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The present work deals with applying the homotopy perturbation method to the problem of the
nonlinear oscillations of multiwalled carbon nanotubes embedded in an elastic medium under
various boundary conditions. Amultiple-beammodel is utilized in which the governing equations
of each layer are coupled with those of its adjacent ones via the van derWaals interlayer forces. The
amplitude-frequency curves for large-amplitude vibrations of single-walled, double-walled, and
triple-walled carbon nanotubes are obtained. The influences of some commonly used boundary
conditions, changes in material constant of the surrounding elastic medium, and variations of
the nanotubes geometrical parameters on the vibration characteristics of multiwalled carbon
nanotubes are discussed. The comparison of the generated results with those from the open
literature illustrates that the solutions obtained are of very high accuracy and clarifies the capability
and the simplicity of the present method. It is worthwhile to say that the results generated are new
and can be served as a benchmark for future works.

1. Introduction

In recent years, considerable effort has been devoted to the subject area of nanotechnology.
Since nanomaterials possess unique mechanical, physical, and chemical properties, they
occupy the chief topic of research in many scientific fields. Nowadays, they are being used
as the substantial parts of nanoelectronics, nanodevices, and nanocomposites. Amongst
the materials at the scale of nanometers, carbon nanotubes (CNTs) discovered by Iijima
[1] in 1991 have attracted intense interest to many research workers. In spite of being
too small and having light weight, CNTs have a very large Young’s modulus up to 1TPa
in the axial direction. A good review on their properties and industrial applications can
be found detailed in [2]. The application of analytical and numerical approaches to the
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study of CNTs is suggested recently [3–5]. Since the vibrations of CNTs are of considerable
importance in a number of nanomechanical devices such as oscillators, charge detectors,
field emission devices, and sensors, many researches have been so far devoted to the
problem of the vibration of these nanomaterials [6–11]. However, most of the investigations
conducted on the vibration of CNTs have been restricted to the linear regime. Fu et al. [12]
studied the nonlinear vibrations of embedded nanotubes using the incremental harmonic
balanced method (IHBM). In that work, single-walled nanotubes (SWNTs) and double-
walled nanotubes (DWNTs) with simply supported end conditions were considered for the
study. Recently, He [5] applied the homotopy perturbation method (HPM) to investigate the
nonlinear vibrations of MWNTs using the same beam model as the one used in [12]. In that
paper, they also extended Fu’s work to the problem of triple-walled nanotubes (TWNTs)
and gave the nonlinear amplitude-frequency curves. The present work is an extension
of the authors’ previous work for free nonlinear oscillations of MWNTs with arbitrary
boundary conditions. The HPM as a powerful analytical approach was first introduced by
He [13–20] and has been used by many mathematicians and engineers to solve various
functional equations. In this method, the solution is considered as the summation of an
infinite series which converges rapidly to the exact solution. Some applications of this method
are summarized in a review article by He [21]. This simple method has been applied to
solve linear and nonlinear equations of heat transfer [22–24], fluid mechanics [25], nonlinear
Schrödinger equations [26], nonlinear oscillations [27, 28], some boundary value problems,
and other subjects in different disciplines [29]. The recent developments of this perturbation-
based method can be found in [30]. The convergence study of HPM for partial differential
equations has been recently reported in [31]. The aim of this investigation is to show the
effectiveness of HPM and the capability of this simple method for handling the nonlinear
oscillations of many vibrating systems. It is shown that the first approximate solution of
New HPM admits a remarkable accuracy in comparison with the results obtained from the
incremental harmonic balanced method for the amplitude-frequency curves.

2. Basic Equations

Consider a CNT of length L, Young’s modulus E, density ρ, cross-sectional areaA, and cross-
sectional inertia moment I, embedded in an elastic medium with constant k determined by
the material constants of the surrounding medium. This model is shown in Figure 1. Assume
that u and w are the displacements of the nanotube along x and z directions respectively in
terms of the spatial coordinate x and the time variable t.

The free vibration governing equation of this embedded beam-modeled CNT
considering the geometric nonlinearity is [12]

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
=

[
EA

2L

∫L

0

((
∂v

∂x

)2

+
(
∂w

∂x

)2
)
dx

]
∂2w

∂x2
+ P, (2.1)

where P is the transverse load considered as the interaction pressure per unit axial length
between the outermost tube and the surrounding medium, which can be described by the
Winkler model [32, 33] as

P(x, t) = −kw. (2.2)
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Figure 1: Model of an embedded carbon nanotube.

