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We study the qualitative behavior of a class of predator-prey models with Beddington-DeAngelis-
type functional response, primarily from the viewpoint of permanence (uniform persistence). The
Beddington-DeAngelis functional response is similar to the Holling type-II functional response but
contains a term describing mutual interference by predators. We establish criteria under which we
have boundedness of solutions, existence of an attracting set, and global stability of the coexisting
interior equilibrium via Lyapunov function.

1. Introduction and Mathematical Model

Standard Lotka-Volterra systems are also known as the predator-prey systems, on which a
large body of existing predator-prey theory is built by assuming that the per capita rate of
predation depends on the prey numbers only [1]. Recently, the traditional prey-dependent
predator-prey models have been challenged by several biologists based on the fact that
functional and numerical response over typical ecological time scale sought to depend on
the densities of both prey and predator, especially when predators have to search, share,
or compete for food. A more suitable general predator-prey model should be based on the
ratio-dependent theory [2–4]. This roughly states that the per capita predator growth rate
should be a function of the ratio of prey to predator abundance. Moreover, as the number of
predators often changes slowly (relative to prey number), there is often a competition among
the predators, and the per capita rate of predation should therefore depend on the numbers
of both prey and predator, most probably and simply on their ratios. These hypotheses are
strongly supported by numerous field and laboratory experiments and observations [5–9].
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The general model describing the dynamics of prey-predator populations in continu-
ous time can be written as

dX

dτ
= f(X)X − g(X,Y )Y,

dY

dτ
= h(X,Y )Y,

(1.1)

where X and Y are the densities (or biomasses) of prey and of predators at time T ,
respectively. f(X) is the per capita net prey production in the absence of predation, whereas
g(X,Y ) is the functional response of predators (the number of preys eaten per predator per
unit time). Natural mortality of prey is considered to be negligible compared to mortality due
to predation.The function h(X,Y ) represents the numerical response of predators (measures
the growth rate of predators). The function f will be taken either as the Malthusian growth
f(X) = rX or as the logistic model f(X) = rX(1 − X/K). The key role in prey-predator
models is played by the functional response g (Solomon 1949). Traditionally, it is assumed
that the functional response is a function of prey density only prey-dependent feeding,
g = g(X), without any dependence on predator density [9, 10]. The hypothesis is based
on an analogy with the law of mass action in chemistry assuming that prey and predator
individuals encounter each other randomly in space and time [11]. Therefore, the prey-
dependent model can be applied to systems which are spatially homogeneous and in which
the time scale of prey removal by predators is of the same order of magnitude as that of
population reproduction [2].

Many questions in predator-prey theory, including the question of interference
between predators, revolve around the expression that is used for the functional response g =
g(X,Y ). Arditi and Ginzburg [2] have argued that, in many cases, this predator dependence
could be simplified as a ratio-dependent model g = g(X/Y ) instead of modeling explicitly
all conceivable interference mechanisms (and thus adding parameters to the model).

The Beddington-DeAngelis-type functional response performed even better. Although
the predator-dependent models that they considered fit those data reasonably well, no single
functional response best describes all the data sets. The Beddington-DeAngelis response can
be generated by a number of natural mechanisms [5, 12], and because it admits rich but
biologically reasonable dynamics [6], it is worthy for us to further study the Beddington-
DeAngelis model.

Therefore, it is interesting and important to study the following autonomous predator-
prey model with the Beddington-DeAngelis functional response:

dX

dτ
=
(
a1 − b1X − m1Y

α1X + β1Y + γ1

)
X,

dY

dτ
=
(
a2 − m2Y

X + k1

)
Y,

(1.2)

with the initial values X(0) > 0 and Y (0) > 0. The constants a1, a2, b1, m1, m2, α1, β1, γ1,
and k1 are the parameters of model and are assumed to be nonnegative with β1 nontrivial (if
β1 = 0, then the model (1.2) is the same as that in [13]).

These parameters are defined as follows: a1 (resp., a2) describes the growth rate of
prey (resp., of predator), b1 measures the strength of competition among individuals of
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prey’s species, m1 is the maximum value which per capita reduction rate of prey can attain,
γ1 (resp., k1) measures the extent to which environment provides protection to prey (resp.,
to predator), and m2 has a similar meaning to m1. The functional response in (1.2) was
introduced by Beddington [5] and DeAnglis et al. (1975) in [7]. It is similar to the well-known
Holling type-II functional response but has an extra term β1Y in the first right term equation
modeling mutual interference among predators. Hence this kind of type functional response
given in (1.2) is affected by both predator and prey, that is, the so-called predator dependence
by Arditi and Ginzburg [2]. Dynamics for the Holling type-II model have been much studied
(see, e.g., [13–15]). Then how the mutual interference term affects the dynamic of the whole
system is an interesting problem.

Introducing the following scaling (see [16]), t = a1τ, x(t) = (b1/a1)X(τ), and y(t) =
(m2b1/a1a2)Y (τ), then Beddington-DeAngelis predator-prey model (1.2) should take the
following nondimensional form:

dx

dt
= x(1 − x) − axy

αx + βy + γ
,

dy

dt
= b
(
1 − y

x + k

)
y,

(1.3)

where a = (a2/a1)(m1/m2), b = a2/a1, α = α1, β = β1(a2/m2), γ = γ1(b1/a1), and k =
k1(b1/a1).

