)a %- {p s(t)a}

=l%-p>0.

(26)

(27)

Now, let us assume as follows.

ASSUMPTION

(i)p>a. (ii)F(0)<0.

Under Assumption 1 (i) we obtain

Therefore, we have the following expression in view of
Eq. (21) by totally differentiating the equation
F(s*; aft) 0.

[{p- s*a}(b/a)/{ 1 s*)e]ds* %- (1%- p)d(afl)

0. (28)

F’(s(t)) > 0, lirnF(s(t))-- (24)

Under Assumption 1, we have the unique stationary
solution s* if(0, 1) of Eq. (20) (see Fig. 1). It is clear that
the stationary solution s* satisfies the "transversality
condition" (Eq. (16) (iii)).
Now, we can summarize the main results of this section

as the following two propositions.

Rearranging Eq. (28), we obtain

ds* /d(aft) (a/b)(1%- p)(l s* )e / p s* a

< 0 (29)

because p- s*a > p- a > 0 from Assumption 1.#

Proposition 1 says that the optimal rate of capital
accumulation (g*) is endogenously determined, and it is

#More intuitive proof is as follows. The increase of a/3 induces the upward shift of the function F(s(t)) in Fig. so that it induces the
decrease of s*.
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given by

g* [f/K s*a > O. (30)

Proposition 2 implies that

Og*/O(ce/3) < O, (31)

in other words, the increase of the marginal disutility of
pollution for the planner (ce) or the increase of the
pollution effect of economic growth (/3) will induce the
decrease of the optimal rate of economic growth.
Obviously, this is the reasonable conclusion.

adversely, and it is assumed that the capitalists’ welfare
only depends on their own real consumption and real
capital stock.

Eqs. (3) and (8) in the previous section are retained also
in this section. However, in this section, we must modify
Eqs. (4), (5) and (7) as follows:

/ I S Sk 7r sk(1 z)Y &(1 z)aK

(O=<z=< 1, O<=sk<= 1)
(35)

Cw zY zaK (36)

Cw/N--- z(a/b) (37)

3. A DECENTRALIZED SOLUTION AS A
DIFFERENTIAL GAME OF CAPITALISM

CK (1 sk)Tr-- (1 Sk)(1 z)Y

(1 sk)(1 z)aK (38)

Next, we shall consider the decentralized solution which
reflects the institutional character of the capitalist
economy. This approach tries to formalize the conflict of
interests between workers and capitalists and the struggle
over income distribution, capital accumulation, and the
environmental pollution. We adopt the analytical frame-
work of the "differential game of capitalism" which was
introduced by Lancaster (1973) and others. **
We assume that the workers’ objective functional (W1)

and the capitalists’ objective functional (W2) are
expressed as follows, respectively.

W1 UI(Cw/N)N Vl(P)}exp(-pt)dt (32)
o

W2 U2(CK/K)K exp(-pt)dt (33)
o

where Cw workers’ real consumption, CK
capitalists’ real consumption, N labor employment,

K real capital stock, P stock of pollution, and O
--rate of discount which is common to both classes
(positive constant).
We assume that

UI(Cw/N) > O,

VI (P) > O,

’C,,/) > O,

U(Cw/N) < O,

V(P) >-- O,

< o. (34)

In this formulation, we introduce the asymmetrical
effect of the environmental pollution on the welfare of two
classes. To stress the asymmetrical effect, we simply
assume that the pollution affects only workers’ welfare

where z is the share of wages in national income, Sk is the
capitalists’ average propensity to save, and is the real
profit. Following Lancaster (1973), Hoel (1978), Pohjola
(1983), Mehrling (1986), Ishigaki (1994) and Asada
(1997), we assume that z is controlled by workers and sk is
controlled by capitalists.

Also in this section, we adopt the following specifica-
tion of the functional forms.

