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A fractional order time-independent form of the wave equation or diffusion equation in two
dimensions is obtained from the standard time-independent form of the wave equation or
diffusion equation in two-dimensions by replacing the integer order partial derivatives by
fractional Riesz-Feller derivative and Caputo derivative of order α, β, 1 < R(α) ≤ 2 and 1 < R(β) ≤
2 respectively. In this paper, we derive an analytic solution for the fractional time-independent
form of the wave equation or diffusion equation in two dimensions in terms of the Mittag-Leffler
function. The solutions to the fractional Poisson and the Laplace equations of the same kind are
obtained, again represented bymeans of theMittag-Leffler function. In all three cases, the solutions
are represented also in terms of Fox’sH-function.

1. Introduction

The standard time-independent form of the wave equation or diffusion equation in two-
dimensions

∇2Ψ
(
x, y

)
+ k2Ψ

(
x, y

)
= 0, (1.1)

where k > 0 is the wave number, is mathematically considered as the master equations
to different classes of partial differential equations, namely, Poisson equation and Laplace
equation. It represents the time-independent form of the wave equation or diffusion equation
obtained while applying the technique of separation of variables to reduce the complexities
of the solution procedure of the original equations. This equation appears in physical
phenomena and engineering applications such as heat conduction, acoustic radiation, water
wave propagation, and even in biology. For estimating the geodesic sea floor properties, the
proper prediction of acoustic propagation in shallow water as well as at low frequencies is
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very essential. It also provides the solution to such problems, refer Liu et al. [1]. It also solves
the problems in pattern formation in animal coating, see Murray and Myerscough [2].

In electromagnetics, the two-dimensional time-independent form of the wave equa-
tion or diffusion equation appears as the governing equation for waveguide problems.
There is huge mathematical and engineering interest in electromagnetic wave scattering
problems driven by many applications such as modeling radar, sonar, acoustic noise barriers,
atmospheric particle scattering, and ultrasound since both the incident and scattered electric
field satisfy the two-dimensional time-independent form of the wave equation or diffusion
equation which is also known as the scalar Helmholtz equation (see Budiarto and Takada
[3]). This paper introduces a new fractional-model time-independent form of the wave
equation or diffusion equation in two-dimensions, in which both the space variables x and y
are allowed to take fractional order changes. Such models are described in Mainardi et al. [4]
and are defined as

xD
α
θE
(
x, y

)
+0D

β
yE
(
x, y

)
+ k2E

(
x, y

)
= Φ

(
x, y

)
(1.2)

k > 0, x ∈ R, y ∈ R+, 1 < R(α) ≤ 2, 1 < R(β) ≤ 2, where k is the wave number given
by k = 2π/λ where λ is the wavelength, E(x, y) is the field variable of interest, which
could be acoustic pressure, wave elevation, or electromagnetic potential, among many other
possibilities, and Φ(x, y) is a nonlinear function in the field. xDα

θ is the Riesz-Feller space

fractional derivative of order α and asymmetry parameter (skewness) θ, and yD
β
∗ is the

Caputo fractional derivative of order β. These fractional derivatives are integrodifferential
operators, and are defined in the section on mathematical preliminaries.

The Mittag-Leffler function is a special function having an essential role in the
solutions of fractional order integral and differential equations. Recently, this function is
frequently used in modeling phenomena of fractional order appearing in physics, biology,
engineering and applied sciences. After being introduced and studied by Mittag-Leffler [5],
Wiman [6] and Agarwal [7], the Mittag-Leffler function, in its two forms:

Eα(z) =
∞∑

n=0

zn

Γ(nα + 1)
, α ∈ C, R(α) > 0, (1.3)

Eα,β(z) =
∞∑

n=0

zn

Γ
(
nα + β

) , α, β ∈ C, R(α) > 0, R
(
β
)
> 0, (1.4)

has been studied in details by Dzherbashyan [8]. Both functions (1.2)-(1.3) are entire
functions of order ρ = 1/α and type σ = 1. In 1920, Hille and Tamarkin [9] have presented a
solution of the Abel-Volterra type integral equation

φ(x) − λ

Γ(α)

∫x

0

φ(t)

(x − t)1−α
dt = f(x), 0 < x < 1, (1.5)

in terms of Mittag-Leffler functions. Fox [10] used the H-function to give the most
generalized symmetrical Fourier kernel. This function is defined in terms of Mellin-Barnes
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integrals and is a generalization of the Meijer G-function. Most of the special functions are
available as the special cases of this function (Mathai et al. [11]).