2. Boundedness of the Model and Existence of a Positively Invariant
Attracting Set

We denote by R
2
+ the nonnegative quadrant, and by Int(R2

+) the positive quadrant.

Lemma 2.1. Positive quadrant Int(R2
+) is invariant for system (1.3).

Proof. From system (1.3), we observe that the boundaries of the nonnegative quadrant R
2
+,

which are the positives x-axis and y-axis are invariant; this is immediately obvious from the
system (1.3). Therefore, densities x(t) and y(t) are positive for all t ≥ 0 if x(0) > 0 and y(0) > 0.
Theorem of existence and uniqueness ensures that the positive solutions of the autonomous
system (1.3) and the axis cannot intersect.

Next, we will show that, under some assumptions, the solutions of system (1.3)which
start in R

2
+ are ultimately bounded. First, let us give the following comparison lemma.

Lemma 2.2. Let φ be an absolutely-continuous function satisfying the differential inequality

d

dt
φ(t) + α1φ(t) ≤ α2, t ≥ 0, (2.1)

where (α1, α2) ∈ R
2; then

∀t ≥ T : φ(t) ≤ α1
α2

−
(
α1
α2

− φ
(
T
))

e−α1(t−T). (2.2)
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We define the function ψ(t) to be the solution of differential equation

d

dt
φ(t) + α1φ(t) = α2, t ≥ 0, (2.3)

and we have the Gronwall’s lemma.

Lemma 2.3. Let x(t) satisfy for t ≥ t0 the linear, scalar equation

dx

dt
= a(t)x + b(t),

x(t0) = x0,
(2.4)

with a(t) and b(t) being continuous functions. If y(t) satisfies for t ≥ t0 the inequalities

dy

dt
≤ a(t)x + b(t),

y(t0) ≤ x0,
(2.5)

then

y(t) ≤ x(t), t ≥ t0. (2.6)

Definition 2.4. A solution φ(t, t0, x0, y0) of system (1.3) is said to be ultimately bounded with
respect to R

2
+ if there exists a compact region A ∈ R

2
+ and a finite time T (T = T(t0, x0, y0))

such that, for any (t0, x0, y0) ∈ R × R
2
+,

φ
(
t, t0, x0, y0

) ∈ A, ∀t ≥ T. (2.7)

Theorem 2.5. Let A be the set defined by

A =
{(
x, y
) ∈ R

2
+ : 0 ≤ x ≤ 1, 0 ≤ x + y ≤ L1

}
, (2.8)

where

L1 =
1
4b

{
5b + (1 + b)2(1 + k)

}
. (2.9)

Then

(1) A is positively invariant; and

(2) all solutions of (1.3) initiating in R
2
+ are ultimately bounded with respect to R

2
+ and

eventually enter the attracting set A.
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Proof. Let (x(0), y(0)) ∈ A, we will show that (x(t), y(t)) ∈ A for all t ≥ 0. Obviously, from
Lemma 2.1, as (x(0), y(0)) ∈ A, (x(t), y(t)) is in Int(R2

+). Then, we have to show that for all
t ≥ 0, 0 ≤ x(t) ≤ 1, and 0 ≤ x(t) + y(t) ≤ L1.

(1) (a) First, we prove that for all t ≥ 0, 0 ≤ x(t) ≤ 1.
We have x > 0 and y > 0 in Int(R2

+); then every solution φ(t) = (x(t), y(t))
of system (1.3), which starts in Int(R2

+), satisfies the differential inequality
dx/dt ≤ (1 − x(t))x(t). This is obvious by considering the first equation of
(1.3). Thus, x(t) may be compared with solutions of du/dt = (1 − u(t))u(t)
and u(0) = x(0) > 0 which is a Bernoulli’s equation; then the solution is
u(t) = 1/(1 + ce−t), with c = 1/x(0) − 1, where 0 ≤ x(0) ≤ 1, which implies
that c = 1/x(0) − 1 ≥ 1.
It follows that every nonnegative solution φ(t) satisfies

x(t) ≤ 1 ∀t ≥ 0. (2.10)

(b) We prove now that, for all t ≥ 0, 0 ≤ x + y ≤ L1.
We define the function σ(t) = x(t) + y(t); the time derivative of this function is

dσ

dt
=
dx

dt
+
dy

dt
=
(
1 − x − ay

αx + βy + γ

)
x + b

(
1 − y

x + k

)
y. (2.11)

Since all parameters are positive and solutions initiating in R
2
+ remain in the

nonnegative quadrant, then

dσ

dt
≤ (1 − x)x + b

(
1 − y

x + k

)
y (2.12)

holds for all x and y being nonnegative.
Thus, as

max
R+

(1 − x)x =
1
4
, (2.13)

we have

dσ

dt
≤ 1

4
+ b
(
1 − y

x + k

)
y; (2.14)

then

dσ

dt
≤ 1

4
+ b
(
1 − y

x + k

)
y + σ(t) − σ(t), (2.15)
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which implies that

dσ

dt
+ σ(t) ≤ 1

4
+ x +

(
b + 1 − by

x + k

)
y. (2.16)