Ul(Cw/N)-- log(Cw/N) (39)

Vl(P) ceP; ce > 0 (40)

U2(CK/K) log(CK/K) (41)

q(g) fi(1 + g); /3 > 0 (42)

In this case, W and W2 become as follows:

Wl (z(t), sk(t)) (z(t), Sk(t); a)K(t)exp(-pt)dt

(43)

2(z(t)W2(z(t), Sk(t)) sk(t))K(t)exp(-pt)dt

where,

(44)

fl (z(t), sk(t); ceil) [log z(t) + log a log b

(ceil/b){ 1 + Sk(t)(1 z(t))a }]b,

f2(z(t), sk(t)) log{ 1 Sk(t)} %- log{ 1 z(t)}

(45)

+ log a. (46)

**The formal structure of our model is similar to the so called "AK model" in the endogenous growth theory in the sense that the rate of economic
growth is proportional to the social rate of saving, and it is endogenously determined. See, for example, Barro and Sala-i-Martin (1995).

**Analytical framework of the model presented in this section is essentially based on Ishigaki (1994) and Asada (1997). In their approaches, however,
the environmental factors are not introduced contrary to the present version.
In this formulation, we follow the hypothesis of the "spirit of capitalism" which was introduced by Robson (1992) and Bakshi and Chen (1996). In

their formulation, capitalists’ utility depends not only on their consumption but also on their social standing which is symbolized by their wealth. In this
model, their wealth is represented by the real capital stock (K) and it is assumed that capitalists’ utility is linear homogeneous with respect to CK and K.
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Both classes are subject to the common dynamic
constraint which is given by (iii) lim A2(t) exp(-pt) 0. (52)

R(t) sic(t){ 1 z(t)}aK(t),

K(0) K0 given. > 0.
(47)

Now, let us consider the simplest solution concept of the
(noncooperative) differential game, i.e. the "open loop
Nash solution". It is defined as the path
((t),ic(t)) (t[0,o)) which satisfies the following
conditions for all piecewise continuous paths with respect
to time, (z(t), sic(t)) (t[0, oo)). "’

First, let us consider the solution of workers’ problem.
We have

8H1 (t)/i)z(t) [b/z(t) + cea Al(t)&(t)a]K(t),

02Hl(t)/z(t)2 b/z(t)2}K(t) < O.

(53)

(54)

If we assume the internal solution, Eq. (50)(i) becomes
ilHl(t)/Sz(t) 0, so that we obtain

AI (t) (b/a)/z(t)sic(t) / ce/sic(t) =- A1 (z(t), sic(t))

(i) Wl((t), ic(t)) >_-- Wl(z(t),

(ii) W2((t),ic(t)) >= W2((t), sic(t)) (48)

We can solve such a problem by applying Pontryagin’s
maximum principle. Workers’ current value Hamiltonian
(Hi(t)) is defined as

H (t) f (z(t), sic(t); a)K(t) + A1 (t)sic(t){ 1

> 0 for sic(t)(O, 1 ]. (55)

Substituting Eq. (55) into Eq. (50)(ii), we have

(b/a)/z(t)2sic(t) }(t) (b/a)/z(t)&(t)

q- a[3/Sk(t)2 }&(t) --fl (z(t), Slc(t);

+[p Sk(t){ 1 z(t) }a]A1 (z(t), Sk(t))
(56)

z(t) }aK(t) (49) F1 (Z(t), sic(t); o/3).

where A(t) is workers’ costate variable. Then, we can
formulate a set of necessary conditions of optimality for
workers as follows:

If sk(t) is fixed throughout time, the stationary solution
of Eq. (56) is given by

F (z(t), sic(t); ce) O. (57)

We obtain the following relationships.

