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The present paper aims to compare Harrington’s direct method of moment (MoM) with the
conjugate gradient method (CGM) by evaluating the total current solving the electric field integral
equation (EFIE). Based on their performances, the number of iterations needed for convergence,
storage, and the level of precision, it is found that the direct MoM is more efficient than other
iterative CGM.

1. Introduction

In this paper, we consider the integral electromagnetic field equation (EFIE) for computing
the total current distribution on antenna surfaces, andwe study the two standardmethods by
comparing the solutions. These methods are the direct method of moment (MoM for short)
developed by Harrington [1] and the iterative conjugate gradient method (CGM) [2]. This
comparative study, which is done at the level of numerical solutions, is achieved in terms
of computational advantages and disadvantages as well as their ability to determine the
current distributions on metal surfaces. Based on their performance, the number of iterations
needed for convergence, the storage, and the level of precision, it comes out fromour analysis,
developed in the next sections, that the direct method MoM is more efficient than other
iterative CGM.

Recall that the electromagnetic field has been successfully used in the computation
of the current distribution over the surface with few geometries yielding analytic solutions.
To deal with the study of the above-mentioned integral electromagnetic field equation, the
most popular method for getting numerical solutions is given by the method of moment with
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advantages and disadvantages. Regarding the disadvantages of this approach, we mention
the one related to the convergence problem and the second connected with the restriction
of the explicit storage of a the dense matrix. Furthermore, the monotonic convergence in
the MoM solution can be achieved under only stringent condition which are difficult to
realize in case of complex problems [2]. In attempt to address the above disadvantages of
the direct MoM, another alternative approach has been suggested; this concerns the CGM for
solving iteratively the electromagnetic problem [3, 4]. Since then, CGM has been successfully
applied to a number of radiation and scattering problems and has been quite popular because
of the O(N) memory requirement. Using discretization of EFIE in the framework of the
MoM to get the impedance matrix Z [5], Sarkar and Rao applied to the Z matrix the
CGM of steepest descent to calculate the charge distribution over conducting surfaces [6].
However, few attempts have been done to apply CGM to electrostatic problems involving
conducting surfaces. The presentation of this paper is as follows: in Section 2, we give
some generalities on EFIE. In Section 3, we review some useful aspects on the method of
moment. In Section 4, we describe the algorithm of the CGM. In Section 5, we work out
the numerical solutions of EFIE using both MoM and CGM. Last section is devoted to the
conclusion.

2. Generalities on EFIE

Electromagnetic field has been successfully used in the computation of finding the current
distribution over the surface. Solving current distributions on metal surface usually in-
corporates formulation of EFIE (electric field integral equation) [7]. Few geometries yields
solutions (analytical, numerical approximation) have been successfully used. But most of the
popular method is the method of moment.

By the method the initial operator equation can be formulated by employing boundary
condition for tangential incident (Ein) and impressed (Esc) electric field;

Ein + Esc = 0. (2.1)

Scattering or radiation problems are essentially identical, the only difference is that the
“incident” field for the driven antenna is the applied electric field in the feed. The total electric
filed is a combination of the incident field and the scattered field,

Etan = Ein + Esc. (2.2)

The incident electric field is either the incoming signal or the excitation electric field ion the
antenna feed. The scattered electric field Esc is due to surface currents and free charges on the
metal surface S,

Etan = −jωA(r) − ∇φ(r), r on s. (2.3)
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The magnetic vector potential A(r) describes surface current radiation whereas the electric
potential φ(r) describes radiation of surface. Free charges are

A = μ

∫
S

J
(
r ′
)
G
(
r, r ′

)
dS′,

φ = − 1
jwε

∫
S

∇′ · j(r ′)G(
r, r ′

)
dS′,

(2.4)

respectively, and the three-dimensional Green’s function is

G
(
r, r ′

)
=
e−jkR

4πR
, (2.5)

where R = |r − r ′|. The electric field integrodifferential equation for the induced current is
obtained by requiring that the total tangential electric field, Etan, vanishes on the conductor
surface S, thus, giving the electric field integral equations by (2.1),