Since in A, x(t) ≤ 1 for all t ≥ 0, we obtain

dσ

dt
+ σ(t) ≤ 5

4
+
(
b + 1 − by

1 + k

)
y. (2.17)

Moreover, it can be easily verified that

max
R+

[(
b + 1 − by

1 + k

)
y

]
=

1
4b

(1 + b)2(1 + k). (2.18)

Consequently

dσ

dt
+ σ(t) ≤ L1, (2.19)

with

L1 =
1
4b

5b + (1 + b)2(1 + k). (2.20)

Using Lemma 2.2, with

α1 = 1, α2 = L1, (2.21)

then we get

∀t ≥ T ≥ 0 : σ(t) ≤ L1 −
(
L1 − σ

(
T
))
e−(t−T). (2.22)

Then, if T = 0,

σ(t) ≤ L1 − (L1 − σ(0))e−t. (2.23)

Hence, for (x(0), y(0)) ∈ A,

σ(t) = x(t) + y(t) ≤ L1. (2.24)

Then

(
x(t), y(t)

) ∈ A, ∀t ≥ 0. (2.25)
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(2) We have to prove that, for (x(0), y(0)) ∈ R
2
+, (x(t), y(t)) → A when t → +∞. We

will show that limt→+∞ x(t) ≤ 1 and limt→+∞ (x(t) + y(t)) ≤ L1.

(a) The first result, limt→+∞ x(t) ≤ 1, is obtained directly from (1a) and
Lemma 2.2, since solutions of the initial value problem

dx

dt
= x(t)(1 − x(t)), x(0) ≥ 0, (2.26)

verify

lim
t→+∞

x(t) ≤ 1. (2.27)

(b) For the second result, let ε > 0 be given, and T1 > 0 exists, such that

x(t) ≤ 1 +
ε

2
∀t ≥ T1. (2.28)

From (2.22) with T = T1, we get, for all t ≥ T1,

σ(t) = x(t) + y(t)

≤ L1 − (L1 − σ(T1))e−(t−T1)

≤ L1 −
{
L1e

T1 − (x(T1) + y(T1))eT1
}
e−t

≤ L1 −
{
L1 −

(
x(T1) + y(T1)

)
eT1
}
e−t.

(2.29)

Then

σ(t) = x(t) + y(t) ≤
(
L1 +

ε

2

)
−
{(
L1 +

ε

2

)
− (x(T1) + y(T1))eT1

}
e−t, ∀t ≥ T1 ≥ 0. (2.30)

Let T2 ≥ T1 be such that

(
L1 +

ε

2

)
− (x(T1) + y(T1))eT1e−t ≤ ε

2
, ∀t ≥ T2. (2.31)

Then

x(t) + y(t) ≤ L1 + ε ∀t ≥ T2. (2.32)

Hence,

lim
t→+∞

(
x(t) + y(t)

) ≤ L1. (2.33)
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This completes the proof; then we conclude that system (1.3) is dissipative in
R

2
+.

3. Linear Stability

First of all, it is easy to verify that this system has three trivial equilibria, (belonging to the
boundary of R

2
+, i.e., at which one or more of populations has zero density or is extinct)

P1(0, 0), P2(0, k), P3(1, 0). (3.1)

The other equilibria are defined by the system

ay

αx + βy + γ
= 1 − x,

y = x + k.

(3.2)

Proposition 3.1. The system (1.3) has a unique interior equilibria P ∗(x∗, y∗) (i.e., x∗ > 0 and y∗ > 0)
if the following condition is verified:

k
(
a − β) ≤ γ. (3.3)

Proof. We introduce the second equation of (3.2) in the first one; then

a(x + k) = (1 − x)((α + β
)
x +
(
βk + γ

))
, (3.4)

and we obtain

(
α + β

)
x2 +

(
βk + γ + a − α − β)x + ak − βk − γ = 0. (3.5)

The discriminant of this equation

Δ =
(
βk + γ + a − α − β)2 − 4

(
ak − βk − γ)(α + β

)

=
((
βk + γ + a

) − (α + β
))2 + 4

((
βk + γ

) − ak)(α + β
)

=
(
βk + γ + a

)2 + (α + β
)2 − 2

(
βk + γ + a

)(
α + β

)
+ 4
(
βk + γ + a

)(
α + β

)
− 4a(k + 1)

(
α + β

)

=
((
βk + γ + a

)
+
(
α + β

))2 − 4a(1 + k)
(
α + β

)
.

(3.6)
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Therefore, if (3.3) holds, then

Δ =
((
βk + γ

)
+ a +

(
α + β

))2 − 4a(1 + k)
(
α + β

)

≥ (a(k + 1) +
(
α + β

))2 − 4a(1 + k)
(
α + β

)

≥ (a(k + 1) − (α + β
))2 ≥ 0.

(3.7)

Consequently, Δ is positive, and the system (1.3) has two other equilibriums P ∗
1 (x1, y1) and

P ∗
2 (x2, y2), where

x1,2 =

((
βk + γ

) − (α + β
)
+ a
) ± √

Δ

2
(
α + β

) ,

y1,2 = (x1,2 + k).