Herein, the negative sign indicates that the pressure P is opposite to the deflection of
the outermost tube. Substituting (2.2) into (2.1)we get

ρA
∂2w

∂t2
+ EI

∂4w

∂t4
+ kw =

[
EA

2L

∫L

0

(
∂w

∂x

)2

dx

]
∂2w

∂x2
. (2.3)

For a MWNT with N layers, the pressure at any point between any two adjacent tubes,
denoted as the van der Waals forces, can be expressed as

Fi = ci(wi −wi−1), (2.4)

where Fi is the van derWaals force between the ith tube and the i−1th tube. ci is the coefficient
of the van der Waals force between the ith tube and the i− 1th tube defined according to [34].
Therefore, imposing the effects of the van der Waals forces to (2.3) it results in the n coupled
nonlinear differential equations corresponding to the transverse nonlinear vibrations of an
embedded MWNT with n layers

EI1
∂4w1

∂x4
+ ρA1

∂2w1

∂t2
=

[
EA1

2l

∫L

0

(
∂w1

∂x

)2

dx

]
∂2w1

∂x2
+ c1(w2 −w1),

EI2
∂4w2

∂x4
+ ρA2

∂2w2

∂t2
=

[
EA2

2l

∫L

0

(
∂w2

∂x

)2

dx

]
∂2w2

∂x2
+ c2(w3 −w2) − c1(w2 −w1),

...

EIn
∂4wn

∂x4
+ ρAn

∂2wn

∂t2
=

[
EAn

2l

∫L

0

(
∂wn

∂x

)2

dx

]
∂2wn

∂x2
− kwn − cn−1(wn −wn−1).

(2.5)

Assuming wi(x, t) = ϕ(x)Wi(t), i = 1, 2, . . . , n, where ϕ(x) is the first eigenmode of
the beam satisfying the kinematic boundary conditions [34] andWi(t) is the time-dependent
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deflection parameter of the ith layer of the nanotube and applying the Galerkin method, the
governing equations of motion are obtained as follows:

EI1W1α1 +

(
ρA1

d2W1

dt2
+ c1W1 − c1W2

)
α2 − EA1

2l
W3

1α3 = 0,

EI2W2α1 +

(
ρA2

d2W2

dt2
+ c1W2 − c1W1 + c2W2 − c2W3

)
α2 − EA2

2l
W3

2α3 = 0,

...

EInWnα1 +

(
ρAn

∂2Wn

∂t2
+ cn−1(Wn −Wn−1) + kWn

)
− EAn

2l
W3

nα3 = 0.

(2.6)

The above equations are the differential equations of motion governing the nonlinear
vibrations of CNTs subjected to the following initial conditions:

Wi(0) = Wmax,
dWi(0)

dt
= 0, (i = 1, 2, . . . , n), (2.7)

where Wmax denotes the maximum amplitude of oscillation. In (2.6), α1, α2, and α3 are as
follows:

α1 =
∫L

0

(
d4ϕ(x)
dx4

)
ϕ(x)dx,

α2 =
∫L

0
ϕ2(x)dx,

α3 =
∫L

0

[
d2ϕ(x)
dx2

∫L

0

(
dϕ(x)
dx

)2

dx

]
ϕ(x)dx.

(2.8)

The deflection of the nanotube is subjected to the following boundary conditions.
For a simply supported (S-S) nanotube,

w(0, t) = 0,
∂2w(0, t)

∂x2
= 0, w(L, t) = 0,

∂2w(L, t)
∂x2

= 0. (2.9)

For a clamped-clamped (C-C) nanotube,

w(0, t) = 0,
∂w(0, t)

∂x
= 0, w(L, t) = 0,

∂w(L, t)
∂x

= 0. (2.10)

For a clamped-simply supported (C-S) nanotube,

w(0, t) = 0,
∂w(0, t)

∂x
= 0, w(L, t) = 0,

∂2w(L, t)
∂x2

= 0. (2.11)

The base functions corresponding to the above boundary conditions are given in Table 1.
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Table 1: Common boundary conditions for the transverse vibration of beams.

