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Riesz potentials (also called Riesz fractional derivatives) and their Hilbert transforms are
computed for the Korteweg-de Vries soliton. They are expressed in terms of the full-range
Hurwitz Zeta functions ζ+(s, a) and ζ−(s, a). It is proved that these Riesz potentials and their
Hilbert transforms are linearly independent solutions of a Sturm-Liouville problem. Various new
properties are established for this family of functions. The fact that the Wronskian of the system is
positive leads to a new inequality for the Hurwitz Zeta functions.

1. Introduction

In recent years the theory of fractional derivatives and integrals called Fractional Calculus
has been steadily gaining importance for applications. Ordinary and partial differential
equations of fractional order have been widely used for modeling various processes in
physics, chemistry, and engineering (see, e.g., [1–3] and the references therein). Recent
theoretical developments shed new light on the interpretation and properties of fractional
derivatives. Having written the latter in the form of Stieltjes integrals, Podlubny [4] found
new physical and geometric interpretation of these structures relating them to inhomogeneity
of time. Extension of the classical maximum principle to the case of a time-fractional diffusion
equation appeared in the recent work of Luchko [5]. In the present paper we are concerned
with Riesz fractional derivatives (also called Riesz potentials; see [6, page 88], and [7, page
117]) that are defined as fractional powers of the Laplacian Dα = (−Δ)α/2 with α ∈ R. They
are well known for their role in investigating the solvability of nonlinear partial differential
equations, and the Korteweg-de Vries equation (KdV henceforth) in particular (see, e.g., [7–
11] and the references therein). In the current work, Riesz potentials of KdV solitons are
computed and their relation to ordinary differential equations is established.
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We continue the study of Riesz fractional derivatives of solutions to Korteweg-de-
Vries-type equations started in [12]. After appropriate rescaling, KdV can be written in the
form

ut + uxxx + 3
(
u2
)
x
= 0, x ∈ R, t > 0. (1.1)

It is well known that the fundamental solution of the Cauchy problem for the linearized
KdV is expressed in terms of the Airy function of the first kind Ai(x) and its Hilbert
transform (conjugate) in terms of the Scorer functionGi(x). The papers [12–14] were devoted
to the study of fractional properties of the Airy functions and their conjugates and to the
establishing of related properties for KdV-type equations.

Although there exists extensive literature on solitons, as far as we know, a study of
their fractional properties is still missing. A preliminary investigation of Riesz potentials for
a KdV soliton was carried out in [15]. In this paper the emphasis was put on the issue of
whether solitons inherit fractional properties of fundamental solutions. Riesz potentials of a
soliton, uα(X) = Dαu0(X), where u0(X) = 2sech2 X, X = x − 4t, and Dα = (−∂2

x)
α/2, and their

Hilbert transforms, vα(X) = −Huα(X), were obtained in terms of the Hurwitz Zeta function
of a complex argument, ζ(s, z) with s = 2 + α and z = 1/2 + iX/π . It was proved in [15]
that the zero mean properties hold for both uα(X) and vα(X) with α > 0. This confirmed
the predictions based on the properties of fundamental solutions of the linearized Cauchy
problems.

The goal of the current paper is to go further and to study Riesz potentials of solitons
as solutions of differential equations. We intend to show that these functions and their Hilbert
transforms form linearly independent systems of solutions for a second-order ordinary
differential equation in a self-adjoint form. This fact may be helpful in understanding the
issue of using these structures as intrinsic mode functions in signal processing (see [16, 17]
and the references therein), that is, in using Riesz potentials for expansions. In this context it
is interesting to point out that the graphs of the functions uα(X) reveal a striking similarity
to those of the Airy wavelets generated by the function Ai′(x)Ai′(−x) (see [18, page 34], and
Figure 3 below).