The objective of this paper is to develop a solution of the fractional time-independent
form of the wave equation or diffusion equation (1.1) in terms of Mittag-Leffler function
and then in Fox’s H-function, using the Laplace and Fourier transforms and their inverse
transforms. Mathematically, the Poisson and the Laplace equations are the two special cases
of the two-dimensional time-independent form of the wave equation or diffusion equation.
We apply this fact to fractional case also.

This paper is divided as follows. Section 2 is devoted to mathematical preliminaries
used to solve the Cauchy problems. In Section 3, we derive the solution of the fractional
Laplace equation inMittag-Leffler function and then in Fox’sH-function. Section 4 is devoted
to the fractional Poisson equation. The solution of the fractional master equation is given in
Section 5. Its proof and the convergence and the series representation of the H-function are
given in the appendix. The Mellin-Barnes representation and the series representation of the
special functions in the fundamental solutions are given in the appendix.

2. Mathematical Preliminaries

The space fractional Riesz-Feller derivative xD
α
θ
of order α and skewness θ is defined as

xD
α
θf(x) =

Γ(1 + α)
π

[
sin

[
(α + θ)

π

2

] ∫∞

0

f(x + ξ) − f(x)
ξ1+α

dξ
]

+
Γ(1 + α)

π

[
sin

[
(α − θ)π

2

] ∫∞

0

f(x − ξ) − f(x)
ξ1+α

dξ
]
,

(2.1)

where 0 < α ≤ 2, |θ| ≤ min(α, 2 − α) and the Caputo derivative of order α with respect to t,
t > 0,

tD
α
∗N(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ(m − α)

∫ t

0

N(m)(x, u)

(t − u)α−m+1
du, m − 1 < R(α) < m,

dm

dtm
N(x, t), α = m,m ∈N,

(2.2)

where [· · · ] is the integer part. The main results on Mittag-Leffler functions of (1.3), (1.4) are
available in the handbook of Erdélyi et al. [12, 13], the monographs by Dzherbashyan [8, 14],
some recent books by Mathai et al. [11], Kiryakova [15], Podlubny [16], Kilbas et al. [17], and
Mainardi [18]. The H-function is defined by means of a Mellin-Barnes type integral in the
following manner (Mathai and Haubold [19]):

Hm,n
p,q (z)

[
z|(ap,Ap)

(bq,Bq)

]
=

1
2πi

∫

L

{∏m
j=1Γ

(
bj + Bjs

)}{∏n
j=1Γ

(
1 − bj − Bjs

)}

{∏q

j=m+1Γ
(
1 − bj − Bjs

)}{∏p

j=n+1Γ
(
aj +Ajs

)}z
−sds,

(2.3)

and an empty product is always interpreted as unity; m,n, p, q ∈ N0 with 0 ≤ n ≤ p, 1 ≤
m ≤ q, Aj, Bj ∈ R+, ai, bj ∈ C, i = 1, . . . , p; j = 1, . . . , q such that Ai(bj + k)/=Bj(ai − l − 1),
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k, l ∈ N0; i = 1, . . . , n; j = 1, . . . , m, where we employ the usual notations: N0 = (0, 1, . . . , );
R = (−∞,∞), R+ = (0,∞); C being the complex number field. For the details about the
contour L and existence conditions see; Mathai et al. [11] and Kilbas and Saigo [20].