End conditions of beam Mode shape (normal function) Value of β
Simply supported

sin
(
βx

L

)
π

Clamped-Clamped (
cosh

(
βx

L

)
− cos

(
βx

L

))
4.730041

−
(
cosh β − cos β
sinh β − sin β

)(
sinh

(
βx

L

)
− sin

(
βx

L

))
Clamped-Simply supported (

cosh
(
βx

L

)
− cos

(
βx

L

))
3.926602

−
(
cosh β − cos β
sinh β − sin β

)(
sinh

(
βx

L

)
− sin

(
βx

L

))

3. Application of HPM

3.1. Applying a New HPM for Nonlinear Vibrations of an SWNT

For an SWNT, the nonlinear vibration governing equation is given by (2.6) with n = 1 as
follows:

d2W

dt2
+
(
EI

ρA

α1

α2
+

k

ρA

)
W − E

2ρL
α3

α2
W3 = 0. (3.1)

Under the transformations r =
√
I/A, τ = ωt, and a = W/r, the above equation can be

transformed to the following nonlinear equation:

ω2d
2a

dτ2
+ f1a − f2a

3 = 0, (3.2)

with f1 and f2 defined as

f1 =
EI

ρA

α1

α2
+

k

ρA
= ω2

b, f2 =
EI

2ρAL

α3

α2
. (3.3)

In (3.2),
√
f1 = ωb is the linear, free vibration frequency, and ω is an unknown angular

frequency to be determined. Now, we apply a New HPM to seek the solution of (3.1). To
this aim, we construct the following homotopy with ω0 as the initial approximation for the
angular frequency:

(
1 − p

)
ω2

0

(
d2a

dτ2
+ a

)
+ p

(
ω2d

2a

dτ2
+ f1a − f2a

3

)
= 0. (3.4)
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Here p is an embedding parameter, a = a(τ, p), and ω = ω(p). Clearly, when p = 0,
(3.4) yields the linear harmonic

d2a

dτ2
+ a = 0, a(0) = X,

da(0)
dτ

= 0, (3.5)

and, for p = 1, it results the nonlinear equation (3.1). As embedding parameter p travels from
0 to 1, the solutions a = a(τ, p) and ω = ω(p) of the homotopy (3.4) change from their initial
approximations a0(τ) and ω0 to the required solutions a(τ) and ω of (3.1).

Suppose the solution of (3.2) to be in the following form:

a(τ) = a0(τ) + pa1(τ) + p2a2(τ) + · · · ,

ω = ω0 + pω1 + p2ω2 + · · · .
(3.6)

Substituting the above relations into the homotopy equation (3.4) and rearranging the
coefficients of the terms with identical powers of p, we have a series of linear differential
equations

p0 :
d2a0

dτ2
+ a0 = 0, a0(0) = X,

da0(0)
dτ

= 0,

p1 : ω2
0

(
d2a1

dτ2
+ a1

)
−ω2

0a0 + f1a0 − f2a
3
0 = 0, a1(0) = 0,

da1(0)
dτ

= 0,

p2 : ω2
0

(
d2a2

dτ2
+ a2

)
−ω2

0a1 + 2ω0ω1
d2a0

dτ2
+ f1a1 − 3f2a2

0a1 = 0,

a2(0) = 0,
da2(0)
dτ

= 0,

....

(3.7)

The solution of the initial zeroth approximation is simply given by

a0(τ) = X cos τ, (3.8)

putting this into the first approximation equation, we get

ω2
0
d2a1

dτ2
+ω2

0a1 −ω2
0X cos τ + f1X cos τ − f2X

3cos3τ = 0. (3.9)
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Expanding the trigonometric function cos3τ as cos3τ = (3/4) cos τ + (1/4) cos 3τ , and
letting the coefficient of cos τ to be zero in order to eliminate the secular terms, we arrive at

ω0 =

√
f1 − 3

4
f2X2. (3.10)

Therefore, the ratio of the nonlinear frequency,ω0, to the linear frequency,ωb, becomes

Ψ =

√
1 − 3

4

(
f2
f1

)
X2. (3.11)

The solution of (3.9) can be easily achieved as

a1(τ) =
f2X

3

32f1 − 24f2X2 (cos τ − cos 3τ). (3.12)

Thus, the first approximate solution of (3.2) can be written as follows:

a(τ) = a0(τ) + a1(τ) = X cos τ +
f2X

3

32f1 − 24f2X2 (cos τ − cos 3τ). (3.13)

3.2. Applying a New HPM for Nonlinear Vibrations of a DWNT

For a DWNT, the nonlinear vibration governing equation is given by (2.6) with n = 2 as
follows:

d2W1

dt2
+
(

EI1
ρA1

α1

α2
+

c1
ρA1

)
W1 − E

2ρL
α3

α2
W3

1 −
c1
ρA1

W2 = 0,

d2W2

dt2
+
(

EI2
ρA2

α1

α2
+

k

ρA2
+

c1
ρA2

)
W2 − E

2ρL
α3

α2
W3

2 −
c1
ρA2

W1 = 0.

