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INTRODUCTION

The study constructs an economic dynamic model for
small islands based on the Easter Island study by Brander
and Taylor (1998) (BT henceforth). It deals with analytical
as well as numerical representations of evolutions of a
small island economy, evolutions of which are character-
ized by a two-fold process of transformation: environ-
mental degradation and population growth. Its main
purpose is to investigate under what circumstances, the
small island economy can survive and under what other
circumstances, it must collapse.

Archeological studies have suggested that many Pacific
islands followed similar evolutionary patterns of natural
resource and population dynamics; rapid population
growth, resource degradation, economic decline and then
population collapse. Brander and Taylor’s study reconsi-
ders archeological and anthropological evidences from
economic point of view. In particular, BT present a general
equilibrium model of renewable resource and population
dynamics to explain the rise and fall of Easter Island for
1400 years between about the 4th century and the middle
of the 18th century. It indicates that an economic model
linking resource-dynamics and population-dynamics may
explain, not only the sources of past historical evolutions
discovered in those small islands but also a possibility of
sustainable growth of our world economy in which rapid-
increasing population and rapid-degrading environment
become a serious problem. And, in fact, the research from
the economic perspective for such explanations has
already begun; see Erickson and Gowdy (2000), Daltion
and Coats (2000) and Pezzy and Anderies (2000).

In the existing literature of Easter Island, however, not
much has been revealed with respect to a “history” of
Easter Island. It has been believed that a small group of
Polynesians arrived at the island around 400 A.D.,

deforestation occurred around 1000 A.D., most of statures
were carved during 1000—1400 A.D., and so forth. Based
on this “conventional wisdom”, BT as well as other
researchers investigated a dynamic pattern of natural
resource and populations. However, the “wisdom” is still
one of possible hypotheses and not fully confirmed yet. In
particular, according to Intoh [2000], recent re-consider-
ations of archeological evidences on the island suggest
that the small group settled in the island between 410 and
1270 A.D.} This new finding is inconsistent with the
traditional wisdom. In other word, we may have a different
history of Easter Island, even though the available
historical evidences are the same. It is thus imperative to
construct a model for small islands that can generate
various patterns of dynamics in order to deal with such
ambiguous characteristics of archeological evidences.

In this study, we reconstruct BT’s continuous-time
model of Easter Island in discrete steps for three reasons.
First concerns the theoretical reason. It is of sure interest
to see whether theoretical results obtained in a continuous-
time model are carried over to a discrete-time model as
well. Second concerns the numerical reason. Since there
are no general results on global dynamics for non-linear
structure, numerical simulations are a useful procedure for
dynamic characterization. However the simulation anal-
ysis requires a discretization of the continuous-time
model. Thus constructing a non-linear model in discrete
steps is a natural direction to go. Lastly and more
importantly, a discretization of a continuous-time model
allows us to choose a length of “unit time” that is a matter
of fundamental importance for a construction of dynamic
model. It further allows for the possibility of rich
dynamics ranging from stable dynamics, periodic
oscillations and aperiodic behavior involving more
extreme or moderate “feast and famine” pattern of
cyclical evolutions. Our departure from BT’s continuous-
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time model seems a minor modification, but our arrival on
the main results obtained in this study shows a major
difference; the choice of time domain can be critical in
achieving the non-sustainable growth (i.e. a pattern of
overshoot-and-collapse) or the sustainable growth (i.e.
population stability and natural resource conservation).

The paper proceeds as follows. The second section
recapitulates BT’s model as a basic economic model of
small islands. Third section develops a discrete-time
version and considers its dynamic characterization. Fourth
section makes numerical simulations to complement the
analytical considerations in the third section. The fifth
section concludes the study.

ECONOMIC MODEL FOR SMALL ISLANDS

Since our analysis is based on BT’s dynamic model of
renewable resource and population, we recapitulate their
model in this section. See BT’s paper for more details.
The model describes the dynamics of an economy with
two goods; the harvest of the renewable resource and some
other goods called manufactured goods. The model
functions as follows. At time #, the stock of natural
resource S(#) and the size of population L(¢) are given.
Producers determine their demands for labor and supplies
of goods so as to maximize their profits. The manufactured
goods are produced with constant returns to scale using
only labor while harvesting of the resource is carried out
according to the Schaefer harvesting production function,

H(t) = aS(Lyu(2),

where H®(¢) is the harvest supplied by the agricultural
sector, Lg(t) is the labor used in resource harvesting and «
is a positive constant. A representative consumer is
endowed with one unit of labor and is assumed to have a
Cobb~Douglas utility function,

u(h,m) = hPm' =B,

where h and m are individual consumption of the resource
good and of manufactures, and 8 € (0, 1). Each consumer
supplies one unit of labor and demands both goods so as to
maximize his utility. Prices are adjusted to establish
temporary equilibrium in each of three markets; harvest
market, manufactured good market and labor market. As a
result of the specified utility function and production
functions, the fixed proportion of the total population is
employed in the agricultural section, Ly (t) = BL(f) and
thus the resource harvest is H(t) = afS(?)L(t) at the
temporary equilibrium state. After finishing transactions
in each market, new values of natural resource and the size
of population are determined at the next instant of time.
With those new values, the process repeats itself until the
temporary equilibrium is attained.