(3.8)

Now, we show, under the condition (3.3), that one of this equilibriums is not in R
2
+; let

x2 =

((
βk + γ + a

) − (α + β
)) − √

Δ

2
(
α + β

) ; (3.9)

then

2x2 = 1 −
(
βk + γ + a

)
+
√
Δ(

α + β
) , (3.10)

from (3.7)

√
Δ ≥ ∣∣a(k + 1) − (α + β

)∣∣, (3.11)

and due to (3.3)

2x2 ≤ 1 −
(
a(k + 1) +

∣∣a(k + 1) − (α + β
)∣∣)(

α + β
) , (3.12)

which implies that

(1) if a(k + 1) < (α + β)

2x2 ≤ 1 − a(k + 1) − a(k + 1) +
(
α + β

)
(
α + β

) ≤ 0; (3.13)



10 Differential Equations and Nonlinear Mechanics

(2) if a(k + 1) > (α + β),

2x2 ≤ 1 − a(k + 1) + a(k + 1) − (α + β
)

(
α + β

) ≤ 2 − 2
a(k + 1)
α + β

≤ 0. (3.14)

it results that P ∗
2 (x2, y2) is not in R

2
+, such that

x1x2 = ak − βk − γ ≤ 0; (3.15)

then the first point P ∗
1 (x1, y1) is in R

2
+.

The Jacobian matrix is given by

J(Xi) =

⎛
⎜⎜⎜⎝
∂f1
∂x

(
xi, yi

) ∂f1
∂y

(
xi, yi

)

∂f2
∂x

(
xi, yi

) ∂f2
∂y

(
xi, yi

)

⎞
⎟⎟⎟⎠, (3.16)

where

∂f1
∂x

(
xi, yi

)
= 1 − 2x − ay

(
βy + γ

)
(
αx + βy + γ

)2 ,

∂f1
∂y

(
xi, yi

)
= − ax

(
αx + γ

)
(
αx + βy + γ

)2 ,

∂f2
∂x

(
xi, yi

)
= b
(

y

x + k

)2

,

∂f2
∂y

(
xi, yi

)
= b − 2by

x + k
.

(3.17)

(1) At P0(0, 0),

J(P0) =
(
1 0
0 b

)
. (3.18)

The eigenvalues of this matrix are

λ1 = 1, λ2 = b. (3.19)

Hence, all parameters are positive; then P0(0, 0) is an unstable node.
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(2) At P1(0, k),

J(P1) =

⎛
⎜⎝1 − ak

βk + γ
0

b −b

⎞
⎟⎠. (3.20)

The eigenvalues are

λ1 = 1 − ak

βk + γ
, λ2 = −b < 0. (3.21)

then, we have

(a) if k(a − β) > γ , P1(0, k) is stable node;
(b) if k(a − β) ≤ γ , P1(0, k) is unstable with the positive y-axis as its stable

manifold.

(3) At P2(1, 0),

J(P2) =

⎛
⎝−1 − a

α + γ
0 b

⎞
⎠. (3.22)

The eigenvalues are

λ1 = −1 < 0, λ2 = b > 0. (3.23)

Then the equilibrium P2(1, 0) is a saddle point with the stable manifold being the
x-axis.

Around P ∗(x∗, y∗), the Jacobian matrix takes the form

J(P ∗) =

⎛
⎜⎜⎝

1 − 2x∗ − ay∗(βy∗ + γ
)

(
αx∗ + βy∗ + γ

)2 − ax∗(αx∗ + γ
)

(
αx∗ + βy∗ + γ

)2
b −b

⎞
⎟⎟⎠. (3.24)

The characteristic equation is

λ2 − tr J(P ∗)λ + det J(P ∗) = 0, (3.25)
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where

det J
(
x∗, y∗) = −b

(
1 − 2x∗ − ay∗(βy∗ + γ

)
(
αx∗ + βy∗ + γ

)2
)

+ ab
x∗(αx∗ + γ

)
(
αx∗ + βy∗ + γ

)2

=
b(

αx∗ + βy∗ + γ
)2
{
ay∗(βy∗ + γ

)
+ (2x∗ − 1)

(
αx∗ + βy∗ + γ

)2

+ ax∗(αx∗ + γ
)}

=
b(

αx∗ + βy∗ + γ
)2
{
(x∗ − 1)

(
αx∗ + βy∗ + γ

)2 + x∗(αx∗ + βy∗ + γ
)2

+ ay∗(βy∗ + γ
)
+ ax∗(αx∗ + γ

)}
.