(3.14)

Substituting the following dimensionless parameters

r =

√
I1
A1

, a1 =
W1

r
, a2 =

W2

r
, τ = ωt. (3.15)
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Equation (3.14) can be transformed to the following dimensionless nonlinear system
of equations:

ω2d
2a1

dt2
+ f ′

1a1 − f ′
2a

3
1 − f ′

3a2 = 0,

ω2d
2a2

dt2
+ f ′

4a2 − f ′
5a

3
2 − f ′

6a1 = 0,

(3.16)

with f ′
1 to f ′

6 defined as

f ′
1 =
(

EI1
ρA1

α1

α2
+

c1
ρA1

)
, f ′

1 =
EI1

2ρA1L

α3

α2
, f3 =

c1
ρA1

,

f ′
4 =
(

EI2
ρA2

α1

α2
+

k

ρA2
+

c1
ρA2

)
, f ′

5 =
EI1

2ρA1L

α3

α2
, f ′

6 =
c1
ρA2

.

(3.17)

In a similar manner as above, one constructs a homotopy on (3.16) as follows:

(
1 − p

)
ω2

0

(
d2a1

dτ2
+ a1

)
+ p

(
ω2d

2a1

dτ2
+ f ′

1a1 − f ′
2a

3
1 − f ′

3a2

)
= 0,

(
1 − p

)
ω2

0

(
d2a2

dτ2
+ a2

)
+ p

(
ω2d

2a2

dt2
+ f ′

4a2 − f ′
5a

3
2 − f ′

6a1

)
= 0.

(3.18)

Here, the solutions a1 = a1(τ, p), a2 = a2(τ, p), and ω = ω(p) of the homotopy (3.18)
change from their initial approximations a10(τ), a20(τ) andω0 to the required solutions a1(τ),
a2(τ) and ω of (3.16) as the embedding parameter p travels from 0 to 1.

Suppose the solution of (3.18) to be in the following form

a1(τ) = a10(τ) + pa11(τ) + p2a12(τ) + · · · ,

a2(τ) = a20(τ) + pa21(τ) + p2a22(τ) + · · · ,

ω = ω0 + pω1 + p2ω2 + · · · .

(3.19)
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Substituting the above relations into the homotopy equation (3.18) and rearranging
the coefficients of the terms with identical powers of p, we have a series of linear differential
equations

p0 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d2a10

dτ2
+ a10 = 0, a10(0) = X1,

da10(0)
dτ

= 0,

d2a20

dτ2
+ a20 = 0, a20(0) = X2,

da20(0)
dτ

= 0,

p1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ω2
0

(
d2a11

dτ2
+ a11

)
−ω2

0a10 + f ′
1a10 − f ′

2a
3
10 − f ′

3a20 = 0, a11(0) = 0,
da11(0)

dτ
= 0,

ω2
0

(
d2a21

dτ2
+ a21

)
−ω2

0a20 + f ′
4a20 − f ′

5a
3
20 − f ′

6a10 = 0, a21(0) = 0,
da21(0)

dτ
= 0,

....
(3.20)

The solution of the initial zeroth approximation is simply given by

a10(τ) = X1 cos τ,

a20(τ) = X2 cos τ.
(3.21)

Substituting these into the first approximation together with eliminating the coefficient
of cos τ in the above system to avoid the secular terms it results in the following nonlinear
system which can be easily solved using a simple mathematical algorithm such as Newton-
Raphson technique:

−X1ω
2
0 + f ′

1X1 − 3
4
f ′
2X

3
1 − f ′

3X2 = 0,

−X2ω
2
0 + f ′

4X2 − 3
4
f ′
5X

3
2 − f ′

6X1 = 0.

(3.22)

3.3. Applying a New HPM for Nonlinear Vibrations of a TWNT

For a TWNT, the nonlinear vibration governing equation is given by (2.6) with n = 3 as
follows:

d2W1

dt2
+
(

EI1
ρA1

α1

α2
+

c1
ρA1

)
W1 − E

2ρL
α3

α2
W3

1 −
c1
ρA1

W2 = 0,

d2W2

dt2
+
(

EI2
ρA2

α1

α2
+

c1
ρA2

+
c2
ρA2

)
W2 − E

2ρL
α3

α2
W3

2 −
c1
ρA2

W − c2
ρA2

W2 = 0,

d2W3

dt2
+
(

EI3
ρA3

α1

α2
+

c2
ρA3

+
k

ρA3

)
W3 − E

2ρL
α3

α2
W3

3 −
c2
ρA3

W2 = 0.