Dynamics of temporary equilibrium is described as
follows. The change in the stock at time ¢ is determined by
the natural growth rate G(S(¢)) minus the harvest rate,
H();

sy ~
5 = G6®) — HG).

The logistic functional form for G is assumed,
G(S(®)) = r(1 — S(©)/K)S(t) where K is the maximum
possible size for the resource stock, and r is an intrinsic
growth rate of natural resource, and both are positive
constants. A change of population depends on a difference
between an underlying mortality rate and fertility rate. The
base or exogenous mortality rate, denoted as n, is assumed
to be a positive constant. Following the formulation of
Malthusian population dynamics, BT assume that per
capita consumption of the resource good increase fertility
and/or decreases mortality. BT let ¢(H(¢)/L(r)) be a
fertility function where ¢ is positive constant. In
consequence, the population growth rate is

1 dLe) _ ([ H()
%T"( ”*"’Lm)’

where the first factor on the right-hand side is the
exogenous mortality rate and the second is the endogenous
fertility rate. Thus substituting the logistic function into
the natural growth rate and the optimal harvest, H(¢) =
afS(H)L(¢), into the fertility function yield the dynamic
system,

8O = {(1 - 50) — oBI(1)}S(),
% = (—n+ aB@SE))L({). @

This is a two-dimensional dynamic system of differential
equations and is a variation of the Lotka—Volterra
predator—prey model, in which the human is the
“predator” and the resource stock is the “prey”. The
following is the main result of BT.

THEOREM 1  (Proposition 4 of Brander and Taylor, 1998)
When an interior steady state exists, the local behavior of
the system is as follows. (i) Steady state 1 (L = 0,5 = 0) is
an unstable saddle point steady state allowing an
approach along the S = 0 axis. (ii) Steady state 2 (L =
0, § = K) is an unstable saddlepoint steady state allowing
an approach along the L =0 axis. (iii) Steady State 3
(L > 0,8 > 0) is a stable steady state and a “spiral node”
with cyclical convergence if nr/K¢ap+4(n—
K¢apB) < 0and an “improper node” allowing monotonic
convergence if not.

1'0n1y for the sake of simplicity, we denote the base rate as n while BT use d — b where d is the mortality rate, b is the fertility rate.
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DISCRETE-TIME DYNAMIC MODEL

Discretisation

Euler’s difference scheme for the continuous system Eq.
(1) takes the form,

SUHAD=S0) — {(1 —S0) — aBL(r) }S().
LutB0-L0 = { — p 4 $paBS() L),

where At denotes time step. As Ar— 0, the discrete
system converges to the continuous system. Roughly
speaking, a discrete system can give rise the same
dynamics as a continuous systems if Az is small. It also has
a possibility for generating qualitatively different
dynamics if At is large. In this sense, the discrete system
with Ar > 0 generalizes the corresponding continuous
system. In the following, we first simplify the discretised
system Eq. (2) by changing variables,® explore what
dynamics the simplified model can produce and examine
what implications would the values of model’s parameters
have on the dynamic behavior of the small island
economy.
Eq. (2) can be, after arranging terms, written as

(Ses1,Le1) = F(S,,Ly) : R* — R?

where

{S,+1 = {(1+rAr) — &S, — aBAIL,}S;,
(©)

L1 = {(1 — nAt) + aBPALS, }L;.

The state of the system at time ¢, (S;, L;), is mapped to
(St+1,Li+1) = F(S;, L,), the state of the system one unit of
time afterwards. In order that the dynamics system
generates economically feasible solutions, it is required
that not only (S;,L;) = 0 but also (Sy11, L) = 0 which
are alternatively put as

A+ rAy) — %S, —aBAtL, =0 and

(1 — nAf) + apdALS, = 0.

By the second equation of Eq. (3), L,y = (1 — nArL,
describes the population change when no economic
activities take place (i.e. H, = 0). Put it differently,

Lt+1 - L

= —nAt
L nah

which implies nAt is the exogenous mortality rate per the
time-step. Here, nAt = 1 means an extinction of humans
in one period as a negative population size is not
acceptable. Humans can become extinct if “one period” is
so long, in addition to the absence of natural resource.
However, in this study, to avoid such an extreme and
uninteresting case, we mainly focus on a “moderate case”
in which “one period” is less than the inverse of the
exogenous instantaneous (or point) growth rate of
population (i.e. At < 1/n).

Assumption (1 — nAr) = 0.

This assumption makes L,y =0 for all . The
remaining conditions, (S;,L;) =0 and S;;; =0, are
satisfied if the dynamic system Eq. (3) is an into-mapping
from the following region R to itself,

R={S,0DIS=0,L=0, and g(S) =1L},
where
_14+rAe r
85 = aBAtr  KaB~

The following theorem clarifies under what parameter
configurations the dynamic system Eq. (3) can generate
economically feasible solutions.