(3.26)

From (3.2), we get

det J(P ∗) =
b(

αx∗ + βy∗ + γ
)2
{
−ay∗(αx∗ + βy∗ + γ

)
+ x∗(αx∗ + βy∗ + γ

)2

+ ay∗(βy∗ + γ
)
+ ax∗(αx∗ + γ

)}

=
b(

αx∗ + βy∗ + γ
)2
{
−aαx∗y∗ + x∗(αx∗ + βy∗ + γ

)2 + ax∗(αx∗ + γ
)}

=
b(

αx∗ + βy∗ + γ
)2
{
x∗(αx∗ + βy∗ + γ

)2 + ax∗(αx∗ − αy∗ + γ
)}

=
b(

αx∗ + βy∗ + γ
)2
{
x∗(αx∗ + βy∗ + γ

)2 − ax∗(αk − γ)};

(3.27)

then

det J(P ∗) =
bx∗

(
αx∗ + βy∗ + γ

)2
{(
αx∗ + βy∗ + γ

)2 − a(αk − γ)}. (3.28)

We observe that det J(P ∗) is positive if

{(
αx∗ + βy∗ + γ

)2 − a(αk − γ)} > 0. (3.29)
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To simplify, we developed det J(P ∗) respecting one variable, from (3.2); then

(
αx∗ + βy∗ + γ

)2 − a(αk − γ) =
(
a(x∗ + k)
1 − x∗

)2

− a(αk − γ)

=
a2(x∗ + k)2

(1 − x∗)2
− a(αk − γ),

(3.30)

which implies that det J(P ∗) has the same sign of

a(x∗ + k)2 + (1 − x∗)2
(
γ − αk). (3.31)

We rewrite

a(x∗)2 + 2kax∗ + ak2 +
(
γ − αk)((x∗)2 − 2x∗ + 1

)
. (3.32)

Let

f(x) =
(
a + γ − αk)x2 + 2

(
ak + αk − γ)x +

(
γ − αk + ak2

)
. (3.33)

The discriminant is

Δ′ =
(
ak + αk − γ)2 − (a + γ − αk)(γ − αk + ak2

)

= (a + α)2k2 − 2γk(a + α) + γ2 − (a + γ
)(
ak2 + γ

)
+
(
ak2 + a + 2γ

)
αk − (αk)2

=
(
a2 + 2aα + α2

)
k2 − 2γk(a + α) + γ2 −

(
a2k2 + a

(
1 + k2

)
γ + γ2

)
+ aαk3 + γ

+
(
a + 2γ

)
αk − α2k2

= 2aαk2 − 2aγk − aγk2 − aγ + aαk3 + aαk

= a
{
αk3 +

(
2α − γ)k2 + (α − γ)k − γ

}

= a
{
αk
(
k2 + 2k + 1

)
− γ
(
k2 + 2k + 1

)}

= a
(
αk − γ)(k + 1)2.

(3.34)

We get three cases.

(1) If αk < γ, Δ′ is negative, f(x) has the same sign of (a + γ − αk), and we have
(a + γ − αk) > a > 0.

Then, det J(P ∗) is positive.
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(2) If αk > γ, Δ′ is positive and f(x) has at list two solutions x1 and x2, then

(a) if x ∈] −∞, x1] ∪ [x2,+∞[, f(x) has the same sign of (a + γ − αk);
(b) if x ∈]x1, x2[ has sign of −(a + γ − αk).

(3) If αk = γ , then

f(x) = ax2 + 2akx + ak2 = a(x + k)2 > 0. (3.35)

Then, det J(P ∗) is positive.

Remark 3.2. From the expression (3.28), we find that det(J(P ∗)) is positive, if αk ≤ γ, hence
the eigenvalues associated to P ∗ have the same sign.

To determine the sign of these eigenvalues, we have

tr J(P ∗) = 1 − 2x∗ − ay∗(βy∗ + γ
)

(
αx∗ + βy∗ + γ

)2 − b

=
1(

αx∗ + βy∗ + γ
)2
{
(1 − 2x∗ − b)(αx∗ + βy∗ + γ

)2 − ay∗(βy∗ + γ
)}

=
1(

αx∗ + βy∗ + γ
)2
{
(1 − x∗)

(
αx∗ + βy∗ + γ

)2 − (x∗ + b)
(
αx∗ + βy∗ + γ

)2

− ay∗(βy∗ + γ
)}
.

(3.36)

From (3.2), we get

tr J(P ∗) =
1(

αx∗ + βy∗ + γ
)2
{
ay∗(αx∗ + βy∗ + γ

) − (x∗ + b)
(
αx∗ + βy∗ + γ

)2

− ay∗(βy∗ + γ
)}

=
1(

αx∗ + βy∗ + γ
)2
{
aαx∗y∗ − (x∗ + b)

(
αx∗ + βy∗ + γ

)2}

= αx∗ ay∗
(
αx∗ + βy∗ + γ

)2 − (x∗ + b)

= αx∗ay
∗(1 − x∗)2

a2
(
y∗)2 − (x∗ + b)
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= αx∗ (1 − x∗)2

ay∗ − (x∗ + b)

=
1

a(x∗ + k)

{
αx∗(1 − x∗)2 − a(x∗ + b)(x∗ + k)

}

=
1

a(x∗ + k)

{
α(x∗)3 − (a + 2α)(x∗)2 − (a(b + k) − α)x∗ − abk

}
.

(3.37)

Let

P3(x) = αx3 − (a + 2α)x2 − (a(b + k) − α)x − abk. (3.38)

We obtain the following lemma.

Lemma 3.3. If αk < γ is verified, the interior equilibrium P ∗(x∗, y∗) is locally asymptotically stable
if P3(x∗) > 0 and it is unstable if P3(x∗) < 0.