(3.23)
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Substituting the following dimensionless parameters:

r =

√
I1
A1

, a1 =
W1

r
, a2 =

W2

r
, a3 =

W3

r
, τ = ωt. (3.24)

Equation (3.3) can be transformed to the following dimensionless nonlinear system of
equations:

ω2d
2a1

dt2
+ f ′′

1a1 − f ′′
2a

3
1 − f ′′

3a2 = 0,

ω2d
2a2

dt2
+ f ′′

4a2 − f ′′
5a

3
2 − f ′′

6a1 − f ′′
7a3 = 0,

ω2d
2a3

dt2
+ f ′′

8a3 − f ′′
9a

3
3 − f ′′

10a2 = 0,

(3.25)

with f ′′
1 to f ′′

10 defined as

f ′′
1 =
(

EI1
ρA1

α1

α2
+

c1
ρA1

)
, f ′′

2 =
EI1

2ρA1L

α3

α2
, f ′′

3 =
c1
ρA1

,

f ′′
4 =
(

EI2
ρA2

α1

α2
+

c1
ρA2

+
c2
ρA2

)
, f ′′

5 =
EI1

2ρA1L

α3

α2
, f ′′

6 =
c1
ρA2

, f ′′
7 =

c2
ρA2

,

f ′′
8 =
(

EI3
ρA3

α1

α2
+

c2
ρA3

+
k

ρA3

)
, f ′′

9 =
EI1

2ρA1L

α3

α2
, f ′′

10 =
c2
ρA3

.

(3.26)

Likewise, we construct a homotopy on (3.25) as follows:

(
1 − p

)
ω2

0

(
d2a1

dτ2
+ a1

)
+ p

(
ω2d

2a1

dτ2
+ f ′′

1a1 − f ′′
2a

3
1 − f ′′

3a2

)
= 0,

(
1 − p

)
ω2

0

(
d2a2

dτ2
+ a2

)
+ p

(
ω2d

2a2

dt2
+ f ′′

4a2 − f ′′
5a

3
2 − f ′′

6a1 − f ′′
7a3

)
= 0,

(
1 − p

)
ω2

0

(
d2a3

dτ2
+ a3

)
+ p

(
ω2d

2a3

dt2
+ f ′′

8a3 − f ′′
9a

3
3 − f ′′

10a2

)
= 0.

(3.27)
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Suppose the solution of (3.27) to be in the following form:

a1(τ) = a10(τ) + pa11(τ) + p2a12(τ) + · · · ,

a2(τ) = a20(τ) + pa21(τ) + p2a22(τ) + · · · ,

a3(τ) = a30(τ) + pa31(τ) + p2a32(τ) + · · · ,

ω = ω0 + pω1 + p2ω2 + · · · .

(3.28)

Taking a10 = X1 cos τ , a20 = X2 cos τ , and a30 = X3 cos τ , as the initial guesses for a1, a2,
and a3 then eliminating secular terms as above, the first approximate solution appears in the
following nonlinear system:

−X1ω
2
0 + f ′′

1X1 − 3
4
f ′′
2X

3
1 − f ′′

3X2 = 0,

−X2ω
2
0 + f ′′

4X2 − 3
4
f ′′
5X

3
2 − f ′′

6X1 − f ′′
7X3 = 0,

−X3ω
2
0 + f ′′

8X3 − 3
4
f ′′
9X

3
2 − f ′′

10X2 = 0.

(3.29)

Using the former solving process, the nonlinear amplitude frequency response curves
can be obtained for TWNTs.