THEOREM 2 F(R) C Rif0 < rAr < 3 and (n, KaBd) €
N where N is defined by
_ 1 (1 + /nAt)?

Proof See Appendix A. [

Stationary State

Since Eq. (3) is resemble to a Lotka—Volterra predator—
prey model, it is expected that it can generate various
dynamics according to various values of parameters;
dynamics includes stable stationary points, periodic points
and aperiodic points. We will find stationary states of the
model and then investigate a possibility of such various
dynamics.

Consider the AS = 0 locus and the AL = 0 locus where
AS=S8,1~—S; and AL=L,;; — L;. An intersection of
those loci determine a stationary state of the discrete-time
system. By the first equation of Eq. (3), AS
isSAS= (r —£8, — aBL,)AtS;.

§A variable x() in continuous time can be written by x(#) in discrete time. Set #; = Ar-k (k= 1,2,...). Then given At > 0, the variable can be
expressed as follows; x(t;) = x(At-k) = x; and x(t, + Ar) = x(At-(k + 1)) = x441. Thus, by the same token, the discretized dynamic system, Eq. (2) can
p

be written as

Sk+1 = {(1 + rAr) —

A
K

t
— 8 — aBAth}Sk,

Lit1 = {(1 — nAf) + aBALS; }Ly.

Length of one period is equal to Ar. For notational convenience, replacing k with ¢ yields the following discrete-time system.
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FIGURE 1 Determination of stationary state: (A) KaB¢ = n and (B) KafBd > n.

This indicates that there are two AS = 0 loci on which
S, is constant; one is L, = (r/aB) — (r/aBK)S; which is
denoted as AS! =0 and the other is S, = 0 which is
denoted as AS? = 0. On the nonnegative (S;, L,) quadrant,
the AS' = 0 locus has a negative slope and crosses the
horizontal axes at S = K while the AS? =0 locus is
identical with the vertical axis. By the second equation of
Eq. (3), AL is

AL = (—n + aBdS)HALL,.

This also implies that there are two AL =0 loci on
which L, is constant; one is S; = n/aB¢ which is denoted
as AL' = 0 and the other is L, = 0 which is denoted as
AL? = 0. The former locus is a vertical line crossing the
horizontal axis at S = n/afB¢ while the latter is identical
with the horizontal axis. As illustrated in Fig. 1, the
nonnegative quadrant of S, and L, is partitioned into three
regions by the AS' =0 and AL! =0 loci if KaBd <n
and four regions if Kaf¢ < n. There it can be seen that
the AS’ = 0 locus crosses the AL’ = 0 locus (i = 1,2) at
each of the following three points;

E, = (81,LS) where §{ = L] = 0,
E; = (83,L5) where S5 = Kand L = 0,

E3 = (85, L) where S§ = o and L§ = 53{1 - #M},

“

where E| is a solution of AS? = AL? = 0, E, is a solution
of AS' = AL? = 0, and E; is a solution of AS' = AL! =
0. Since the loci of AS? =0 and AL! = 0 are vertical
lines, those do not intersect each other.

DYNAMICS

Arrows in Fig. 1 indicate directions in which variables S,
and L, move. Those seem to suggest monotonic
convergence to E, in Fig. 1A and cyclic fluctuations
around E; in Fig. 1B. To formally analyze dynamic
behavior in a neighborhood of each of these three
stationary points, we make Taylor expansion of the non-
linear dynamic system Eq. (3) and then check eigenvalues
of the resultant Jacobi matrix. The Jacobi matrix evaluated
at each of three stationary points is

14+rAr — 2581 8¢ — aBALL
—aBpALL:

—aBALS;
1 —nAt + afpALS;
&)

where i = 1,2, 3. It is well known that the stationary state
is asymptotically stable if and only if, for eigenvalues A;
and A, of the Jacobi matrix, the following conditions hold,

J,':

Ml <1 and M <1

We will detect under what circumstances those stability
conditions are satisfied.

Stability of E; And E,

We start with stationary state E;. Inserting S{ = L{ =
into the Jacobi matrix Eq. (5) yields

1+ rAr 0
I =
! 0 1—nAt )’

in which the eigenvalues are the diagonal elements A; =
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1+ rAt>1and 0 < Ay =1 — nAr < 1. Thus stationary
state E; is a saddle point which a trajectory leaves on the
horizontal axis to E, and approaches on the vertical axis to
E; in the (S;, L,) plane. To summarize, we have,

THEOREM 3 E|; is an unstable saddle point for which the
horizontal axis is an unstable manifold and the vertical
axis is a stable manifold.

Turn to stationary point E,. Inserting S5 = K and L§ =
0 of Eq. (4) into Eq. (5) yields the Jacobi matrix evaluated

at Ez,
1—rAs
J2 = 0

Its eigenvalues are also the diagonal elements A; =
1—rAt<1and Ay =1+ (KaB¢d — n)At > 0 in which
the direction of inequality is due to Assumption. Since the
positive growth rate of natural resource per the time-step
has an upper bound (i.e. 0 = rAt = 3) by Theorem 2, it
can verified that

—aBAtK
1 — nAt + afpAtK |°

—1=A0=1if0<rAt=2 and

M < —1if2 < rAt =< 3.