For the analysis to follow; we employ the full-range Hurwitz Zeta functions: ζ+(s, a) =
ζ(s, a)+ζ(s, 1−a) and ζ−(s, a) = ζ(s, a)−ζ(s, 1−a) (symmetric and antisymmetric combinations
of ζ(s, a) and ζ(s, 1 − a)), recently introduced in [19] for a ∈ R. We prove that the functions
wα(X) = uα(X) + ivα(X), α > −1 are solutions of the Sturm-Liouville problem

− d

dX

(
Pα(X)

dw

dX

)
+Qα(X)w = λ ρα(X)w, X ∈ R, (1.2)

lim
X→±∞

w(X) = 0, (1.3)

for λ = 1. Here Pα(X) > 0, ρα(X) > 0, and Qα(X) is a real function. The essential point consists
in proving that the Wronskian of uα(X) and vα(X) is positive for all α > −1 and x ∈ R. It
allows one to prove that Pα(X) and ρα(X) are positive and to estimate the number of zeros of
uα(X) and vα(X) on any bounded interval.
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The fact that this Wronskian is positive also leads to a new inequality for the Hurwitz
Zeta functions

ζ(s, z)ζ(s + 1, z) + ζ(s, z)ζ(s + 1, z) > 0, (1.4)

where s > 1, z = 1/2+iX/π , and the bar over the letter denotes complex conjugation. As far as
we know, there are no results in the literature on the arguments of the Hurwitz Zeta functions.
However, (1.4) provides some information on this issue. Indeed, setting ζ(s, z) = rse

iϕs and
ζ(s + 1, z) = rs+1e

iϕs+1 in (1.4) allows one to deduce the relation cos(ϕs+1(z) − ϕs(z)) > 0 for
s > 1, z = 1/2 + iX/π , and X ∈ R.

The paper is organized as follows. In Section 2, we provide the necessary information
on the special functions involved. Section 3 is devoted to the study of Riesz potentials for KdV
solitons and their Hilbert transforms. In Section 3.1, the main properties of these functions are
summarized. Sturm-Liouville problem (1.2) is derived in Section 3.2. Section 3.3 deals with
the properties of the Wronskian W[uα, vα]. Zeros of the functions uα and vα are studied in
Section 3.4. In Section 4, the inequality (1.4) is discussed.

2. Preliminaries

Introduce the Fourier transform of the function f : R → R by

f̂(ξ) = F
{
f
}
(ξ) =

∫∞
−∞
e−iξxf(x)dx, (2.1)

and the inverse Fourier transform by

f(x) = F−1
{
f̂
}
(x) =

1
2π

∫∞
−∞
eiξxf̂(ξ)dξ. (2.2)

For real α and x ∈ R, define Riesz potentials of a function f(x) by the formula (see [7,
page 117])

Dαf(x) =
1

2π

∫∞
−∞
|ξ|αf̂(ξ)eiξxdξ, (2.3)

provided that the integral in the right-hand side exists. Define derivatives of Dα
xf(x) with

respect to α by

∂nαD
α
xf(x) =

1
2π

∫∞
−∞
|ξ|αlnn |ξ|f̂(ξ)eiξxdξ, n ∈ N, (2.4)

provided that these integrals exist.
Introduce the Hilbert transform of the function f by (see [20, page 120])

Hf(x) =
1
π
P.V.

∫∞
−∞

f
(
y
)

y − xdy,
(2.5)
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where x ∈ R and P.V. denotes the Cauchy principal value of the integral. According to our
choice of the Fourier transform (̂Hf)(ξ) = i sgn(ξ)f̂(ξ), one can see thatH2 = −I on Lp(R), p ≥
1, where I is the identity operator. Also, ∂x = H ◦ D and ∂2

x = −D2, where the operator D is
defined by (2.3).

Next, introduce the Trigamma function by (see [21, page 260, 6.4.1])

ψ ′(z) =
d2

dz2
ln Γ(z) =

∫∞
0

te−zt

1 − e−t dt, R(z) > 0. (2.6)

Notice that (see [21], page 260, 6.4.7)

ψ ′(z) + ψ ′(1 − z) = −π d

dz
{cot(πz)}. (2.7)

Also, the following asymptotic expansion holds:

ψ ′(z) ∼ 1
z
+

1
2z2

+
1

6z3
+O
(

1
z5

)
for z −→ ∞,

∣∣arg z
∣∣ < π. (2.8)

The Hurwitz (generalized) Zeta function is defined by (see [22, page 88])

ζ(s, a) =
∞∑
n=0

1
(n + a)s

for R(s) > 1, a ∈ C, a /= 0,−1,−2, . . . . (2.9)

This implies that

∂aζ(s, a) = −sζ(s + 1, a). (2.10)

This function has the integral representation

ζ(s, a) =
1

Γ(s)

∫∞
0

xs−1e−ax

1 − e−x dx for R(s) > 1, R(a) > 0, (2.11)

where Γ(x) is the Gamma function. In two particular cases, we have (see [22]) that