4. Discussion of Results

The material and geometric parameters of a CNT are taken as E = 1.1 TPa, ρ = 1300 kg/m3,
l = 45 nm, the outer diameter d1 = 3 nm, and the thickness of the each layer 0.68 nm.
The amplitude-frequency response curves for a TWNT for several spring constants k are
shown in Figure 2 in which Ψ is the ratio of the fundamental nonlinear frequency, ω to
the fundamental linear frequency ωb, and X is the maximum vibration amplitude. The
fundamental linear frequency can be simply calculated by setting Wi = Wmaxi cosωbt,
i = 1, 2, . . . , n, into nonlinear vibration governing equations of MWNTs without considering
its nonlinear terms. Then, by setting the determinant of the achieved matrix equal to zero,
the frequency characteristic equation will be obtained. The fundamental linear vibration
frequency of MWNT is the lowest root of the resulting characteristic equation as illustrated
in [35]. As can be seen from Figure 2, in contrast to linear systems, the nonlinear frequency
is a function of amplitude so that the larger the amplitude, the more pronounced the
discrepancy between the linear and nonlinear frequencies becomes. It is also seen that as
the spring constant k increases, the nonlinear frequencies tend to approach the linear ones
especially when k exceeds the value k = 107 N/m2. It should be noted that the results are
in an excellent agreement with those obtained via incremental harmonic balance method
(IHBM) according to the formulations presented in [12]. Figure 3 shows the nonlinear to
linear frequency ratio versus nondimensional amplitude ratio for three different boundary
conditions and k = 107 n/m2. Similar figures for DWNT and TWNT are illustrated in Figures
4 and 5. In Figures 4 and 5, the values of the coefficients of the van der Waals forces are
c1 = c2 = 0.3 × 1012 N/m2 and k = 107 N/m2.
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Figure 2: Effect of spring constant k on nonlinear amplitude frequency response curves of TWNT.
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Figure 3:Nondimensional frequency ratio against nondimensional maximum amplitude of SWNTs under
various boundary conditions (k = 107 N/m2).

Figure 6 illustrates the nonlinear frequency variation against length to radius ratio of
a TWNT shell under different boundary conditions for k = 107 N/m2 and X = 2. It can be
observed that with the increase of the aspect ratio of the nanotubes, the nonlinear vibration
frequencies of MWNTs decrease. As is expected, the double clamped CNT has the highest
natural frequency among the selected boundary conditions. A comparison between the
nondimensional amplitude ratio of the first layer of a C-C SWNT and its linear counterpart is
shown in Figure 7 for k = 107 N/m2. To demonstrate the accuracy of the obtained analytical
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Figure 4:Nondimensional frequency ratio against nondimensional maximum amplitude of DWNTs under
various boundary conditions (k = 107 N/m2).
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Figure 5:Nondimensional frequency ratio against nondimensional maximum amplitude of TWNTs under
various boundary conditions (k = 107 N/m2).

results, the authors also calculate the variation of nondimensional amplitude ratio versus the
linear period of vibration for the CNT center using fourth-order Runge-Kutta method. As
can be seen in the figure, the results obtained using the HPM have a good agreement with
numerical results. Using (3.21) and Table 1, the amplitude-space-time diagram of an SWNT
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Figure 7: Variation of the nondimensional amplitude ratio versus the linear period of a C-C SWNT (k =
107 N/m2).

is plotted for S-S and C-C end conditions in Figures 8 and 9. The parameters used in these
figures are k = 107 N/m2 and X = 2.

5. Conclusions

The HPM has been successfully used to investigate the nonlinear vibration analysis of
multiwalled carbon nanotubes with arbitrary end conditions. The generated results obtained
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Figure 8: Amplitude-time-space diagram of an S-S SWNT (k = 107 N/m2 and X = 2).
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Figure 9: Amplitude-time-space diagram of a C-C SWNT (k = 107 N/m2 and X = 2).

have been compared with those available in open literature, and excellent correlation has
been achieved. The significant dependency of this oscillation to the surrounding elastic
medium is observed. The nonlinear vibration frequency of nanotubes rises rapidly with
increasing the amplitude especially when the stiffness of the medium is relatively small.
For larger values of the medium stiffnesses (say k > 108 N/m2), the nonlinear vibration
tends to the linear regime. It has been shown that with the increase of the aspect ratio
of the nanotubes, the nonlinear vibration frequencies of MWNTs decrease. Also, as one
travels through the end conditions of S-S, to fully clamped, denoted by C-C, respectively,
the influence of the boundary conditions is shown to increase the natural frequencies. This
effect is more significant for lower values of length to outermost diameter ratios. However,
for higher values, the effect of the changes in the boundary conditions diminishes so that the
corresponding natural frequencies are found to coincide.
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The proposed method can be readily extended to the multiwalled CNTs with the
number of walls more than three. It is worthwhile to mention that HPM is straightforward
and powerful, and it is a promising technique for solving strong nonlinear partial differential
equations.
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