Further, the following is straightforward,
M <1lifKaBp=n and A, > 1lifKaBd > n.

E, in Fig. 1B, in which KaB¢ > n holds, is definitely
unstable as the dominant root is greater than unity whereas
E, in Fig. 1A, in which Kaf¢ = n holds, can be stable or
unstable according to the natural growth rate over the
time-step (i.e. rAt) is less or greater than 2. Thus dynamic
behavior in a vicinity of E; is summarized as follows.

THEOREM 4 (1) Provided that KaB¢ = n, E, is a stable
point if 0 < rAt = 2 and a saddle point if 2 < rAt < 3;
(2) Provided that KaB¢ > n, E, is a saddle point if 0 <
rAt = 2 and an unstable point if 2 < rAt =< 3.

Theorem 4(1) indicates that

KaBd <n 6)

is the condition for extinction of humans (i.e. L =0 at
E,). We give an intuitive explanation for this condition.
Since the endogenous fertility rate, ¢(H/L) = Saf¢,
positively depends on the actual size of the natural
resource, and K is the carrying capacity of the natural
stocks, Ka B¢ is the maximum fertility rate when the size
of the natural resource reaches at its maximum (i.e.
S =K). Since n is the exogenous mortality rate of
population, the inequality of Eq. (6) indicates that the
maximum endogenous fertility rate is less than or equal to

the exogenous mortality rate. Therefore, under this
condition, the humans will extinct sooner or later
regardless of their economic activities. This is what
Theorem 4(1) implies. The stationary state Ej is identical
with E, if the equality of Eq. (6) holds whereas it becomes
economically meaningless if the inequality of Eq. (6)
strictly holds (i.e. KaBd < n = 5 > K and LS < 0).!

Stability of E,

Since we are interested in the survival of humans, we
confine the following analysis to a case in which the
maximum endogenous fertility rate is greater than the
exogenous mortality rate,

KaBd > n %)

which we call the survival condition. The consistent
requirement, the natural resource is less than the carrying
capacity (i.e. $§ < K) and the population size is positive
(i.e. L§ > 0), holds under the survival condition. The
population size can increase or decrease depending on the
relative magnitude between the actual fertility rate,
afdS,, and the exogenous mortality rate, n. This is a
source of dynamics in our model.

Inserting (5%, L) into Eq. (5) yields the Jacobi matrix
evaluated at the stationary point E3,

1-— nrit _ niAt
KaBd ¢

rAt( —K%B) 1

J3=

Its characteristic polynomial is f(A) = A2 — trJ3A +
detJ3 and its eigenvalues are roots of f(A) = 0,

N trJs = /(trJ3)* — 4det J;

1,2 ) )
where
nrAt
tr13 —)\1 +A2_2_KaB¢7
t))
KaBd(1 + nrAt?) — nrAt(1 + nAt)

detJ; = AAp =

Kapo

The roots are real if the discriminant D = (trJ3)? —
4det J5 is nonnegative and complex if D is negative. Thus
points on the D = 0 locus construct a line of demarcation
between real roots and complex roots. Given r, solving

! After the humans become extinct (i.e. Ly = O for all t), the natural resource will develop according to the following logistic map, x;+1 = a(l — x,)x,
where x; = (rAf)/(1 + rAf)K anda = 1 + rAt. If a = 3 or rAt < 2, then natural resource gradually grows and reaches at its carrying capacity. Although
it has been well known that the logistic map can generate chaotic dynamic for a > 3 or rAz > 2, the economic constraint §; = K prevent the logistic map
generating such complex dynamic. Numerical simulations indicate that trajectories of S, subject to S; = K reaches K within finite time periods even if

rAt > 2 holds.
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D = 0 for KaB¢ yields the demarcation line,

Faumty =2ERTD) ©

The stability condition, both eigenvalues are less than
unity in absolute values, is hold if and only if the following
inequalities are satisfied,”

—1=xtrJ; <detJy <1, (10)

where the first inequality ensures that the real roots lie in
the interval (— 1,1) and the second ensures the modulus of
the complex roots is less than unity. To find the stable
region, we construct the lines f(1) =0, f(—1) =0 and
detJ; —1=0 where f(1)=1—trJ;+detJ; and
f(—1)=1+trJs 4+ detJs. Substituting the most right
expressions of Eq. (8) into each of those lines gives

f(1) =285 (KaBd — n),

44+-(nAf)(rA
(1) = 420080 [ g o pgy

detJ; — 1= ;;;Aﬁ’; {KaBp— (n+L)}.