The Wright’s generalized hypergeometric function, Wright ([21, 22]); is defined by the
series representation

pψq(z)=pψq
[
z|(ap,Ap)

(bq,Bq)

]
=

∞∑

r=0

[∏p

j=1Γ
(
aj +Ajs

)]
zr

[∏q

j=1Γ
(
bj + Bjs

)]
r!
, (2.4)

where z ∈ C, aj , bj ∈ C, Aj , Bj ∈ R+; i = 1, . . . , p; j = 1, . . . , q;
∑q

j=1 bj −
∑p

j=1Aj > −1; C is
the complex number field. The Mittag-Leffler function is a special case of this function,

Eα,β(z)=1ψ1

[
z|(1,1)(β,α)

]
= H1,1

1,2

[
−z|(0,1)

(0,1)(1−β,α)

]
. (2.5)

The Laplace transform of the functionN(x, t)with respect to t is

L[N(x, t)] =
∫∞

0
e−stN(x, t)dt =N∗(x, s), x ∈ R, R(s) > 0, (2.6)

and its inverse transform with respect to s is given by

L−1[N∗(x, s)] =
1

2πi

∫ γ+i∞

γ−i∞
estN∗(x, s)ds =N(x, t), (2.7)

γ being a fixed real number. The Fourier transform of a function N(x, t) with respect to x is
defined as

F[N(x, t)] =
∫∞

−∞
eipxN(x, t)dx = N̂

(
p, t

)
, x ∈ R, (2.8)

the inverse Fourier transform with respect to p:

F−1
[
N̂
(
p, t

)]
=

1
2π

∫∞

−∞
e−ipxN̂

(
p, t

)
dp =N(x, t). (2.9)

The space of functions for the above two transforms is LF = L(R+) × F(R), where L(R+)
is the space of summable functions on R+ with norm ‖f‖ =

∫∞
0 |f(t)|dt < ∞ and F(R) is
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the space of summable functions on R with norm ‖f‖ =
∫∞
−∞ |f(t)|dt < ∞. From Mathai et al.

[11], and Prudnikov et al. [23] the cosine transform of theH-function is defined as

∫∞

0
tρ−1 cos(kt)Hm,n

p,q

[
atμ|(ap,Ap)

(bq,Bq)

]
dt

=
2ρ−1π
kρ

Hm,n+1
p+2,q

[
a

(
2
k

)μ

|(2−ρ/2,μ/2),(ap,Ap),((1−ρ)/2,μ/2)
(bq,Bq)

]
,

(2.10)

where

R
(
ρ
)
+ μmin

1≤j≤m
R

[
bj

Bj

]

> 0, R
(
ρ
)
+ μ max

1≤j≤n

[(
aj − 1

)

Aj

]

< 1,
∣
∣arga

∣
∣ <

1
2
πθ,

θ =
n∑

j=1

Aj −
p∑

j=n+1

Aj +
m∑

j=1

Bj −
q∑

j=m+1

Bj > 0.

(2.11)

The Laplace transform of the Caputo fractional derivative (see, e.g., Podlubny [16])

L[ 0D
α
t N(x, t)

]
= sαN∗(x, s) −

n∑

r=1

sr−10Dα−r
t N(x, t)|t=0, n − 1 < R(α) ≤ n, n ∈N.

(2.12)

From Mainardi et al. [4], the Fourier transform of the Riesz-Feller derivative is given by

F{ xDα
θf(x); p

}
= −ψθαf̂

(
p
)
, (2.13)

where ψθαf̂(p) = |p|αei(sign p)θπ/2, p ∈ R, and f̂ = F[f(x); p] = ∫+∞
−∞ eipxf(x)dx.

