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This paper studies season length restrictions in fisheries management from an ecological-economic
perspective. We first construct a model of a stylized fishery in which season length restrictions are used
to manage the fishery. We then show how the dynamic and the stochastic properties of this fishery can
be used to construct two managerial criteria that are meaningful from an ecological standpoint. Finally,
using these two criteria, we discuss a probabilistic approach to fisheries management in which the
principal focus of a manager is on moving the fishery away from the least desirable state of existence.
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INTRODUCTION

The Atlantic surf clam fishery, the Alaskan king crab
fishery, and the Pacific halibut fishery are three examples
of fisheries in which season length restrictions have been
frequently used to manage the fishery. More generally, as
Weninger and Strand (1998) and others have noted,
commercial fisheries in Canada, the USA, and in western
Europe are subject to a variety of season length
restrictions.: In addition to this, in virtually every state
in the USA, sport fishing seasons exist for a whole host of
fish species. This tells us that the use of season length
restrictions for regulatory purposes is widespread in
fisheries management.

Although season length restrictions have been and are
commonly used in fisheries management, there are very
few theoretical studies of season length restrictions from
an integrated ecological-economic perspective. Econom-
ists have studied season length restrictions in considerable
detail. However, the objective of these studies has

generally been to demonstrate the economic inefficiencies
of season length restrictions. Karpoff (1987) is represen-
tative. After analyzing season length restrictions at some
length, he concludes that such restrictions "convey
distributional advantages to politically dominant fisher-
men at the expense of their more efficient competitors"
(Karpoff, 1987, p. 192). Rarely have these economics
papers studied the ecological aspects associated with the
use of season length restrictions in fisheries management.

Similarly, although there are many biological studies of
fisheries and of fisheries management, these studies have
rarely analyzed season length restrictions per se, or the
economic effects of such restrictions. Given this state of
affairs, this paper has three objectives. First, we construct
a model of a stylized fishery in which season length
restrictions are used to manage the fishery. This model
accounts for the ecological and the economic aspects of
the evolution of the fishery. Next, we derive two
managerial criteria that are meaningful from an ecological
standpoint. A distinguishing feature of our approach is that
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these two criteria are quite unlike the managerial criteria
found in traditional economic analyses of fishery
management problems in which the manager maximizes
some kind of welfare function. The two criteria of this
paper are probabilities that are derived from the dynamic
and the stochastic properties of the fishery. Finally, using
these two criteria, we discuss an ecological-economic
approach to the fishery management problem. In this
approach, the principal focus of the manager is on moving
the fishery away from the least desirable state of existence.
The paper that is most closely related to our paper is the

one by Batabyal and Beladi (2001). Like this paper,
Batabyal and Beladi (2001) also provide an ecological-
economic perspective on time restrictions in natural
resource management. However, the specific methods of
analysis and the objectives of these two papers are very
different. In particular, unlike the objectives of this paper,
Batabyal and Beladi (2001) are primarily interested in
determining the likelihood of resource collapse when a
resource is managed using time restrictions.
The rest of this paper is organized as follows. The

second section presents a semi-Markov model of a
stylized fishery and constructs two criteria for the manager
of our fishery. The third section uses these criteria and
discusses two approaches to the regulatory problem faced
by a fishery manager. The fourth section concludes and
offers suggestions for future research.

SEASON LENGTH RESTRICTIONS IN A
STOCHASTIC FISHERY

Preliminaries

We use the theory of semi-Markov processes to
characterize a fishery. In using a Markovian approach,
we are following a suggestion contained in Perrings
(1998) and followed by Batabyal and Beladi (2001),
among others. Consider a stochastic process with states
0, 1, 2,..., that is now in state i, >-0, and that has the
following two properties. First, the probability that it will
next enter state j, j-> 0, is given by the transition
probability PO" Second, given that the next state to be
entered isj, the time until the transition from state to state
j is a random variable with the distribution function GO(.)
with G,(.) 1 Gij(.). Now let z(t) denote the state of
the process at time t. Then {z(t) >-- 0 is a semi-Markov
process.

Put differently, a semi-Markov process is a Markov
chain with one salient difference. Whereas a Markov chain
spends one unit of time in a state before making a

transition to some other state, a semi-Markov process
stays in a particular state for a random amount of time
before making a transition to some other state. Let Ji
denote the distribution function of the time that {z(t)
>- 0 spends in state before making a transition and let

0-i denote the expectation of this time in state i. Finally, let
T/i be the time between successive transitions into state
and let 0-ii be the expectation of T/i. In other words, 0-ii
E[Tii]. We are now in a position to discuss the
characteristics of the fishery that is the subject of this
paper.