2rAt+(nAt)(rAt)
4+mAn@rAn |0

Therefore, given r and At, the stable region of the
stationary state E3 in the (n, KaBd¢) plane is surrounded
by the following boundary lines,

f) =0 = KaBe = fav(n) = n,

2rAt + (nAr)(rAr)
4 + (nAD(rAr)

1
Ar’

f(=1) =0 Kapd = frp(n) =

detJ; = 1 KaBd = fru(n) = n+ —

which we call the divergence boundary, the flip boundary
and the flutter boundary, respectively, following Sonis
(1996). Since it can be shown that

< <
Srip(n) = faiv(n) according to rAt = 2, (11

two different stable regions are, under the survival
condition defined by

M = {(n, KaBP)|0 = n, f4v(n) < KaB
< fraum}if rAt = 2,

M; = {(n, KaBd)|0 =< n, frip(n) < KaPd
< Fau(m}if rAr > 2.

To summarize the dynamic behavior in a vicinity of the
stationary state E;, we have:

#See Gandolfo (1997) for a heuristic proof.

THEOREM 5 (1) Provided that rAt = 2, E; is stable for
(n, KaBd) € My; (2) provided that rAt > 2, E is stable
for (n, KaBdp) € M.

N in Theorem 2 concerns the feasibility of solutions as
it is the set of parameters (n, KaB¢) for which
F(R) C R.M; in Theorem 5 concerns the stability of
solutions as it is the set of parameters (r, KaB¢ ) for which
F(R) generates stable dynamics. Thus an intersection of
M; and N is the set of parameters for which solutions of
F(R) are feasible and stable. Returning to the definition of
the set N, we can see that the upper boundary of N in the
(n, KaB¢) plane is

fup() = ———(1 + VnAry?,

l-I—A

which is defined on the interval |0,1/Af]. To check
whether this upper boundary and the flutter boundary
intersect, we solve fup(n) = fru(n) for n to have

2(rAt)? — 1 = 2rAt\/(rAf)? — 1

At

ny2 = (12)

This implies that the upper boundary is tangent to the
flutter boundary at (1/At,2/A¢) if rAt = 1. Thus the upper
boundary of N and the flutter boundary of M intersect
none if rA <1 and once in the interval (0,1/A¢f) if
rAt > 1.%* By Theorem 2, we have 0 < rAr = 3. By
Theorem 5, the stable set is either M; or M, according to
rAt < 2 or rAt > 2. Summing up the foregoing discus-
sions indicates that for detecting the dynamics behavior of
E;, three distinct cases can be identified which depend on
the growth rate of natural resource over the time-step: (1)
0=rAt=1, 2) 1 <rAt=2 and (3) 2<rAr=3.
Dynamics in each of three cases is considered, allowing
for the constraints imposed on parameters,

0<nAt=1 and KaB¢ > n.

Case 1 0= rAt = 1.Inthis case, fu,(n) = fru(n) for all
n € [0, 1/Af]. Thus the upper bound of the N N M is the
KaBo = fp(n) locus. The dynamics of E; is summarized
as follows.

THEOREM 6 Provided that 0 < rAt = 1, E; is stable for
mKaBp) ENNM; = {(n,KaBp)l0 =n=1/At,n <
KaB¢ = r/(1 + rAn)(1 + Vndn)?}.

In Fig. 2 below, the stable and feasible region N N M
is depicted as an shaded area surrounded by the upper
boundary, the divergence boundary, the vertical axis and
the vertical line, n = 1/Az. 1t is divided into two regions
by the demarcation line on which we have a real root of
multiplicity two. For any point in a region below the
demarcation line and above the divergence boundary (i.e.
the dark-shaded region), the eigenvalues are real so that

**In particular, two boundaries cross twice for n = n, and n = n, if rAt > 1. We can assume n; < n, without a loss of generality which implies
ny < 1/At < n,. However, fup(n) is defined only on the interval [0, 1/Af] so that we do not need to consider the second intersection for n = n;.
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Kapé
2/At

1/At

r/(I+rAt) }

i~

Lk Fip)

n
1/As
FIGURE 2 Stable and feasible region; 0 < rAs =< 1.

the dynamic system F(R) shows a monotonic convergence
toward the stationary state E3. On the other hand, for any
point in a region above the demarcation line and below the
upper boundary (i.e. the light-shaded region), the
eigenvalues are complex so that F(R) shows a damped
oscillations around FEj.

Using those results together with Theorem 6, the
following is implied.

CoROLLARY 7 For (n,KaBd) € NN M, E; is a stable
node with monotonic convergence if KaBd = (n+
Jn(n +71))/2 and a stable focus with damped oscillations
if (n+ n(n + 1)/2 < Kap.

Theorems 3—5 and Corollary 7 imply that the discrete-
time system can generate the similar dynamics as the
continuous-time system if the time step, Af, is small
enough in a sense that At is smaller than an inverse of r.
Dynamics of the stationary states in the continuous-time
model is summarized in Theorem 1 above. Theorem 3,
which shows that the stationary state E; is a saddle point,
is the same as Theorem 1(i). The first part of Theorem
4(2), which shows that the stationary state E, is an
unstable saddle point, is the same as Theorem 1(ii). Lastly,
Corollary 7 just mentioned above is discrete-time
counterparts of Theorem 1(iii) and (iv).”" Thus BT’s
results follow in the discrete-time model.