We used the Cardan’s method to solve the cubic equation P3(x) = 0. Then we consider
the equation

a3x
3 + a2x2 + a1x + a0 = 0, (3.39)

with a3 = α, a2 = −(a + 2α), a1 = −(a(b + k) − α), and a0 = abk. Making the substitution
y = a3x + a2/3 reduces the equation to the standard form

y3 − py − q = 0, (3.40)

where p and q depend on a3, a2, a1, and a0

p = −a1a3 +
a22
3
,

q = −a0a23 − 2
(
a2
3

)3

+
a3a2a1

3
.

(3.41)

Let

y = u + v. (3.42)

Then

y3 − py − q = (u + v)3 − 3uv(u + v) −
(
u3 + v3

)
= 0. (3.43)
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We get after the identification of the coefficients

3uv = p,

u3 + v3 = q.
(3.44)

Then

u3v3 =
(
p

3

)3

,

u3 + v3 = q,

(3.45)

and we obtain that u3 and v3 are solutions of the quadratic equation

z2 − qz +
(
p

3

)3

= 0. (3.46)

Then we constitute three cases.

(1) if 27q2 − 4p3 > 0, then

u3 =
q

2
+

√(q
2

)2
−
(
p

3

)3

,

v3 =
q

2
−
√(q

2

)2
−
(
p

3

)3

.

(3.47)

We have

y =
3

√√√√q

2
− 1
2

√
27q2 − 4p3

27
+

3

√√√√q

2
+
1
2

√
27q2 − 4p3

27
; (3.48)

then (3.39) has at list one real root

r0 =
1
a3

⎛
⎜⎜⎝

3

√√√√q

2
− 1
2

√
27q2 − 4p3

27
+

3

√√√√q

2
+
1
2

√
27q2 − 4p3

27
− a2

3

⎞
⎟⎟⎠. (3.49)

So, we have P3(x) < 0 if 0 < x < r0, and P3(x) > 0 if r0 < x.
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(2) if 27q2 − 4p3 < 0, then there are three real roots r1, r2, and r3, and therefore, r1r2r3 =
abk > 0 then one of them is positive, then

(a) if r2 < r3 < 0 < r1, then P3(x) > 0 if 0 < r1 < x, and P3(x) < 0 if x < r1;
(b) if 0 < r1 < r2 < r3, then P3(x) > 0 if 0 < r1 < x, and P3(x) < 0 if x < r1.

(3) if 27q2 = 4p3, then there are one real root positive r0 = 2 3
√
q/2 and a double root

r1,2 = − 3
√
q/2; we also have P3(x) < 0 if 0 < x < r0, and P3(x) > 0 if r0 < x.

4. Uniform Permanence

In this section we shall prove the permanence [8, 17–19], that is, the uniform persistence and
dissipativity, of system (1.3).

The principal notion of persistence theory is uniform persistence or permanence.
Before the study of the permanence of system (1.3), we introduce some necessary definitions.
Consider an ODE model for n interacting biological species

dxi
dt

= fi(x1, x2, . . . , xn), i = 1, 2, . . . , n, (4.1)

where xi(t) denotes the density of the ith species. Let (x1(t), x2(t), . . . , xn(t)) denote the
solution of (4.1) with componentwise positive initial values. The system (4.1) is said to be
weakly persistent if

lim sup
t→+∞

xi(t) > 0, i = 1, 2, . . . , n, (4.2)

persistent if

lim inf
t→+∞

xi(t) > 0, i = 1, 2, . . . , n, (4.3)

and uniformly persistent if there is an ε0 > 0 such that

lim inf
t→+∞

xi(t) ≥ ε0, i = 1, 2, . . . , n. (4.4)

The system (4.1) is said to be permanent if for each i = 1, 2, . . . , n there are constants ε0 and
Mi such that

0 < ε0 ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤Mi. (4.5)

Clearly, a permanent system is uniformly persistent which in turn is persistent, and
persistence implies weak persistence; a dissipative uniformly persistent system is permanent.
For further discussion about various definitions of persistence and permanence and their
connections, see [18].
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Suppose that Y is a complete metric space with Y = Y0 ∪ ∂Y0 for an open set Y0. We
will choose Y0 to be the positive cone in R

2. For the following definitions and theorems, one
can see [6], and for the proof of the theorem, see [8].

Definition 4.1. A flow or semiflow on Y under which Y0 and ∂Y0 are forward invariant is said
to be permanent if it is dissipative and if there is a number ε > 0 such that any trajectory
starting in Y0 will be at least a distance ε from ∂Y0 for all sufficiently large t.

Let ω(∂Y0) ∈ ∂Y0 denote the union of the sets ω(u) over u ∈ ∂Y0.

Definition 4.2. The ω-limit set ω(∂Y0) is said to be isolated if it has a covering Ω =
⋃N
k=1 Ωk

of pairwise disjoint sets Ωk which are isolated and invariant with respect to the flow or the
semiflow both on ∂Y0 and on Y = Y0 ∪ ∂Y0, (M is called an isolated covering). The set ω(∂Y0)
is said to be acyclic if there exists an isolated covering

⋃N
k=1 Ωk such that no subset of Ωk is a

cycle.