ζ

(
s,

1
2

)
= (2s − 1)ζ(s), (2.12)

ζ(2, a) = ψ ′(a), (2.13)

where ζ(s) is the Riemann Zeta function.
The singularity of ζ(s, a) as s → 1 is given by the relation

lim
s→ 1

{
ζ(s, a) − 1

s − 1

}
= −Γ

′(a)
Γ(a)

= −ψ(a). (2.14)
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The asymptotic expansion of ζ(s, a) for large a is (see [23])

ζ(s, a) ∼ 1
2
a−s +

a1−s

s − 1
+

1
Γ(s)

∞∑
k=1

B2k

(2k)!
Γ(2k + s − 1)

a2k+s−1
, |a| <∞,

∣∣arg a
∣∣ < π, (2.15)

where Bn are the Bernoulli numbers.
Introduce the full-range forms of Hurwitz Zeta functions (see [19])

ζ+(s, a) =
∞∑

n=−∞

1
[
(n + a)2

]s/2 , (2.16)

ζ−(s, a) =
∞∑
n=0

1
[
(n + a)2

]s/2
−

−1∑
n=−∞

1
[
(n + a)2

]s/2
. (2.17)

Representations (2.16) and (2.17) imply that

ζ+(s, a) = ζ(s, a) + ζ(s, 1 − a), ζ−(s, a) = ζ(s, a) − ζ(s, 1 − a). (2.18)

Hence, follow the symmetric and antisymmetric properties of the functions,

ζ+(s, a) = ζ+(s, 1 − a), ζ−(s, a) = −ζ−(s, 1 − a). (2.19)

It follows from (2.16) that ζ+(s, a) is a periodic function of a, with the unit period. It is even
with respect to a = 0 and a = 1/2. The function ζ−(s, a) is odd about a = 1/2 and ζ−(s, 1/2) =
0. These functions satisfy the functional differential equations

∂aζ+(s, a) = −sζ−(s + 1, a), ∂aζ−(s, a) = −sζ+(s + 1, a). (2.20)

Consider now that s ∈ R and denote by a the complex conjugate of a. Then ζ(s, a) =
ζ(s, a). It implies that, for a = a1 + ia2,

ζ+(s, a) = 2R{ζ(s, a)} = 2
Γ(s)

∫∞
0

xs−1e−a1x cosa2x

1 − e−x dx. (2.21)

In a similar way,

ζ−(s, a) = 2iI{ζ(s, a)} = − 2i
Γ(s)

∫∞
0

xs−1e−a1x sin(a2x)
1 − e−x dx. (2.22)

Denote by W[u, v] the Wronskian of the functions u(x) and v(x), that is, W[u, v] =∣∣∣ u v

u′ v′

∣∣∣. For reader’s convenience, we present here [24, Theorem 5.3].
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Theorem 2.1. Let p(t) > 0, q(t) be real valued and continuous for 0 ≤ t ≤ T . Let u and v be real
valued solutions of the equation

(
pu′
)′ + qu = 0, (2.23)

satisfying the condition

p(t)W[u(t), v(t)] = C0 > 0. (2.24)

LetN be the number of zeros of u(t) on [0, T]. Then

∣∣∣∣∣πN − C0

∫T
0

dt

p(t)[v2(t) + u2(t)]

∣∣∣∣∣ ≤ π. (2.25)

In conclusion of this section, we would like to quote an interesting result concerning
integrals over the real axis (see [25]).

Theorem 2.2. For any integrable function f(x) and g(x) = x − c2/x with c = const ∈ R,

P.V.

∫∞
−∞
f
(
g(x)

)
dx = P.V.

∫∞
−∞
f(x)dx. (2.26)

Moreover, the above formula holds true if

g(x) = x −
∞∑
j=1

bj

x − cj
, (2.27)

where {bj} is any sequence of positive constants, cj are any real constants, and the series is convergent.

3. Fractional Derivatives of A KdV Soliton and Their Conjugates

In this section, we consider Riesz fractional derivatives of a KdV soliton and their Hilbert
transforms and establish their properties. We notice that all the graphs were obtained with
the Mathematica 6 software.