It is possible to show that the discrete-time model can
generate qualitatively different dynamics. To this end, we
simulate the model, using parameter values used by BT.
The parameter values used in BT can be divided into two;
one is a set of time-independent parameters that can be
used either of continuous- or discrete-time model and the
other is a set of time-dependent parameters that are
sensitive to a choice of continuous- or discrete-time
model. The carrying capacity of the island, K, the labor
harvesting productivity, c, measure of preference for the
output of the harvest good, B, and a constant factor of the
fertility function, ¢, are thought to be in the former set so

that we coax parameter values from BT and set K =
12,000, @ = 0.00001, B = 0.4 and ¢ = 4 in the following
simulations. The exogenous motility rate, n, and the
intrinsic growth rate of natural resource, r, are in the latter
set and, as will be seen shortly, play critical roles for the
emergence of complex dynamics. We take those to be
n = 0.05 and r = 0.04 in the first simulation. Further, we
set At = 10 and take the initial values of S, and L, as
So =K and Ly = 100. ¥ As a result of those specifica-
tions, a pair of Kaf¢ = 0.192 and n = 0.05 are not in
NN M]'"'" Although the stationary state is unstable, the
simulation illustrated in Fig. 3A shows an aperiodic
oscillation that the continuous-time model cannot
generate. As plotted in Fig. 3B, evolutions of the natural
resource (the dotted line) and the population (the real line)
would resemble to the “history” of Easter Island.

Following BT, we assume that the history of Easter
Island starts shortly after 400 A.D. and ended in the 1800s
by the outside intervention. A growth-collapse pattern
during those 1400 years are fairly described by the
simulation if we presume that a time-step equals 100
actual years (i.e. A7 = 100 years where At = 10 time-units
indicate that one-time unit is one decade). In particular, in
the simulation, after 4 periods of the beginning of the
history (i.e. about 800 A.D. in the actual calendar), the
natural resource degradation starts and population begins
to increase rapidly. At 9th period (i.e. at 1100 A.D.),
population peaks at L = 30,000 unity that means that
15,000 people live on the island while the natural resource
is degraded severely. At 12th period (i.e. 1600 A.D.) the
natural resource was almost gone to nothing and
population continues to decline to 2500 from its peak. It
is said that the carving stone statues starts around 1100
A.D after the size of population becomes larger than the
essential size and stops around 1600 A.D due to the
extinction of palm tree forest on the island. Such
archeological evidence can go with the simulation results.
At the 14th period (i.e. 1800A.D.) the history of
endogenous evolution ended. This simulation mimics a
feast (i.e. a gradual —rapid population growth and intensive
use of natural resource) and famine (i.e. rapid population
collapse and environmental degradation) pattern, which is
often observed in small island economy. In the simulation
rAt = 0.4 and nAt = 0.5 which means that the natural
resource increases by 40% per century (i.e. 4% per
decade) without human harvesting and the base motility
rate per century is 50% (5% per decade), both of which are
supposed to be plausible estimates.

Case2 1 < rAt = 2. Case 2 deals with the effect caused
by an increase in the intrinsic growth rate per unit time
interval on the dynamic behavior. The first inequality
condition 1 < At makes the discriminant of Eq. (12)
positive, that is, two roots, n; and n,, are real and distinct.

™ An alternative expression of (n + \/n(n +r))/2 < KaB¢ is nr/KaB¢p + 4(n — KaB¢p) < 0, which is Eq. (14) of BT.
HTwo unit of labor force is assumed to be one person. Thus Ly = 100 means that the founding population is 50.
Since Theorem 2 provides a sufficient condition for feasibility, it is possible that a trajectory starting at a point outside of N oscillates around an
unstable stationary point if the non-linearity’s of the model are strong enough.
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FIGURE 3 Numerical simulation of Easter Island evolution.

The upper boundary and the flutter boundary intersect for
n=n; < 1/At. Consequently the upper bound of the
feasible and stable region is min[fu,(n), fiu(n)] in which
Sfup(®) < frue(n) holds for 0 < n < n and the direction of
inequality is reversed for n; < n = 1/At. Further, since
the second inequality condition rAt = 2 leads to frip(n) =
faiv(n) the divergence boundary is the lower bound of M.
Thus, in Case 2, the feasible and stable region is an
intersection of N and M.

NNM; = {(n,Kaﬁ¢)|O =n= Kl;’

Jav(m)= KaB¢ = min[fy,(n),f ﬂut(n)]}'

Since fru(m) < fup(n) for n>n;, we can define a
feasible and unstable region denoted as U,

U = { o Kapolm =n= L.

fru(n) = KaBo = fup(m)] }

The feasible and stable region (i.e. a dark and light
shaded region) and the feasible and unstable region (i.e.
lighter shaded region) are depicted in Fig. 4.