Theorem 4.3 (Hale and Waltman 1989). Suppose that a semiflow on Y leaves both Y0 and ∂Y0

forward invariant, maps bounded sets in Y to precompact set for t > 0, and it is dissipative. If in
addition

(1) ω(∂Y0) is isolated and acyclic;

(2) Ws(Ωk) ∩ Y0 = ∅ for allK, where
⋃N
k=1 Ωk is the isolated covering used in the definition of

acyclicity of ∂Y0, andWs denote the stable manifold.

Then the semiflow is permanent.

And, we have this theorem.

Theorem 4.4. Let us assume the following condition:

k
(
a − β) ≤ γ. (4.6)

Then, system (1.3) is permanent.

Proof. We take Y the strictly positive quadrant of R2; then ω(∂Y0) consists of the equilibria
P0(0, 0), P1(0, k), and P2(1, 0). P0(0, 0) is an unstable node, P2(1, 0) is saddle point, and its
stable manifold is x-axis. If ak ≤ βk + γ, P1(0, k) is a saddle point stable along the y-axis and
unstable along the x-axis.

Then, all trajectories on the axis (ox) other than P0(0, 0) approach the point P2(1, 0)
and all trajectories on the axis (oy) other than P0(0, 0) approach the point P1(0, k). It follows
from these structural features that the flow in ∂Y0 is acyclic. So ω(∂Y0) is isolated and acyclic.
The stable manifold of P2(1, 0) is the x-axis and the stable manifold of P1(0, k) is the y-axis,
and we know, from Theorem 2.5, that these stable manifolds cannot intersect the interior of
Y0.

In this case, Theorem 4.3 implies permanence of the flow defined by (1.3).
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5. Global Stability

In this section, we shall prove the global stability of system (1.3) by constructing a suitable
Lyapunov function. First, we have to show that there exists one interior equilibrium
P ∗(x∗, y∗). The linear analysis shows that if αk ≤ γ and x∗ < x(0), then P ∗(x∗, y∗) is
locally stable. We prove now that, under some assumptions, this steady state is globally
asymptotically stable.

Theorem 5.1. The interior equilibrium P ∗(x∗, y∗) is globally asymptotically stable if

β < α, (5.1)

2aL1 < γ, (5.2)
(
βk + γ

)(
αL1 + γ

)
(1 + k) < 4βk2γ2, (5.3)

α(1 + 2k) − β(1 + k) < γ, (5.4)

a − 4βL1 < 4γ. (5.5)

Proof. The proof is based on construction of a positive definite Lyapunov function. Let

V
(
x, y
)
= V1

(
x, y
)
+ V2

(
x, y
)
, (5.6)

where

V1
(
x, y
)
=
(
αx∗ + βy∗ + γ

)(
x − x∗ − x∗ ln

( x
x∗
))
,

V2
(
x, y
)
=
a

b
(x∗ + k)

(
y − y∗ − y∗ ln

(
y

y∗

))
.

(5.7)

This function is defined and continuous on Int(R2
+).

We can easily verify that the function V (x, y) is zero at the equilibrium (x∗, y∗) and is
positive for all other positive values of x and y, and thus, P ∗(x∗, y∗) is the global minimum
of V .

Since the solutions of (1.3) are bounded and ultimately enter the set A, we restrict the
study for this set. The time derivative of V1 and V2 along the solutions of system (1.3) is

dVi
dt

=
dVi
dx

ẋ +
dVi
dy

ẏ, i = 1, 2. (5.8)

Then

dV1

dt

(
x, y
)
=
(
αx∗ + βy∗ + γ

)(
1 − x∗

x

)
ẋ,

dV2

dt

(
x, y
)
=
a

b
(x∗ + k)

(
1 − y∗

y

)
ẏ,

(5.9)
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and using (3.2), we get after simplifing

dV1

dt

(
x, y
)
= −(αx∗ + βy∗ + γ

)
(x − x∗)2 − (x − x∗)

(
y − y∗)( aαx + aγ

αx + βy + γ

)

+
(

aαy

αx + βy + γ

)
(x − x∗)2,

dV2

dt

(
x, y
)
= −a(y − y∗)2 + ay

x + k
(x − x∗)

(
y − y∗).

(5.10)

Therefore, computing dV/dt via dV1/dt and dV2/dt yields

dV

dt
=
(
−(αx∗ + βy∗ + γ

)
+
(

aαy

αx + βy + γ

))
(x − x∗)2

+ (x − x∗)
(
y − y∗)(−

(
aαx + aγ
αx + βy + γ

)
+

ay

x + k

)
− a(y − y∗)2.

(5.11)

The above equation can be written as

dV

dt

(
x, y
)
= −(x − x∗, y − y∗)

(
−g(x, y) −h(x, y)
−h(x, y) a

)(
x − x∗

y − y∗

)
, (5.12)

where

g
(
x, y
)
= −(αx∗ + βy∗ + γ

)
+

aαy

αx + βy + γ
,

h
(
x, y
)
=
a

2

( −αx + γ
αx + βy + γ

+
y

x + k

)
.