The Stochastic Fishery

Consider a stochastic fishery--formally a semi-Markov
process--that exists in one of three possible states.# State
1 is the healthy state of the fishery. In this state, fish are
abundant and the fishery is open for fishing. State 2 is an
intermediate state. In this state, the fish stock is lower than
in state 1 but the total allowable catch (TAC) of fish has
not yet been taken. Consequently, the fishery is still open
for fishing. However, in state 2, the manager monitors the
fish stock more carefully than in state 1. State 3 is the state
in which the fish species is endangered. In this state, the
TAC has been taken and the fish stock is hazardously low.
Consequently, if the manager determines that the fishery is
in state 3, then the fishing season is closed. Put differently,
a season length restriction is now in place.

Let us formalize these observations. As a result of
continued fishing, ecological/environmental factors
(excessive predation, storms, unusually cold or warm
water temperature), and human induced factors (water
pollution), the fish stock in our fishery declines
probabilistically. This means that the fishery stays in
state 1 for a mean length of time o1 and then makes a
transition either to state 2 with transition probability P12,
or to state 3 with transition probability P13. If our fishery is
in state 2, then once again on account of the above
mentioned reasons, the stock of fish declines probabil-
istically. This means that the fishery will stay in state 2 for
a mean length of time 0"2 and then move to state 3 with
transition probability P23. When in state 3, the fishing
season is closed. Note that the length of time during which
the fishing season is closed--to allow the fish stock to
recover--is itself a random variable. Denote the mean
length of the season closing by 0"3. Now depending on the
length of this season closing, the fishery will return to
either state 1 with transition probability P31, or to state 2
with transition probability P32. Let us now use these

IIThere are many references on semi-Markov processes. Excellent textbook accounts can be found in Medhi (1994, pp. 313-339) and in Ross (1996,
pp. 213-218; 1997, pp. 379-381). Our primer on semi-Markov processes and this section’s model are based on the discussion in Ross (1996, pp. 213-
218; 1997, pp. 379-381).

#As Hartwick and Olewiler (1998. p. 153) have noted, fishery regulation, i.e. closing a fishing season, is a costly activity. Moreover, rarely does a
manager have accurate information about all the possible stock values of a particular fish species. In other words, information about stock levels is
typically incomplete and, on account of cost, a manager will generally regulate a fishery (close the fishing season) only when certain threshold stock
levels have been reached. One possible threshold stock level is the one in which the TAC for the season has been taken. We model these features by
truncating the state space of the fishery and by analyzing the resulting three state fishery. The reader should note that the model can easily be generalized
to the case of a finite number of states.
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dynamic and stochastic attributes of this fishery and derive
two criteria that our manager might optimize.

Two Managerial Criteria

The First Criterion

To derive the first managerial criterion, it will be
necessary to compute the stationary probabilities for our
three state fishery. Formally, we are interested in
computing Pi limt--.o Prob{z(t) i/z(O) j} for any
state j and for states 1,2, 3. In words, given that our
fishery is in state j at time 0, we want to compute
the limiting probability, as time tends to infinity, that
the fishery will be in state i. To perform this
computation, let us denote the stationary probabilities
of the embedded Markov chain of our fishery** by 7ri,

1,2,3. Now it is well known--see Eq. (7.23) in
Ross (1997, p. 380)--that these limiting probabilities
satisfy

i=3

7rj E rriPij
i=1

(1)

and

j=3

(2)

Consequently, using the transition probabilities of the
fishery and Eqs. (1) and (2), we can calculate the required
limiting probabilities. These are

P31
7/’1

1 + P31 q- P12P31 q- P32’
P12P31 q- P32

1 + P31 --I- P12P31 --I- P32

(3)

and

1
"n’3 (4)

1 + P31 + P12P31 --]-- P32

To determine the stationary probabilities (denoted by
Pi) of the fishery, we now use the Eq. (7.24) in Ross (1997,
p. 380). This equation tells us that the Ps satisfy

o- (5)ei E=_ 7Yj0-j

Equations (3)-(5) together give us the stationary
probabilities that we are after. Performing the necessary

mathematical computations, we get

P31 0-3
P1

P31 0-1 + (P12P31 + P32)0-2 + 0"3

(P12P31 - P32)o’2
P2

P31 0-1 q- (P12P31% P32)0"2 + 0"3

and

(6)

P3
0"3 (7)