Ein
tan =

(
jωA(r) +∇φ(r)

)
tan, r ∈ S. (2.6)

The corresponding weak form of the equation is obtained by testing it with a vector-valued
weighting function fm(r) defined on and tangent to S. Using the identity ∇ · (fmφ) = φ∇ ·
fm +∇φ · fm and the divergence theorem, the term involving the scalar potential is integrated
by parts to obtain the weak form

〈
fm, E

in
〉
= jw

〈
fm,A

〉 − 〈∇ · fm, φ
〉
, r ∈ S. (2.7)

Concerning the surface current density, J is expanded into the basis functions in the form
J =

∑M
n=1 Infn, and using fm (m = 1, 2, . . . ,N) as a test function, the moment equations are

obtained below:

ZmnIn = Vm, (2.8)

where Vm =
∫
s
fm · EindS,

Zmn =
jwμ0

4π

∫
S

∫
S

fm(r) · fn
(
r ′
)
gdS′dS − j

4πwμ0

∫
S

∫
S

(∇ · fm(r)
) · (∇ · fn

(
r ′
))
gdS′dS.

(2.9)

The square impedance matrix determines electromagnetic interaction between different seg-
ments elements.



4 International Journal of Differential Equations

3. Useful Tools on MoM

The method of moments (MoM) is a well-known technique for solving linear equations.
In antenna analysis, the MoM is used to convert the electric field integral equation into
a matrix equation or system of linear equations (Harrington, 1968) [1]. Let us consider the
inhomogeneous equation:

L
(
f
)
= g, (3.1)

where L is a linear operator, g is known, and f is to be determined (is the unknown function).
We will now perform the two essential steps we have highlighted above. In order to create
the matrix equation, the unknown function is defined to be the sum of a set of known
independent functions, fn, called basis or expansion functions with unknown amplitudes,
αn.

(i) Firstly, let the basis functions be f1, f2, . . . , fN . The unknown function f is expanded
in terms of a linear combination of these basis functions:

f =
N∑
n=1

αnfn. (3.2)

The linear combination of fn should represent the unknown f in the domain.
Substitute (3.1) into (2.9), we have that, upon using the linearity of the operator
L, the unknown amplitudes can be brought out of the operator giving

g =
N∑
n=1

αnL
(
fn
)
, (3.3)

where α1, α2, . . .,αN are unknown coefficients that have to be determined.

(ii) Secondly, we define a set of N weighting functions (testing functions), ω1, ω2,
. . . , ωN , which are integrated with (3.3) to give m different linear equations, and
take the inner product of the previous equation with ωm:

N∑
n=1

αn

〈
ωm, Lfn

〉
=
〈
ωm, g

〉
. (3.4)

The system can now be written in matrix form as

N∑
n=1

Amnαn = gm, (3.5)
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where

Amn =

⎛
⎜⎜⎜⎝

〈
ω1, Lf1

〉 〈
ω1, Lf2

〉 · · ·〈
ω2, Lf1

〉 〈
ω2, Lf2

〉 · · ·
...

...
...

⎞
⎟⎟⎟⎠,

αn =

⎛
⎜⎜⎜⎝

α1

α2

...

⎞
⎟⎟⎟⎠, gm =

⎛
⎜⎜⎜⎝

〈
ω1, g

〉
〈
ω2, g

〉
...

⎞
⎟⎟⎟⎠.

(3.6)

If the matrix Amn is not singular, the unknowns αn are simply given by

αn = A−1
mngm, (3.7)

and the original function f can be reconstructed using (3.3). We can now generalize
the following definitions.