Max H1 (t) for all -->_ 0
z(t) 6 [0,1]

A =- OF/az(t)

afla{ 1 z(t)} [p- Sk(t){ 1

ii)

tl (t) -OHI (t)/OK(t) + pA (t) for all -> 0

Z(t) }a]{ b/z(t)2 (58)

B aF1/asic(t)

iii)

lim al (t) exp(-pt) O. (50)

On the other hand, capitalists’ current value Hamiltonian
(H2(t)) is

oz/3a{ 1 z(t)} {p/sk(t)2}{(b/a)/z(t) + cq3} (59)

E =-- OF/O(ce) 1 + sic(t){ 1 z(t)}a > 0 (60)

lim F1 (z(t), sic(t)" ce/3) --[ !im log z(t) -t- log a
z(t)--,O ztt)--,O

H2(t) ------ f2(z(t), sic(t))K(t) q- Ae(t)sic(t){ 1

z(t)}aK(t) (51)

log b (cq3/b){ 1 + sic(t)a}]b

+ {p/sk(t) a}{ !i.mb/a)/z(t) + o68}
z( )--,O

(61)

where A2(t) is capitalists’ costate variable, and a set of
necessary conditions of optimality for capitalists is
expressed as follows:

Fl(1,Sk(t); ce) {log(b/a) + p/sk(t)a}b + a{ 1

+ p/sic(t) (62)

(ii)

(i) Max H2(t) for all >-- 0
s(t) ff [0,1]

tz(t) -OHz(t)/OK(t) + pAe(t) for all _-> 0

Now, let us assume as follows:

ASSUMPTION 2 (i) p>a (ii) A<0 (iii) B<0 (iv)
Fl(1,1,afl) {log(b/a)+p/a}b+cfl(l+p) < 0

See, for example, Bagchi (1984) and Basar and Olsder (1995) as for the related topics. See also Asada (1997) and Asada (1999).
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Fl(Z(t),s(t); aB)
/\

z*(t)
0

Fi(1,s(t),otf)

FIGURE 2 Solution of Eq. (57).

\ z(t)

Assumption 2(i) and 2(iv) are in fact equivalent to
Assumption l(i) and l(ii) in the previous section.
Assumption 2(ii) and 2(iii) will be satisfied if cfl is
relatively small.

It follows from Assumption 2(i) that

lim F1 (z(t), s(t); ceil) +c for s(t)e(0, 1 ].
Z(t)--,O

(63)

On the other hand, Assumption 2(iv) implies that there
exists the level of the capitalists’ saving propensity
Ye(0, 1) such that

Fl(1,s(t); aft) < 0 for alls(t)6(g, 1]. (64)

It is clear that under Assumption 2, there exists the
unique solution z(t) (0, 1) of Eq. (57) when s(t) is fixed
at the level s(t)(3, 1] (see Fig. 2). In this case, we can
express the solution of Eq. (57) as follows:

z(t) @l(Sg(t); aft); 0 cI91/Osg -B/A < O,

0 I)110(OZ) -EIA > 0, (65)

32 l/OSk (-ffA + BA’)/A 2,
where A =-- dA/ds(t) and B dB/dsk(t).
We can prove that the workers’ optimal policy is in fact

given by Eq. (65) when s(t)(5, l] is fixed. We can
consider the function l(s(t); aft) as workers’ response
function. Figure 3 is an example of such a function.## It is
clear that the function qb in Fig. 3 shifts upward when cq3
increases.

Next, let us solve the capitalists’ problem. From Eqs.
(46) and (51) we have

and

OH2(t)/Osk(t) [-- 1 / 1 sk(t)

-+- A2(t){ 1 Z(t)}a]K(t)
(66)

2 20 H2(t)/Osk(t) -K(t)/{ 1 Sk(t)} 2 < O. (67)

Sk(t)
/\

1

z(t)= (Sk(t); O/)

\ z(t)

FIGURE 3 Workers’ response function.

Therefore, the first order condition of Eq. (52)(i)
becomes

A2(t) 1/[{ 1 sk(t)}{ 1 z(t)}a] A2(z(t),sk(t))

> 0. (68)

Substituting Eq. (68) into Eq. (52)(ii), we have

2(t)/[{ 1 Sk(t)}{ 1 z(t)}Za]

+k(t)/[{ 1 sk(t)}2{ 1 z(t)}a]

--f2(z(t), S(t)) (69)

+[p sk(t){ 1 z(t) }a]A2(z(t), s(t))

F2(z(t), sl(t)).