We also need the property ofH-function (Mathai et al. [11])

Hm,n
p,q

[
z|(a1,A1),...(ap,Ap)

(b1,B1),...(bq−1,Bq−1),(a1,A1)

]

= Hm,n−1
p−1,q−1

[
z|(a2,A2),...(ap,Ap)

(b1,B1)...(bq−1,Bq−1)

]
, m ≥ 1, q > m,

(2.14)

and the following result (Podlubny, [16]):

L−1
(

sβ−1

sα − a ; t
)

= tα−βEα,α−β+1(atα), R(s) > 0, R
(
α − β) > −1,

∣∣∣∣
a

sα

∣∣∣∣ < 1. (2.15)
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3. The Exact Solution of the Fractional Laplace Equation

The exact solution of the fractional Laplace equation (1.2) in terms of three special functions
namely, Mittag-Leffler function, Fox’s H-function, and Mainardi function, respectively, are
derived in the following subsections.

3.1. The Exact Solution in Terms of Mittag-Leffler Function

Theorem 3.1. Consider the fractional Laplace equation

xD
α
θE
(
x, y

)
+yD

β
∗E
(
x, y

)
= 0, x ∈ R, y � 0, (3.1)

1 < R(α) ≤ 2, |θ| ≤ min(α, 2 − α), 1 < R(β) ≤ 2 with initial conditions E(x, 0) = f(x),
∂/∂yE(x, y)|y=0 = g(x), x ∈ R, limx→±∞ E(x, y) = 0, where xD

α
θ is the Riesz-Feller fractional

derivative of order α and symmetry θ and yD
β
∗ is the Caputo fractional derivative of order β. Then the

solution of (3.1) subject to the initial conditions is

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp +

y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[(
ψθα
(
p
))
yβ
]
e−ipxdp,

(3.2)

where ̂ indicates the Fourier transform with respect to the space variable x.

Proof. If we apply Laplace transform with respect to the space variable y and use (2.12), (3.1)
becomes

xD
α
θE

∗(x, s) + sβE∗(x, s) − sβ−1f(x) − sβ−2g(x) = 0. (3.3)

Now applying the Fourier transform with respect to the space variable x to obtain

[
sβ − ψθα

(
p
)]
Ê∗(p, s

)
= sβ−1f̂

(
p
)
+ sβ−2ĝ

(
p
)
,

Ê∗(p, s
)
=

sβ−1f̂
(
p
)

sβ − ψθα
(
p
) +

sβ−2ĝ
(
p
)

sβ − ψθα
(
p
) .

(3.4)

Using the result (2.15), we get

Ê
(
p, y

)
= f̂

(
p
)
Eβ,1

[
ψθα
(
p
)
yβ
]
+ ĝ

(
p
)
yEβ,2

[
ψθα
(
p
)
yβ
]
. (3.5)

Taking the inverse Fourier transform on both sides, we obtain the solution

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp +

y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[(
ψθα
(
p
))
yβ
]
e−ipxdp.

(3.6)
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Hence Theorem 3.1 follows.
From the above Cauchy problem, by introducing the initial conditions f(x) = δ(x)

where δ(x) is the Dirac delta function and g(x) = 0, the exact solution or the Green function
in Mittag-Leffler function is derived with the help of the Fourier convolution:

E
(
x, y

)
=
∫∞

−∞
Gθ
α,β

(
x − τ, y)f(τ)dτ, (3.7)

where the exact solution in terms of the Mittag-leffler function G(x, y) is

Gθ
α,β

(
x, y

)
=

1
2π

∫∞

−∞
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp. (3.8)

3.2. Exact Solution in Terms of Fox’s H-Function

From the above theorem, exact solution in Fox’s H-function for the fractional Laplace equa-
tion

xD
α
θE
(
x, y

)
+0D

β
yE
(
x, y

)
= 0, x ∈ R, y � 0, (3.9)

1 < R(α) ≤ 2, |θ| ≤ min(α, 2 − α), 1 < R(β) ≤ 2 with initial conditions E(x, 0) = f(x) =
δ(x), ∂/∂yE(x, y)|y=0 = 0, x ∈ R, lim

x→±∞
E(x, y) = 0, is given by

E
(
x, y

)
=
∫∞

−∞
Gθ
α,β

(
x − τ, y)f(τ)dτ, (3.10)

where

Gθ
α,β

(
x, y

)
=

1
2π

∫∞

−∞
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp,

=
1
π

∫∞

0
cos

(
px
)
H1,1

1,2

[(
−ψθα

(
p
))
yβ|(0,1)(0,1),(0,β)