P31 0"1 -]- (P12P31 -l- P32)0"2 q- 0"3

In the context of our ecological-economic approach to
the fishery management problem, these stationary
probabilities (Eqs. (6) and (7)) have a distinct ecological
meaning. As discussed in Krebs (1985, p. 587), Perrings
(1998) and Batabyal (2000), these probabilities measure
the asymptotic resilience of the fishery in each of these
three states. Resilience is an ecological stability property
and it refers to "the amount of disturbance that can be
sustained [by an ecosystem] before a change in system
control or structure occurs" Holling et al. (1995, p. 50).
Put differently, we can think of the resilience of a fishery
as a long run measure of the health of this fishery. Now if
we rank the three states from this health perspective, then
it should be clear to the reader that state 1 is the
"healthiest" because the fish stock is abundant, state 2 is
"healthy" because the fish stock is at an intermediate level,
and state 3 is "unhealthy" because the fish stock is
depleted. Using the words of Perrings (1998), state 1 is a
"desirable" state and state 3 is an "undesirable" state.
As indicated earlier, the manager closes the fishing

season if and only if the fishery is determined to be in state
3. Further, the mean length of this season closing is 0"3.
With these two observations and the previous paragraph’s
discussion of the three states in mind, we can now state the
first criterion for our fishery manager. Ideally, this
manager would like to choose the expected length of the
season closing 0"3 to maximize the long run probability of
existing in the ecologically healthiest state 1. Never-
theless, calculus and Eq. (6) tell us that P1 is convex in 0"3.
Therefore, it is not sensible to maximize P1 over 0"3. As
such, we presume that our manager selects 0"3 to minimize
P2, the long run probability of existing in the intermediate
state 2. Because the long run probability of existing in
state 2 is the resilience of the fishery in state 2, we can
think of this minimization exercise as one that involves the
simultaneous minimization of the fishery’s resilience in
the intermediate state. This is the ecological side of the
management picture.
To see the economic side, note that fishery regulation

brings benefits and costs to society. Season closings permit
the fish stock to recover and thereby ensure that this
fishery will continue to provide a flow of services to
society in the future. These services may be consumptive
(fish for food) or non-consumptive (recreational activities

**For additional details on the embedded Markov chain of a semi-Markov process, see the references cited in footnote
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such as boating and water sports). In contrast with such
benefits, fishery regulation also imposes costs on society.
Not only is it necessary to have an elaborate bureaucracy
in place, but season closings lead to idle fishermen, unused
capital, and equipment decay. Consequently, in deciding
the length of the season closing, our manager must pay
attention to both the benefits and the costs from regulation.
In particular, because of political reasons, we suppose
that the fishery manager cannot let the net social benefit
from regulation--which we model with the strictly
decreasing and the strictly concave function B(o-3)--fall
below a certain acceptability threshold. Denote this
threshold by/. This discussion tells us that the economic
side of the manager’s problem is given by a constraint on
the net benefit to society from the season closure. This
constraint is B(o3) --> .
To see why this net social benefit function is decreasing

in the mean length of the season closing, recall, that this
function measures the economic benefit to society from
the fishery’s provision of consumptive and non-consump-
tive services. Now, when our fishery is in state 3, a season
length restriction is in place and the fishery is recovering.
Therefore, during this time period, the fishery is not being
used by society. This means that from a use perspective,
the longer the average season length restriction, the lower
the economic benefits. This is why the net social benefit
function is decreasing in the length of the season closure
restriction o3. This completes the derivation of the first
managerial criterion and our discussion of the manager’s
optimization problem.

The Second Criterion

The second managerial criterion also involves working
with a probability, but now the method of choosing the
season length restriction and the focus of the manager are
different. As in the previous section, once again we shall
take a long run view of the fishery. Suppose that at time
the fishery is in the undesirable state 3. By choosing the
season length restriction (now denoted by ’), the manager
can influence the state into which the fishery will next
make a transition. Ideally, the manager would like this
next state to be 1. As such, if we let X(t) be the time from
until the next transition and A(t) be the state entered at the
first transition after t, then we can determine the long run
probability of the fishery being in state 3 at time t, of
making the next transition after time + ’, and of this next
transition being into state 1. In this instance, mathemat-
ically, we would want to compute limtProb{z(t)=
3, X(t) > -,A(t)= 1} and maximize this probability.
However, it can be shown that this stationary probability is
convex in -; therefore, it does not make much sense to
maximize this probability. Given this state of affairs, we
presume that our manager minimizes limt Prob{z(t)
3, X(t) > % A(t) 2}, which is convex in -.