We take the soliton solution of (1.1) in the form u0(X) = 2sech2 X with X = x − 4t (see
Figure 1) and introduce the function

wα(X) = uα(X) + ivα(X), (3.1)

where

uα(X) = Dαu0(X), vα = −DαHu0(X). (3.2)
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Figure 1: Graph of the soliton u0(X).

Notice that the functions uα(X) and vα(X) form a conjugate pair (see [20, page 120]) since

uα(X) = Hvα(X), vα(X) = −Huα(X). (3.3)

The next statement was proved in [15]. Using the functions (2.16) and (2.17), we
rewrite it in a more convenient form.

Theorem 3.1. The functions uα(X) and vα(X) have the following representations for α > −1 and
X ∈ R:

uα(X) =
2Γ(2 + α)
π2+α

ζ+

(
2 + α,

1
2
+ i

X

π

)
, (3.4)

vα(X) = i
2Γ(2 + α)
π2+α

ζ−

(
2 + α,

1
2
+ i

X

π

)
, (3.5)

where ζ+(s, a) and ζ−(s, a) are the full-range Hurwitz Zeta functions (see (2.16) and (2.17)) and Γ(s)
is the Gamma function.

3.1. Properties of the Functions uα and vα

In this subsection, we collect the properties of the functions uα and vα. Some of them were
established in [15] and some are given for the first time as follows.

Properties of the Functions uα and vα

(1) The functions uα(X) and vα(X) satisfy the functional differential equations

u′α(X) = −vα+1(X), v′α(X) = uα+1(X), (3.6)

where α > −1, X ∈ R, and the prime denotes differentiation with respect to X. This follows
from (3.3) and the relation d/dX = H ◦D.
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(2) The functions uα(X) are even and the functions vα(X) are odd on R (see [15] and
Figures 1–4).

(3) The function uα(X) is periodic with the period X = iπ . It follows from the
periodicity of ζ+(s, a) with the unit period.

(4) For all α > 0 (see [15]),

∫∞
−∞
uα(X)dX = 0,

∫∞
−∞
vα(X)dX = 0. (3.7)

These properties are reflected on the graphs (see Figures 3 and 4).

(5) For all α > 0 and n ∈ N,

∂nα

∫∞
−∞
uα(X)dX = 0, ∂nα

∫∞
−∞
vα(X)dX = 0. (3.8)

These relations follow from the differentiation of the identities in (3.7).

(6) For all α > 0 and c ∈ R,

P.V.

∫∞
−∞
uα

(
X − c

2

X

)
dX = 0, P.V.

∫∞
−∞
vα

(
X − c

2

X

)
dX = 0. (3.9)

Moreover,

P.V.

∫∞
−∞
uα

⎛
⎝X −

∞∑
j=1

bj

X − cj

⎞
⎠dX = 0,

P.V.

∫∞
−∞
vα

⎛
⎝X −

∞∑
j=1

bj

X − cj

⎞
⎠dX = 0,

(3.10)

where bj is any sequence of positive constants, cj are any real constants, and the series
converges. These relations follow from (3.7) and Theorem 2.2 .

(7) The functional sequence of Riesz potentials {uα(X)} converges pointwise to the
soliton u0(X), and the functional sequence {vα(X)} converges pointwise to the
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Figure 2: Graph of the conjugate soliton v0(X).

conjugate soliton v0(X) for α → 0+ (see [15]). Notice that

∫∞
−∞
u0(X)dX = 4, P.V.

∫∞
−∞
v0(X)dX = 0 (3.11)

(see Figures 1 and 2). Here the conjugate soliton v0(X) is given by

v0(X) =
2i
π2

[
ψ ′
(

1
2
+ i

X

π

)
− ψ ′
(

1
2
− iX

π

)]
. (3.12)

Equation (3.12) can be recovered from (3.5) with α = 0 thanks to (2.13).

Remark 3.2. The conjugate soliton (3.12) is an algebraic solitary wave for extended KdV:

vt + vxxx + 3
[
2v ·Hv −H

(
v2
)]

x
= 0, (3.13)

obtained by applying the Hilbert transform to (1.1) and setting v = −Hu. The term “algebraic
solitary wave” is explained by the fact that v0(X) has a 1/X decay for large X. More precisely
(see [15]),

v0(X) ∼ 2
π
· 1
X

+O
(

1
X2

)
for |X| −→ ∞. (3.14)

(8) For α ≥ 0, the functions uα and vα are the elements of L2(R). Moreover, they are
orthogonal in the principal value sense, namely, for all α1, α2 ≥ 0,

P.V.