]
dp,

=
1
π

∫∞

0
cos

(
px
)
H1,1

1,2

[
−
(∣∣p

∣∣αyβeiθ(π/2)
)
|(0,1)(0,1),(0,β)

]
dp,

=
1√
π |x|H

1,2
3,2

[
−2αeiθ(π/2)|x|−αyβ|(1/2,α/2),(0,1),(0,α/2)(0,1),(0,β)

]
, R

(
β
)
< 2,

=
1√
π |x|H

1,1
2,1

[
−2αeiθ(π/2)|x|−αyβ|(1/2,α/2),(0,α/2)(0,β)

]
, using (2.14).

(3.11)
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4. Fractional Poisson Equation

As a generalization of the Cauchy problem 3.1, the Mittag-Leffler solution of the fractional
Poisson equation

xD
α
θE
(
x, y

)
+0D

β
yE
(
x, y

)
= Φ

(
x, y

)
(4.1)

is given as.

4.1. Cauchy Problem

The solution to the fractional Poisson equation

xD
α
θE
(
x, y

)
+0D

β
yE
(
x, y

)
= Φ

(
x, y

)
, y � 0, x ∈ R, 1 < R(α) ≤ 2, (4.2)

where Φ(x, y) is a nonlinear function, 1 < R(α) ≤ 2, |θ| ≤ min(α, 2 − α), 1 < R(β) ≤ 2 with
initial conditions E(x, 0) = f(x), ∂/∂yE(x, y)|y=0 = g(x), x ∈ R, limx→±∞ E(x, y) = 0 where

xD
α
θ is the Riesz-Feller fractional derivative of order α and symmetry θ and yD

β
∗ is the Caputo

fractional derivative of order β. Then, the solution of (4.2) subject to the initial conditions is

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp

+
y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[(
ψθα
(
p
))
yβ
]
e−ipxdp

+
1
2π

∫y

0
ξβ−1

∫∞

−∞
Φ̂
(
p, y − ξ)Eβ,β

[(
ψθα
(
p
))
ξβ
]
e−ipxdpdξ,

(4.3)

where ̂ indicates the Fourier transform with respect to the space variable x.

Solution. Applying the Laplace transform with respect to the space variable y and Fourier
transform with respect to the space variable x and using initial conditions, we have

[
sβ − ψθα

(
p
)]
Ê∗(p, s

)
= sβ−1f̂

(
p
)
+ sβ−2ĝ

(
p
)
+ Φ̂∗(p, s

)
,

Ê∗(p, s
)
=

sβ−1f̂
(
p
)

sβ − ψθα
(
p
) +

sβ−2ĝ
(
p
)

sβ − ψθα
(
p
) +

Φ̂∗(p, s
)

sβ − ψθα
(
p
) .

(4.4)

Taking the inverse Laplace transform and using Laplace convolution,

Ê
(
p, y

)
= f̂

(
p
)
Eβ,1

[(
ψθα
(
p
))
yβ
]
+ ĝ

(
p
)
yEβ,2

[
ψθα
(
p
)
ξβ
]

+
∫∞

0
Φ̂
(
p, y − ξ)Eβ,β

[(
ψθα
(
p
))
yβ
]
dξ.

(4.5)
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Taking the inverse Fourier transform on both sides and using Fourier convolution, we obtain
the solution

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[(
ψθα
(
p
))
yβ
]
e−ipxdp

+
y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[(
ψθα
(
p
))
yβ
]
e−ipxdp

+
1
2π

∫y

0
ξβ−1

∫∞

−∞
Φ̂
(
p, y − ξ)Eβ,β

[(
ψθα
(
p
))
ξβ
]
e−ipxdpdξ.