(5.13)

From (5.11), it is obvious that dV/dt < 0 if the matrix above is positive definite. This matrix
is positive definite if only if all upper-left submatrices are positive (Sylvester’s criteria), that
is, since a > 0, if only if

(1) g(x, y) < 0;

(2) φ(x, y) = ag(x, y) + h2(x, y) < 0.
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Proof. It is of (1)

g
(
x, y
)
= −(αx∗ + βy∗ + γ

)
+

aαy

αx + βy + γ
< 0. (5.14)

So, as A is an attracting positively invariant set, where, all solutions satisfy 0 ≤ x ≤ 1
and 0 ≤ x + y ≤ L1, then

g
(
x, y
) ≤ −αx∗ +

aαy

αx + βy + γ
,

g
(
x, y
) ≤ α

(
−1 + ay∗

αx∗ + βy∗ + γ
+

ay

αx + βy + γ

)
,

g
(
x, y
) ≤ α

(
−1 + 2aL1

γ

)
.

(5.15)

Therefore, if (5.2) holds, then

g
(
x, y
)
< 0, ∀(x, y) ∈ A. (5.16)

Proof. It is of (2)

φ
(
x, y
)
= −a(αx∗ + βy∗ + γ

)
+

a2αy

αx + βy + γ
+
a2

4

(
− αx + γ
αx + βy + γ

+
y

x + k

)2

< 0. (5.17)

Since (for x fixed)

∂φ

∂y
=

a2α
(
αx + γ

)
(
αx + βy + γ

)2 +
a2

2

(
− αx + γ
αx + βy + γ

+
y

x + k

)(
β
(
αx + γ

)
(
αx + βy + γ

)2 +
1

x + k

)
, (5.18)

then

∂2φ

∂y2
= −2a2 αβ

(
αx + γ

)
(
αx + βy + γ

)3 +
a2

2

(
β
(
αx + γ

)
(
αx + βy + γ

)2 +
1

x + k

)2

+
a2

2

(
−2β2(αx + γ

)
(
αx + βy + γ

)3
)(

− αx + γ
αx + βy + γ

+
y

x + k

)

= −2a
2αβ
(
αx + γ

)
(
αx + βy + γ

)3 +
a2β2

(
αx + γ

)2
(
αx + βy + γ

)4 +
a2

2(x + k)2
+

a2β
(
αx + γ

)
(
αx + βy + γ

)2(x + k)

− a2β2y
(
αx + γ

)
2
(
αx + βy + γ

)3(x + k)
.

(5.19)
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We have

∂2φ

∂y2
≤ −2a

2αβ
(
αx + γ

)
(
αx + βy + γ

)3 − a2β2y
(
αx + γ

)
2
(
αx + βy + γ

)3(x + k)
+

a2β2(
αx + γ

)2

+
a2

2(x + k)2
+

a2β(
αx + γ

)
(x + k)

≤ − a2β
(
αx + γ

)
2
(
αx + βy + γ

)3(x + k)

(
4α(x + k) + βy

)
+

a2β2(
αx + γ

)2

+
a2

2(x + k)2
+

a2β(
αx + γ

)
(x + k)

.

(5.20)

We note, using (5.1), that for (x, y) in A

1
a2
∂2φ

∂y2
≤ − 2kβ2(

αL1 + γ
)3(1 + k) +

β2

γ2
+

1
2k2

+
β

kγ
. (5.21)

If (5.3) holds, then

∂2φ

∂y2
≤ 0. (5.22)

Hence, ∂φ/∂y is strictly decreasing in R+, with respect to y.
Now

∂φ

∂y

∣∣∣∣
y=0

=
a2α

αx + γ
− a2

2

(
β

αx + γ
+

1
x + k

)

=
a2

2
(
αx + γ

)
(x + k)

((
α − β)x + k

(
2α − β) − γ).

(5.23)

In A, all solutions satisfy 0 ≤ x ≤ 1, and from (5.1)

(
α − β)x + k

(
2α − β) − γ ≤ (α − β) + k(2α − β) − γ, (5.24)

then, if (5.4) holds, (∂φ/∂y)|y=0 ≤ 0 in R+. Hence, φ(x, y) is strictly decreasing in R+. This
yields φ(x, y) < D(x, 0) for (x, y) ∈ A; that is, using (5.1), we get

φ
(
x, y
)
< −a(αx∗ + βy∗ + γ

)
+
a2

4

< −a
(
β
(
x∗ + y∗) + γ − a

4

)

< −a
(
βL1 + γ − a

4

)
.

(5.25)
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Consequently, due to (5.5),

φ
(
x, y
)
< 0, ∀(x, y) ∈ A. (5.26)

It follows that if the hypotheses of Theorem 5.1 are satisfied, then dV/dt < 0 along
all trajectories in the first quadrant except (x∗, y∗); so P ∗(x∗, y∗) is globally asymptotically
stable.

6. Conclusion

The Beddington-DeAngelis functional response admits a range of dynamics which include
the possibilities of extinction, persistence, and stable or unstable equilibria. The criteria for
persistence are the same as for systems with a Holling-type 2 response.

The future research will complete the qualitative analysis by studying the limit cycles
of the model. It will also contain the numerical simulations to justify the obtained results.
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