The reader will note that because of the non-concavity
of limt Prob{z(t) 3, X(t) > % A(t) 1 in -, our
manager now attempts to indirectly increase the likelihood
of moving the fishery to the "healthiest" state 1 by
minimizing the probability of moving to state 2 from 3.
Moreover, unlike the probability derived in the previous
sub-section, limt- Prob{z(t) 3, X(t) > ’, A(t) 2} is
ajoint probability. This stationary joint probability can be
computed with the aid of Theorem 4.8.4 in Ross (1996, p.
217). Modifying this theorem to our problem, we get

lim Prob{ z(t) 3, X(t) % A(t) 2
t----,o

G (w)dw
’3 J 3 8

O’33

The right hand side (RHS) of Eq. (8) is the product of
two terms. The first term is the probability of making a
transition from state 3 to 2. The second term is the ratio of
the integral of the tail distribution of the amount of time
the fishery spends in state 3 before making a transition to
state 2 to the expected amount of time between successive
transitions into state 3. Following Perrings (1998) and
Batabyal (2000), we can now give an ecological
interpretation to this first term on the RHS of Eq. (8).
Specifically, this term (probability) is the transient or the
short run resilience of the fishery in the unhealthy state 3.
The second term on the RHS of Eq. (8) contains the

manager’s control variable, i.e. the season closure length
’. The manager’s objective is now to choose -to minimize
the probability on the left hand side (LHS) of Eq. (8). This
is the ecological side of the management picture. The
economic side is similar to that in the previous sub-
section. In deciding the length of the season closing, our
manager pays attention to the benefits and the costs from
regulation. As indicated previously, because of political
reasons, the fishery manager will not let the net social
benefit from regulation fall below a certain acceptability
threshold. Consequently, the economic side of the
manager’s problem is given by the constraint B(-)>--
where B(") --< 0 for reasons similar to those given in the
previous sub-section. This completes the derivation of the
second managerial criterion and our discussion of the
manager’s optimization problem. We now discuss the
solutions to these two optimization problems and then we
draw inferences for fisheries management.

OPTIMAL FISHERY MANAGEMENT WITH
ECOLOGICAL-ECONOMIC CRITERIA

Minimizing the Stationary Probability

Recalling from the discussion in "The first criterion"
section we see that the first problem faced by our manager
involves the minimization of an ecological criterion

t*For more on the connections between political factors and fishery management see Karpoff (1987) and Hartwick and Olewiler (1998, pp. 152-175).



RESTRICTIONS IN FISHERIES MANAGEMENT 245

subject to an economic constraint. The ecological criterion
is the asymptotic resilience of the fishery in the middle-of-
the-road state 2 and the economic constraint tells us that
the social net benefit from fishery management must
exceed a benefit acceptability threshold. Formally, our
manager solves

(P12P31 + P32)0-2
min (9)
{r3->}P31 0-1 -- (P12P31 + P32)0-:z -[- 0"3

subject to

B(0"3) --> /. (10)

subject to

B(-) --> /. (14)

As stated, this minimization problem is ungainly.
Consequently, to illustrate our approach, we suppose that
the amount of time the fishery spends in state 3 before
making a transition to state 2 is exponentially distributed.
Then, integrating the tail distribution function for an
exponentially distributed random variable--see Jeffrey
(1995, p. 163 and 248)mand then evaluating this integral
at the upper and the lower limits, we get

Now, suppose that the solution to problem (9) and (10)
yields an interior minimum at which the constraint binds.
Then, omitting the complementary slackness conditions,
the Kuhn-Tucker conditions for a minimum are

-(P12P31 + P32)0":z
{P31 0"1 -k- (P12P31 -[- P32)0"2 + o3 }2 AB’(0"3), (11)

where A is the multiplier on the social net benefit
constraint (Eq. (10)) and

[oo 1
(15)Gz(w)dw exp{

where c is the parameter of the exponential distribution
function. Using Eq. (15), our manager’s minimization
problem becomes

+/- exp{ c-}
min P32 (16)
{’r>- 0"33

B(0-3) --/. (12)

On solving Eqs. (11) and (12) in unison, we get the
optimal values of the season closure length (0-) and the
shadow value of the social net benefit constraint (A*). The
principle condition here is Eq. (11). This equation tells us
that in choosing the season length restriction optimally,
the manager will balance ecological and economic,
considerations. Specifically, 0-3 will be chosen so that
the marginal effect of the season length restriction on the
asymptotic resilience of the fishery in state 2 (the LHS) is
equal to the product of the shadow value of the social net
benefit constraint and the marginal benefit to society from
choosing the season closure length optimally (the RHS).