(4.6)

5. The Fractional Master Equation

In this section, we solve the fractional master equation, namely, the fractional time-
independent form of the wave or diffusion equation (fractional Helmholtz equation) (1.2)
to generate a solution in terms of the Mittag-Leffler function, using the Laplace and Fourier
transforms and their inverses. The wave number k is selected such a way that k2 > ψθα(p) =
|p|αei(sign p)θπ/2, p ∈ R. Thus, the model is made suitable to handle the scattering problems of
electromagnetic waves of large wave number or short wavelength.

Theorem 5.1. The analytical solution of the fractional time-independent form of the wave equation or
diffusion equation

xD
α
θE
(
x, y

)
+yD

β
∗E
(
x, y

)
+ k2E

(
x, y

)
= Φ

(
x, y

)
, (5.1)

k > 0, x ∈ R, y ∈ R+, with the initial conditions E(x, 0) = f(x), ∂/∂yE(x, y)|y=0 = g(x),
lim

x→±∞
E(x, y) = 0, is

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[
−
(
k2 − ψθα

(
p
))
yβ
]
exp

(−ipx)dp

+
y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[
−
(
k2 − ψθα

(
p
))
yβ
]
exp

(−ipx)dp

+
1
2π

∫∞

0
ξβ−1

∫∞

−∞
Φ̂
(
p, y − ξ)Eβ,β

[
−
(
k2 − ψθα

(
p
))
ξβ
]
exp

(−ipx)dpdξ,

(5.2)

Where ̂ is the Fourier transform with respect to x.
The proof of this theorem and theH-function solution of the fractional time-independent form

of the wave equation or diffusion equation are discussed in the appendix.

6. Conclusion

The closed form solutions in terms of the Mittag-Leffler function and Fox’s H-function
are obtained for the fractional Laplace and the fractional Poisson equations. It is seen
that the solutions in terms of the Mittag-Leffler function as well as in the H-function to
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the fractional time-independent form of the wave equation or diffusion equation or the
fractional Helmholtz equation are the master solutions to the solutions of the fractional
Laplace equation and the fractional Poisson equation.

Appendices

A. The Mittag-Leffler Solution of the Fractional Time-Independent
form of the Wave Equation or Diffusion Equation

If we apply the Laplace transform with respect to the space variable y and use (2.12), (5.1)
becomes

xD
α
θE

∗(x, s) + sαE∗(x, s) − f(x) − sg(x) + k2E∗(x, s) = Φ∗(x, s). (A.1)

Applying Fourier transform with respect to x,

−ψθα
(
p
)
Ê∗(p, s

)
+ sβÊ∗(p, s

) − sβ−1f̂(p) − sβ−2ĝ(p) + k2Ê∗(p, s
)
= Φ̂∗(p, s

)
. (A.2)

Thus,

Ê∗(p, s
)
=

sβ−1

sβ +
[
k2 − ψθα

(
p
)] f̂

(
p
)
+

sβ−2

sβ +
[
k2 − ψθα

(
p
)] ĝ

(
p
)
+

Φ̂∗(p, s
)

sβ +
[
k2 − ψθα

(
p
)] . (A.3)

Taking Laplace inverse transform with respect to s,

Ê
(
p, y

)
= f̂

(
p
)
Eβ,1

[
−
(
k2 − ψθα

(
p
))
yβ
]

+ ĝ
(
p
)
yEβ,2

[
−
(
k2 − ψθα

(
p
))
yβ
]

+ Φ̂
(
p, y

)
yβ−1Eβ,β

[
−
(
k2 − ψθα

(
p
))
yβ
]
.