∫∞
−∞
uα1(X)vα2(X)dX = 0. (3.15)
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Figure 3: Graph of the fractional derivative u3.8(X).

Equations (3.12) and (3.14) imply that v0 ∈ L2(R). The fact that uα and vα with α > 0 are the
elements of L2(R) follows from their asymptotics obtained in [15], namely,

uα(X) ∼ 4Γ(1 + α)
π2+α

cos[(1 + α) arctan(2X/π)]
[
1/4 + (X/π)2

](1+α)/2
+O

(
1

|X|2+α

)
,

vα(X) ∼ 4Γ(2 + α)
π2+α

2 sin[(1 + α) arctan(2X/π)]

(1 + α)
[
1/4 + (X/π)2

](1+α)/2
+O

(
1

|X|2+α

)
.

(3.16)

Orthogonality of uα and vα follows from the fact that all uα(X) with α ≥ 0 are even functions
and all vα(X) with α ≥ 0 are odd functions of X (see Property 2 and Figures 1–4).

(9) At the point X = 0, one has for all α > −1

uα(0) =
4Γ(2 + α)
π2+α

(
2α+2 − 1

)
ζ(2 + α) > 0, (3.17)

vα(0) = 0, (3.18)

where ζ(s) is the Riemann Zeta function (see [15]).

3.2. Sturm-Liouville Problem

It is convenient to represent wα(X) in the exponential form, namely,

wα(X) = Rα(X) exp[iΘα(X)], (3.19)
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Figure 4: Graph of the conjugate fractional derivative v3.8(X).

where

Rα(X) =
√
[uα(X)]2 + [vα(X)]2,

Θα(X) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Φα(X), uα(X) > 0,

Φα(X) + π, uα(X) < 0, vα(X) ≥ 0,

Φα(X) − π, uα(X) < 0, vα(X) < 0,

Φα(X) = arctan
vα(X)
uα(X)

.

(3.20)

Exponential representation (3.19) allows one to deduce the boundary value problem for the
functions wα(X). It turns out that for all α > −1 the functions wα(X) solve the equation

d

dX

(
Pα(X)

dw

dX

)
−Qα(X)w + ρα(X)w = 0, X ∈ R, (3.21)

where

Pα(X) =
C

W[uα(X), vα(X)]
, C = const,

Qα(X) =
[Pα(X)R′α(X)]′

Rα(X)
,

ρα(X) = [Θ′α(X)]2 ,

(3.22)

Θ′α(X) =
W[uα(X), vα(X)]

R2
α(X)

. (3.23)

Here W[uα(X), vα(X)] is the Wronskian of uα(X) and vα(X). Below we shall use a shorter
notation Wα(X) =W[uα(X), vα(X)].
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Figure 5: Graph of the arctangent function Φ3.8(X).

Taking into account the behavior of wα(X) for large X (see [15]), we can restate the
obtained results in another form. Indeed, wα(X) are solutions of the Sturm-Liouville problem

− d

dX

(
Pα(X)

dw

dX

)
+Qα(X)w = λ ρα(X)w, X ∈ R, (3.24)

lim
X→±∞

w(X) = 0, (3.25)

corresponding to λ = 1. Without loss of generality, we can choose the constant in (3.22) to be
positive. In the next subsection, we shall prove that Wα(X) > 0. It implies that Pα(X) > 0 and
ρα(X) > 0 in (3.22).

It follows from (3.7) that for α > 0 the functions wα(X) also satisfy the zero mean
condition

∫∞
−∞
wα(X)dX = 0. (3.26)

This reflects the oscillatory behavior of wα(X) for α > 0 (see Figures 3 and 4).
The graph of the arctangent function Φα(X) is shown in Figure 5. Φα(X) conveniently

serves as a zero counter for both functions: uα(X) and vα(X). It possesses zeros at the points
where vα(X) has zeros and has jumps at the points where uα(X) has zeros.