If z(t) is fixed throughout time, the stationary solution
of Eq. (69) is given by

F2(z(t), s(t)) 0. (70)
ASSUMPTION 3

F2(0, 0) -log a + p/a < 1

Assumption 3 together with Assumption 2(i) implies that
a < p < alog a, which is possible only if log a > 1, in
other words, a > e. We can easily show that under
Assumption 3, there exists the level of wage share Z6(0, 1)
such that the solution s(t)(O, 1) of Eq. (70) is uniquely
determined by the following equation for z(t)[O, 2).

s(t) q,2(z(t)); (z(t)) < o (71)

Equation (71) is capitalists’ response function, which
gives the capitalists’ optimal policy when z(t)e[0,z’) is
fixed. Figure 4 is an example of such a function. The
combination (z*, s) which corresponds to the intersection
of workers’ response function (@1) and capitalists’
response function (@2) gives the open loop Nash solution
in this system, and the equilibrium rate of economic
growth (g*) is endogenously determined by

The method of the proof of this proposition is almost the same as that of the proof of Proposition 1.
##In general, the sign of 021)1/OSk(t) is indeterminate.
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s(t)

0 /x z(t)

FIGURE 4 Capitalists’ response function.
FIGURE 6 Comparative dynamic analysis.

g* R/K Sk*(1-- z*)a > O (72)

correspondingly.

PROPOSITION 3 The open loop Nash solution of the
noncooperative differential game which is formulated in
this section is also the feedback Nash solution. In other
words, it is subgame perfect (time consistent).***

PROOF Two response functions (1 and 2) are

independent of the state variable K(t), i.e. this system is
"state separable". Therefore, both players (workers and
capitalists) have no incentive to change their strategies
(Z*,Sk*) even if they are allowed to replay the game
which starts at the arbitrary period r > 0.

Henceforth, we shall call the open loop Nash solution of
this system as the "equilibrium solution" for simplicity. In
general, there exist the multiple equilibrium solutions.

s (t)

Ska

Skb

0 z(t)
Zb 1

FIGURE 5 Equilibrium solutions.

Figure 5 shows the case in which two equilibrium
solutions exist. Point a in this figure corresponds to the
solution with high rate of growth and high level of
pollution. On the other hand, point b is the solution with
low rate of growth and low level of pollution.

In general, there is no reason to exclude a priori one of
such equilibrium solutions. In such a case, we can obtain
some counterintuitive results. For example, suppose that

o43 increases. This means the increase of workers’
disutility of pollution (c) or the increase of the adverse
pollution effect of capital accumulation (/3). Intuitively, it
may be expected that the equilibrium growth rate must
decrease correspondingly. However, this is not necessarily
the case. Figure 6 shows that the intuition is not supported
for the solution b (solution with low growth rate and low
pollution) although the intuition is supported for the
solution a (solution with high growth rate and high
pollution).*** This result seems to suggest that the realistic
"decentralized" solution with the conflict of interests
between different agents is much more complicated than
the "collective" solution which is simply formulated in
terms of the optimization problem of the single agent.

4. CONCLUDING REMARKS

In this paper, we have studied two dynamic models of
capital accumulation with environmental factors, and
investigated the economic implications of the trade off
between growth and environment. In particular, we have
shown that the differential game approach can contribute
to reveal some aspects which have been rather neglected
so far in the environmental economics. In this paper,
however, we have not considered the economic activity
that eliminates the environmental pollution although we