Thus the results are summarized as

THEOREM 8 Provided that 1 < rAt = 2, E; is stable for
(n,KaB¢) € NN My and unstable for (n,KaBd) € U,

For (n,KaB¢) € N N My, the dynamic generated in
Case 2 is qualitatively the same as the one in Case 1. A
trajectory exhibits either a monotonic or oscillatory
movement converging towards the stationary state E;
according to the roots of the characteristic equation are
real or complex. For (n,KaB¢) € U;, a trajectory
generated by Eq. (3) does not converge to the stationary
state since the stability condition is violated. In spite of
this instability, the trajectory does not explode globally
but keeps oscillating in a limited region due to inherent
nonlinearity’s in the model. To see what happens in the
region U;, we have to examine the points on the flutter
boundary on which eigenvalues are complex and |A;| =
[A2] = 1 where detJs = A1, is equal to the modulus of
roots. The stationary point is nonhyperbolic so that the
non-linear model and its linear approximation are not
topologically equivalent in a vicinity of E3. Crossing of
the flutter boundary means that the second- and higher-
order derivatives of the behavioral functions becomes
essential and creates a Hopf bifurcation from the
stationary state. To detect the dynamic behavior, we
simulate the model choosing the mortality rate as a
bifurcation parameter and fixing other parameters at some
appropriate values.’® Figure 5 below presents the
bifurcations appearing when n is moving along a straight
line ab from n, to n, in the region U, in Fig. 4. Il For each
value of n, the dynamic system starts from the same initial
values, So = K and Ly = 100 and is simulated for 20
iterations to see the long-run dynamic behavior. It will be
safe to assume one period equal one hundred years as in
the first simulation. It can be seen that trajectories goes
more sharply ups and downs, as n gets smaller than n,,.
This indicates that a change from a heyday to a hell-day in

$9As in the first simulation, we set a = 0.00001, 8 = 0.4, ¢ = 4, K = 12,000 which leads to Ka8¢ = 0.192 and take r and At to be 0.15 and 10

which leads to 1 < rAr = 2.

ML ine ab is divided into ten segment by points defined as n(i) = np, — (i/T)(np — ng), i = 0,1,...T where T'is the number of bifurcation steps. T = 10
in the simulation. See Sonis (1996) for more precise explanations for this bifurcation cascade.
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FIGURE 4 Stable and feasible region: 1 < Az < 2.

a feast and famine cycle gets more rapid and drastic as the
exogenous mortality rate becomes smaller.

Case 3 2 < rAt = 3. Suppose rAr becomes larger and
lies in an interval (2,3]. As will be seen shortly, the higher
intrinsic growth rate of natural resource increases a
possibility causing complex long-run dynamics. Similar to
Case 2, the upper boundary and the flutter boundary
intersect at n = n; and thus fp(n) < fau(n) holds for 0 <
n <ng and fyp(n) > fru(n) holds for ny <n = 1/At. In
addition to this, the flip boundary gets steeper than the
divergence boundary for rAr > 2. Thus the feasible and

St
0 K

stable region is defined by an intersection of N and M,

N M, = {(n,Kaﬁd))IO <n= 'Al?

fﬂip(n)S KaBe = min[fup(n)afﬂut(n)] } .

The unstable region U, is similarly defined as a region
between the upper boundary and the flutter boundary for
n=n;. Since E; is economically feasible only for
KaB¢ > fgv(n) (i.e. the survival condition, KaB¢d > n),

L,

Time

FIGURE 5 Various oscillations.
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another feasible and unstable region, denoted as U,, can be
defined as:

1
[UZ - {(n>KaB¢)IO =n= E’

fav(m) < KaBe= fﬂip(n)]}.
Thus the results are summarized as

THEOREM 9  Provided that 2 = rAt = 3, E is stable for
(n,KaBd) € NN M, and unstable for (n,KaBe) €
U, UU,.

When the stationary state is stable, dynamic is similar to
the one considered in Case 1 and Case 2, that is,
monotonic convergence or damped oscillations. When the
stationary state is unstable, the non-linear structure of the
model results in far more complex dynamics for which
there is no general theoretical results. Numerical
simulation is useful to detect such non-linear structure.
Crossing of the flutter boundary implies the start of Hopf
bifurcation cascade to chaos. In particular, the third
simulation is done with r=2.5 and the exogenous
motility rate is chosen as a bifurcation parameter. As n
decreases from n;, which is on the flutter boundary, the
stationary state bifurcates to limit cycles, which represents
an increase in the magnitude of population ups and downs.
However, the cycles are relatively regular and (quasi-)
symmetrical as illustrated in Fig. 7A. As n decreases more,

the cycles are distorted and show irregular oscillations. As
n gets to n,, chaotic or very high-period cycles appears as
seen in Fig. 7B in which chaotic attractor is represented.

Crossing of the flip boundary makes E; unstable and
generates a period-doubling bifurcation, which is a typical
route to chaos. A periodic cycle with period two emerges
for each point on the flip boundary.” Although S, exhibits
various dynamics from periodic cycles to chaotic move-
ment, it becomes larger than the carrying capacity for
some values of n. Thus such dynamic behavior is
economically unrealistic. If we perform simulation
allowing for the capacity constraint S, = K explicitly,
then high order cycles including chaotic behavior
disappear but a two-periodic cycle appears.