Remark 3.3. Observe that a general solution of (3.24) can be written in the form

w(g)(X) = C1uα(X) + C2uα(X)
∫X

0

Wα

(
y
)

u2
α

(
y
) dy, (3.27)

where C1, C2 = const.
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Remark 3.4. We would like to point out that the differential equation given by (3.21) can be
factored in the following way (see [26, page 269]):

d

dX

(
Pα(X)

dw

dX

)
−Qα(X)w + ρα(X)w =

Wα(X)
uα(X)

d

dX

[
u2
α(X)

Wα(X)
d

dX

(
w(X)
uα(X)

)]
. (3.28)

3.3. Wronskian of uα and vα

Lemma 3.5. The following properties hold for the WronskianWα(X) for α > −1 and all x ∈ R:

Wα(−X) =Wα(X), W ′
α(0) = 0, (3.29)

Wα(X) > 0. (3.30)

Proof. We start with (3.29). Taking into account relations in (3.3) and the fact that ∂X = H ◦D,
we can write

Wα(X) = uα(X)v′α(X) − vα(X)u′α(X) = uα(X)uα+1(X) + vα(X)vα+1(X). (3.31)

Since the functions uα(X) are even and vα(X) are odd with respect to X ∈ R, Wα(X) is even
for X ∈ R. Differentiation of (3.31) with the help of (3.6) and (3.18) yields W ′

α(0) = 0. Next,
we turn to the proof of (3.30). Since the functions uα(X) and vα(X) are linearly independent
solutions of the equation (3.24), Wα(X)/= 0 for all α > −1 and x ∈ R. It remains to establish
the sign of the Wronskian. In view of (3.17) and (3.18),

Wα(0) = uα(0)uα+1(0) =
16Γ(2 + α)Γ(3 + α)

π5+2α

(
22+α − 1

)(
23+α − 1

)
ζ(2 + α)ζ(3 + α) > 0. (3.32)

By Abel’s formula, for all X ∈ R,

Wα(X) =Wα(0) exp

[
−
∫X

0

P ′α
(
η
)

Pα
(
η
) dη
]
, (3.33)

where the function

P ′α(X)
Pα(X)

= − i(s + 1)
π

· ζ−(s, z)ζ+(s + 2, z) − ζ+(s, z)ζ−(s + 2, z)
ζ+(s, z)ζ+(s + 1, z) − ζ−(s, z)ζ−(s + 1, z)

,

s = 2 + α, z = 1/2 + iX/π,

(3.34)
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Figure 6: Three-dimensional graph of the Wronskian Wα(X).

is continuous on R. After some simplification, we have that

Wα(X) =Wα(0) exp
{
−s + 1

π

I[ζ(s, z)]R[ζ(s + 2, z)] −R[ζ(s, z)]I[ζ(s + 2, z)]
R[ζ(s, z)]R[ζ(s + 1, z)] + I[ζ(s, z)]I[ζ(s + 1, z)]

}
. (3.35)

This representation yields (3.30). The lemma is proved.

Three-dimensional graph of Wα(X) is given in Figure 6.

Remark 3.6. What does the positivity of the Wronskian yield for the soliton and its conjugate?
For α = 0, (3.30) simplifies to read

W0(X) = 2sech2(X)
[
v′0(X) + tanhX · v0(X)

]
> 0. (3.36)

We notice that v0(X) > 0 for X > 0, v0(−X) = −v0(X) for X ∈ R, and v0(0) = 0 (see Figure 2).
Integrating the inequality v′0(X)/v0(X) + tanhX > 0 over the interval [ε,X] for X ≥ ε > 0 and
the inequality v′0(X)/v0(X) + tanhX < 0 over [−ε,X] for X ≤ −ε < 0 yields the estimate

|v0(X)| > |v0(ε)|
cosh ε
coshX

for |X| ≥ ε > 0. (3.37)

3.4. Zeros of the Functions uα(X) and vα(X)

This subsection is devoted to the estimates of the number of zeros for the functions in
question. By a strictly monotone change of variable

y =
∫X
b

dη

Pα
(
η
) , b = const ∈ R, (3.38)
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Equation (3.21) can be reduced to the equation

d2W
dy2

+ Q̃α

(
y
)
W = 0, (3.39)

where W(y) = w(X(y)) and Q̃α(y) = Pα(X(y))Qα(X(y)). Therefore, any nontrivial solution
of (3.39) can have not more than a finite number of zeros on any bounded interval ([24], page
323).