***As for the concept of the feedback Nash solution, see Bagchi (1984), Basar and Olsder (1995) and Ishigaki (1994).
**tIn Appendix B, we present a tatonnement process in which the point a is stable and the point b is unstable. However, we must not interpret this

process as the actual development through time. Therefore, it is not the reliable foundation to exclude the "counterintuitive" equilibrium solution.
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have introduced the adverse effect of economic growth
on the environment. Economic analysis of the activity
which eliminates the environmental pollution in the
dynamic context is the theme which is left to the study
in future.
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APPENDIX A

Let us write the path of [f(s(t); c),K(t),s(t)] which
satisfies Eq. (25) in the text as If*, K(t)*, s* ], and write
the arbitrary path of [f(s(t); c/3), K(t), s(t)] which satisfies
the piecewise continuity with respect to time and the
condition s(t)[0, 1] as t), R(t),3(t)]. (We assume that
all paths depart from the same initial condition
K(0) K0.). Then, we obtain the following equality.

M If* K(t)* (t)[f(t)]exp(-pt)dt
o

If* K(t)* f(t)2(t) + A* s* aK(t)*
0

2(t)* A* {(t)a2(t)

(t)}lexp(-ot)dt

If* K(t)* f(t)2(t) + A* s* aK(t)*
o

A* (t)a2(t)] exp(-ot)dt

+ [A* exp(-ot){I(t) K(t)*

{A* exo(-Ot)}{I(t) K(t)* }dr; (A1)
o

where A* A(s* (b/a)/(1 s*) + c1 > O. We have

[I* exp(-ot){I(t) K(t)* /l,--

lim[A* exp(-ot){K(t) K(t)* }]

A* {Ko Ko}

A* Ko lim exp (Y(’)a p)d"
t--*

0

(A2)

lim exp (s* a p)t 0
t---eo

because 0<-(t)<_- 1, 0<s* < 1 and a<p from
Assumption 1. We also have from Eq. (16)(ii) in the text
that

A* exlS(-pt) OH(O/OK(t) exp(-pt)

(f* + s* a) exp(- pt). (A3)
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Substituting Eq. (A2) and Eq. (A3) into Eq. (A1), we
obtain

M {(f* *s*+ A a) (t)
0

+ A (t)a) }/(t)exp(- pt)dt. (A4)

Let us define the function G(s(t)) as

G(s(t)) =-f(s(t))+ A s(t)a. (A5)

Then, the function G(s(t)) becomes a strict concave
function since G"(s(t))=f"(s(t))= -b/{ 1 s(t)} 2 < 0.
Therefore, we have the following relationship because of
the nature of the concave function.

G(s*) G(Y(t)) >= G(s*){s * 3(t)} (A6)

where the equality in Eq. (A6) is satisfied if and only if
s 3(t). On the other hand, it follows from Eq. (19) in
the text that

G(s *) f(s* + A* *s a 0. (A7)

From Eqs. (A4), (A6) and (A7) we obtain

M= {f*K
0

f(t)K(t) }exp(-pt)dt >- 0 (A8)

s(t)

Ska

Skb

Za Zb 1 > z(t)

FIGURE 7 Stability of the hypothetical adjustment.

discrete dynamical system with one period time lag.

z(t) 1 (Sk(t 1); cq3),

Sk(t + 1)-- qz(Z(t)),

z(t + 2) ’/1 (sk(t + 1);

S(t + 3) qz(Z(t + 2)),...

(B1)

where the strict inequality in Eq. (A8) is satisfied if (t) #
s for some >-- 0 because of the piecewise continuity of
(t) with respect to t. This completes the proof of
Proposition 1.

APPENDIX B

Let us reformulate the response functions of two classes
z(t) @(s(t); cq3) and s(t) cI92(z(t)) as the following

We suppose that these adjustments do not occur
simultaneously, but they occur sequentially. We must
interpret this adjustment process as the tatonnement
algorithm that tries to solve the equilibrium solution by
iteration rather than the picture of the actual develop-
ment through time. As Fig. 7 shows, under this
(hypothetical) adjustment process, the point a (high
growth, high pollution equilibrium) is stable, while the
point b (low growth, low pollution equilibrium) is
unstable.