Basis Functions

Basis functions can use full domain functions such as special functions, polynomials, and so
forth. A set that is useful for practical problem is the subsectional basis function. This means
that each fn is only nonzero over a subsection of the domain of f . A common choice is the
pulse function:

fn =

⎧⎨
⎩
1 if x is in the interval Δxn,

0 otherwise.
(3.8)

Weighting Functions (Testing Functions)

Two common choices are as follow.

(i) Point matching: taking Dirac delt δ functions as testing functions ωm(x) = δ(x−xm)
where m = 1, 2, . . . ,N.

(ii) Galerkin Method: if we used the same function for both the basis and weighting f ,
that is. If we used the same function for both fn(x) = ωn(x) where n = 1, 2, . . . ,N.

4. Conjugate Gradient Method

The conjugate gradient method is the most prominent iterative method for solving sparse
systems of linear equations. It is applied to the analysis of radiation from thin wire antennas.
With this iterative technique, it is possible to solve electrically large arbitrarily oriented
wire structures without storing any matrices as is conventionally done in the method of
moments. The basic difference between the proposed method and Galerkin’s method, for
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the same expansion functions, is that for the iterative technique we are solving a least squares
problem. The conjugate gradient method (CGM) is an algorithm for the iterative solution of
an operator equation of the form

Ax = b, (4.1)

set in a Hilbert space. If A is positive definite, the classical CGM converges to the exact
solution in at most N steps in anN-dimensional space, and it proceeds as follows [2, 8]:

x0 : arbitrary

r1 = p1 = b −Ax0

for n = 2, 3, . . . , until convergence

an =
‖rn‖2〈

pn, Apn
〉

xn+1 = xn + anpn

rn+1 = rn − anApn

bn =
‖rn+1‖2
‖rn‖2

pn+1 = rn+1 + bnpn.

(4.2)

It has been shown [8] that sequence of solution {xn} generated by this algorithm minimizes
the error function

F(x) = 〈h − x; A(h − x)〉, (4.3)

where h is the exact solution.

5. Numerical Results

The results are given through two examples concerning straight wire scatterers.

5.1. First Example

As a first example of a straight-wire scatterer, we consider the simple straight-wire scatterer of
length l = 0.5λ and radius a = 0.001λ. The scatterer is excited by a plane wavewith a 45◦ angle
of incidence; this example has been taken from a well-known book [7]. Figure 1 show the
computed currents (direct solutionMoM) according to Pocklington equations comparedwith
conjugate gradient method. In these figures, we present the result for the current distribution
along the antenna that we obtain through our own developments using MATLAB. This
comparison shows that the movement is retained with some minor differences in middle
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Figure 1: Current distributions: comparison of results for the MoM and CGM currents. On the left current
distribution for a 0.5λ length dipole antenna and on the right a current distribution for a 1.2λ length dipole
antenna.
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Figure 2: Current distribution for a 1.2λ length dipole antenna, comparison of results for the MoM, CGM
current, and sinusoidal current.

of the curve. Notice that our result (under MATLAB) agrees with the one published in [9].
Notice also that one of the essential tasks in our way of doing is the use of themoment method
and the choice of test and basis functions.
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ZJ = Ein

L(J) = Ein
tan = (jωA(r) +∇ϕ(r))tan Structure

MoM

Z, Ein

Ein

Excitation Iterative method
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Figure 3: Solution for total current J : correspondence between direct MoM solution and iterative CGM.

5.2. Second Example

In this example we consider the scattering from the straight-wire scatterer of length l = 1.2λ
and radius a = 0.001λ shown in Figure 2; the current has a delta-gap compared with the
sinusoidal current I(z) = A sink(h − |z|) and with the current found by CGM.

6. Conclusion

In this paper, we have presented a comparative study of the directmethod of moment and the
iterative conjugate gradient method. These methods are used to solve the differential linear
equations; in particular, the integral electromagnetic field equation (EFIE) for computing the
total current distribution. Based on their performances, the number of iterations needed for
convergence, storage, and the level of precision, we have found that the direct MoM is more
efficient than other iterative CGM.
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