Theorem 3.7. Let Nα be the number of zeros of the function vα(X) on the interval [0, X0], where
X0 <∞. Then the following inequality holds:

Iα − 1 ≤Nα ≤ Iα + 1, (3.40)

where

Iα = arctan
iζ−(2 + α, 1/2 + iX0/π)
ζ+(2 + α, 1/2 + iX0/π)

. (3.41)

Proof. Since we chose C = 1 in (3.22),

Pα(X)W[uα(X), vα(X)] = 1. (3.42)

Therefore,

Θ′α(X) =
v′αuα − u′αvα

v2
α

> 0. (3.43)

Therefore, by Theorem 2.1 of Section 2, for the interval [0, X0] we have the estimate

−1 + Iα ≤Nα ≤ 1 + Iα, (3.44)

where

Iα =
∫X0

0

Wα

(
η
)
dη

v2
α

(
η
)
+ u2

α

(
η
) =
∫X0

0
Θ′α
(
η
)
dη = arctan

iζ−(2 + α, 1/2 + iX0/π)
ζ+(2 + α, 1/2 + iX0/π)

. (3.45)

Here we have used the fact that ζ−(s, 1/2) = 0 for s > 1.

Theorem 3.8. The zeros of uα(X) separate and are separated by those of vα(X).

Proof. This follows from Sturm’s Separation Theorem (see [24], page 335).



16 International Journal of Differential Equations

4. Inequality for Hurwitz Zeta Functions

Here we discuss a new inequality for the Hurwitz Zeta functions which follows from
Lemma 3.5. The next statement is a corollary of this lemma.

Corollary 4.1. For s > 1 and z = 1/2 + iX/π with X ∈ R, the following inequality holds:

K(s, z) = ζ(s, z)ζ(s + 1, z) + ζ(s, z)ζ(s + 1, z) > 0. (4.1)

This inequality can also be written in another form:

K(s, z) = R{ζ(s, z)}R{ζ(s + 1, z)} + I{ζ(s, z)}I{ζ(s + 1, z)} > 0. (4.2)

Proof. Dropping positive terms in front of the full-range Hurwitz Zeta functions in (3.4) and
(3.5) and using (3.30) lead to

ζ+(s, z)ζ+(s + 1, z) − ζ−(s, z)ζ−(s + 1, z)

= 2[ζ(s, z)ζ(s + 1, z) + ζ(s, z)ζ(s + 1, z)]

= 4[R{ζ(s, z)}R{ζ(s + 1, z)} + I{ζ(s, z)}I{ζ(s + 1, z)}] > 0.

(4.3)

Remark 4.2. Setting ζ(s, z) = rs(z)eiϕs(z) and ζ(s + 1, z) = rs+1e
iϕs+1(z), we can rewrite (4.1) in

the form

K = 2rsrs+1
{

exp
[
i
(
ϕs+1 − ϕs

)]
+ exp

[
−i
(
ϕs+1 − ϕs

)]}
= 4rsrs+1 cos

(
ϕs+1 − ϕs

)
. (4.4)

It shows that, for z = 1/2 + iX/π , X ∈ R,

cos
(
ϕs+1(z) − ϕs(z)

)
> 0. (4.5)

Introduce the scalar product for the complex-valued functions f = f1 + if2 and g = g1 + ig2 by
the formula

〈
f · g
〉
= f · g = f1f2 + f2g2 + i

(
f2g1 − f1g2

)
. (4.6)

Then for s > 1 and z = 1/2 + iX/π ,

K(s, z) = 2R{〈ζ(s, z) · ζ(s + 1, z)〉} > 0. (4.7)

Remark 4.3. The proof of (4.1) becomes quite difficult when one approaches it from the point
of view of special functions. For example, the use of integral representations (2.21) and (2.22)
yields

K =
1

2Γ(s)Γ(s + 1)

∫∫∞
0

ts−1τs cos[X/π(t − τ)]
sinh(t/2) sinh(τ/2)

dtdτ. (4.8)
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The change of variables ξ = (t − τ)/2, η = (t + τ)/2 leads to

K =
2

Γ(s)Γ(s + 1)

∫∞
0

cos
(

2
X

π
ξ

)
dξ

∫ ξ
−ξ

(
ξ + η

)s−1(
η − ξ

)s
coshη − cosh ξ

dη. (4.9)

It is not clear at all that the integral (4.9) is positive for all s > 1 and X ∈ R. However, (4.1)
shows that it is. Multiplication of the series representations (2.16) and (2.17) does not make
the proof any easier.
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