If the season closure length is chosen in this way, then
we can be reasonably sure that the fishery will be robust in
the long run. From an ecological perspective, this means
that the resilience of this fishery in the middle-of-the-road
state 2 will be low. In economic terms, this means that the
fishery will provide society with a flow of consumptive
and non-consumptive services.

Minimizing the Stationary Joint Probability

Recalling from "The second criterion" section we see that
in this version of the management problem, the manager’s
primary objective is to choose the season closure length so
that the long run probability of the fishery being in state 3
at time t, of making the next transition after time + % and
of this next transition being into state 2, is small. Formally,
the manager solves

min P32 7G(w)dw
(13)

-r->0 0"33

subject to Eq. (14). Now, as in the previous sub-section,
suppose that the solution to problem (14)-(16) yields an
interior minimum at which the constraint binds. Then,
excluding the complementary slackness conditions, the
Kuhn-Tucker conditions for a minimum are

P32 [-exp{ o’r}]-- OB(’r), (17)
o33

where 0 is the multiplier on the constraint (Eq. (14)) and

B(’) . (8)

On solving Eqs. (17) and (18) together, we obtain the
optimal values of the season closure length (-r*) and the
shadow price of the social net benefit constraint (0"). The
"ecological-economic" optimality condition is Eq. (17).
This equation tells us that when the manager’s primary
concern is to minimize the long run probability of moving
to the intermediate state 2 from the undesirable state 3,
(s)he will select the length of the season closure so that the
marginal effect of the season closure on the long run

probability of the fishery being in state 3 at time t, of
making the next transition after time + % and of this next
transition being into state 2 (the LHS) is equal to the
product of the shadow value of the social net benefit
constraint and the marginal net benefit to society
from selecting the season closure length optimally
(the RHS).

It 7-* is chosen in this way, then we can be fairly sure
that our fishery will be "sustainable" in the long run. The
reader will note that in the context of this paper,
sustainability has a twofold meaning. From an ecological
standpoint, sustainable means that the fishery will not be
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resilient in the undesirable state 3. In economic terms,
sustainable means that the fishery will be able to provide
society with a flow of consumptive and non-consumptive
services over time.

It is our conjecture that a conservative fishery manager
will want to solve the minimization problem of this sub-
section rather than the minimization problem of the
"Minimizing the stationary probability" section. This is
because in the optimization problem of this sub-section,
the focus is explicitly on minimizing the long run
probability of the fishery moving to state 2 from state 3.
In contrast to this, in the optimization problem of the
"Minimizing the stationary probability" section, the focus
is simply on minimizing the long run proportion of time
that the fishery spends in the middle-of-the-road state 2. In
this connection, one can ask the following question:
Which problem solution results in a longer season
closure? In other words, is z > 0"3 or is - --< 0"3 ?
The reader should note that without significant
additional structure on the two problems that we have
been analyzing, this question cannot be resolved
definitively.

CONCLUSIONS

ment problem when this criterion is used with the solution
of a management problem in which the manager
minimizes the stationary conditional probability that the
next state visited after time is 2, given that the fishery is
in state 3 at time t.

Second, we modeled the fishery as a semi-Markov
process. Although this is a fairly general stochastic
process, it is still Markovian in the sense that a semi-
Markov process changes states in accordance with a
Markov chain. Consequently, it would be useful to know
whether any aspects of our analysis change when a more
general stochastic process is used to model the fishery.
Studies of fisheries management that incorporate
these aspects of the problem into the analysis will
provide additional insights into the management of
fisheries whose behavior is governed by a great deal of
uncertainty.
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We accomplished three tasks in this paper. First, in the
"Season length restrictions in a stochastic fishery" section,
we used the theory of semi-Markov processes to provide
an ecological-economic model of a stylized fishery that is
managed with season length restrictions. Next, we used
the dynamic and the stochastic properties of this fishery to
derive two managerial criteria that are meaningful from an
ecological standpoint. We stress that because these two
criteria are probabilities, our approach to the fishery
management problem is very different from traditional
economic approaches to this problem. Finally, in the
"Optimal fishery management with ecological-economic
criteria" section, we used these two criteria to study two
fishery management problems from an ecological-
economic perspective. In this perspective, the principal
focus of the manager is on selecting the season closure
length to minimize the amount of time the fishery spends
in the middle-of-the-road state 2.
The analysis contained in this paper can be extended in

a number of directions. In what follows, we suggest two
possible extensions. First, recall that in "The second
criterion" section, our manager’s objective was to
minimize the stationary probability of the fishery being
in state 3 at time t, of making the next transition after time
+ z, and of this next transition being into state 2. This

approach does not require the manager to condition this
probability on any known information. Consequently, it
would be useful to compare the solution to the manage-
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