CONCLUDING REMARKS

In this study, we have demonstrated that a discrete version
of BT’s continuous-time model for small islands can
generate various dynamics ranging from stable as well as
periodic trajectories to complex dynamics involving
chaos. In particular, on the one hand, Theorem 4 shows
a natural result that the humans are extinct soon or later if
the maximum fertility rate is less than mortality rate,
KaB¢ = n. On the other hand, Theorems 5—-9 shows that
sources of a diversity of dynamics are degrees of the
intrinsic growth rate of natural resource over a unit of time
rAt and the base mortality rate, in a unit of time nAf even if
the maximum fertility rate is greater than the mortality

##Since substituting the middle expression of (8) into the alternative expression of the flutter boundary, —1 + trJ; = detJ3, gives (A; + 1) X
(A2 + 1) = 0, one of the eigenvalues is — 1 and the other is —detJ3 on the flip boundary.
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FIGURE 7 (A) invariant cycles, (B) strange attractor.

rate, KaB¢ > n. To summarize our results, we can say
that a discrete-time model can be a good candidate for
explaining various pattern of evolutions observed in small
islands.
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APPENDIX

In this appendix, we show that F(R) CRif0 =rAr =3
and (n, KaB¢) € N. A boundary line of R, L = g(5), is
downward sloping and crosses the vertical axis at Ly =
1+ rAt/aBAt and the horizontal axis at Sp=(1-+
rAr)/(rAHK. As a first step, we construct a locus of S

and L such that {(S,L)|S = 0, L = 0 and detJ = 0} where
detJ is the determinant of the Jacobi matrix of the
dynamic system Eq. (3),

(1 + rAt — 218LS, — aBALL,
J_

—aBAzS,
o —aBPALL, )

(1—nAD + aBAIS,

Solving detJ = 0 for L yields a critical line, denoted as
g(S), that divides R into two regions R; and R,; detJ > 0
in R; and detJ < 0 in R,,

[K(1 + rAf) — 2rAtS1[(1 — nAb) + aBALS,]

h(S) = (1 — nADKaBAt

As illustrated in Fig. A1, the L = h(S) curve crosses the
horizontal axes at point A = (S4,Ls) where Sy = Sy/2,
L4 = 0 and the vertical axes at point B = (Sg, Lg) where
Sg =0 and Lg = Ly. The next step is to compute an
intersection(s) of those two curves, L = f(S) and L = g(S).
It can be verified that, in the non-negative quadrant of (S,
L), two curves intersect once at point B if Ka¢ = r(1 —
aBd = r(1 — nAt)/(1 4+ rAr) and twice at point B and
point C = (S.,L.) where S. = [(1 + rAD)KaB¢ — r(1 —
nAn]/2raBpAr  and L. = [(1 + rADKaBd + r(1 —
nAn]/2r(aB’PpAt  if KaBd > r(1 — nAt)/(1 + rAr).
We are now ready to detect conditions under which
those critical points in R are mapped into R.

(1) Suppose KaB¢ = r(1 — nAr)/(1 + rAr). Consider
point A = (S, 0) in Fig. A1(a) It is mapped to point A’ =
(5;,0) on the horizontal axis where Sy = (1 4 rAtr/4)S,.
Hence 0 < Sy = Spholdif 0 =< (1 + rAt/4) =< 1, whence
0= Sy = 8 if 0 = rAt = 3. Consider point B = (0, Ly).
It is mapped to point B’ = (0,L}) on the vertical axis
where Ly, = (1 — nAf)Ly. Hence 0 < Lj =< L since 0 <
(1 — nAr) = 1 by nAt = 0 and Assumption.
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FIGURE Al Transformation of R. (A) KaB¢ =< r(1 — nAH/(1 + rAf; B) KaBd > r(1 — nAn)/(1 + rAs).

(2) Suppose KaPB¢ > r(1 — nAr)/(1 + rAr). By con-
sidering points A and B in Fig. A1(B), we can also find that
0=Sy =S if0=rAt=3 and 0L =Ly if 0=
nAt < 1. Point C is an intersection of f{S) and g(S). It is
mapped to point C' = (0, L) on the vertical axis where
L. = {(1 + rADKaBe + r(1 — nAn)}? /4rK(af)* pAt. Tt
can be shown that L. = L, if Kaf¢ = r(1 + V/nAr)>/1 +
rAt.

In either of Fig. A1(A) or (B), the real line AB is mapped
to the dotted line A'B’, and either of the sub-regions, R; or
R,, is mapped into the triangle OA’B’. Thus the followings

are the conditions under which OA’B' C R, namely,
FR) CR.

(1) Suppose KaB¢ = r(l —nAr)/(1+ rAs), then
FRYCRifO=nAr=1and 0 < rAt = 3.
(2) Suppose KaB¢ > r(1 —nAr)/(1+rAr), then

FRYCR if 0=nAt=1, 0=rAt=3 and
KaBd = r(1 + /nAt)? /(1 + rAf)

Putting (1) and (2) together, we have proved Theorem 2.