(A.4)

Using inverse Fourier transform with respect to p, the solution is

E
(
x, y

)
=

1
2π

∫∞

−∞
f̂
(
p
)
Eβ,1

[
−
(
k2 − ψθα

(
p
))
yβ
]
exp

(−ipx)dp

+
y

2π

∫∞

−∞
ĝ
(
p
)
Eβ,2

[
−
(
k2 − ψθα

(
p
))
yβ
]
exp

(−ipx)dp

+
1
2π

∫y

0
ξβ−1

∫∞

−∞
Φ̂
(
p, y − ξ)Eβ,β

[
−
(
k2 − ψθα

(
p
))
ξβ
]
exp

(−ipx)dpdξ.

(A.5)

It is seen that the above solution is a master solution of the solutions to the fractional Laplace
equation (3.6) and the fractional Poisson equation (4.6).
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B. The Fox’s H-Function Solution of the Fractional Time-Independent
form of the Wave Equation or Diffusion Equation.

The Fox’sH-function solution of the fractional time-independent form of the wave equation
or diffusion equation is

xD
α
θE
(
x, y

)
+yD

β
∗E
(
x, y

)
+ k2E

(
x, y

)
= Φ

(
x, y

)
, (B.1)

k > 0, x ∈ R, y ∈ R+, with the initial conditions E(x, 0) = f(x) = δ(x), ∂/∂yE(x, y)|y=0 = 0,
limx→±∞ E(x, y) = 0 is

E
(
x, y

)
=
∫∞

−∞
Gθ
α,β

(
x − τ, y)f(τ)dτ +

∫y

0

(
y − ξ)α−1

∫x

0
gθα,β

(
x − τ, y − ξ)Φ(τ, ξ)dτdξ, (B.2)

where the exact solution in terms of theH-function Gθ
α,β

(x, y) is

Gθ
α,β

(
x, y

)
=

1
2π

∫∞

−∞
H1,1

1,2

[(
k2 − ψθα

(
p
))
yβ|(0,1)(0,1),(0,β)

]
e−ipxdp, (B.3)

gθα,β
(
x, y

)
=

1
2π

∫∞

−∞
H1,1

1,2

[(
k2 − ψθα

(
p
))
yβ|(0,1)(0,1),(1−β,β)

]
e−ipxdp. (B.4)

C. Mellin-Barnes Representation and Region of Convergence of
the Mittag-Leffler Eβ,1[(ψθ

α(p))y
β]

For 0 < R(β) ≤ 2, Eβ,1[(ψθα(p))y
β is represented by the Mellin-Barnes integral as

Eβ,1
[(
ψθα
(
p
))
yβ =

1
2πi

∫

L

Γ(s)Γ(1 − s)
Γ
(
1 − βs)

(
yβψθα

(
p
))−s

ds,

= H1,1
1,2

[
yβψθα

(
p
)|(0,1)(0,1),(0,β)

]
,

(C.1)

where | arg(yβψθα(p))| < π ; the contour of integration is at c − i∞ and ending at c + i∞, 0 <
c < 1, separates all poles at s = −k, k = 0, 1, . . . to the left and all the poles at s = n +
1, n = 0, 1, . . . to the right. From Mathai et al. [11], the integral converges for all z/= 0, where
z = yβψθα(p), p ∈ R.
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D. Series Representation of H1,1
2,1[−z|(1/2, α/2),(0, α/2)(0,β) ]

By Mathai et al. [11], the series expansion of the function H1,1
2,1[−z|

(1/2, α/2),(0, α/2)
(0,β) ] where z =

−2αeiθ(π/2)|x|−αyβ is given as follows. We have

H1,1
2,1

[
−z|(1/2, α/2),(0, α/2)(0,β)

]
=

1
2πi

∫

L

Γ
(
βs
)
Γ((1/2) − (α/2)s)
Γ(α/2s)

[−z]−sds, (D.1)

where z = 2αeiθ(π/2)|x|−αyβ. Let us assume that the poles of the integrand are simple. The
region of convergence is L = L∞ is a loop beginning and ending at ∞ and encircling all
the poles of Γ((1/2) − (α/2)s) once in the negative direction but none of the poles of Γ(βs).
By calculating the residues at the poles of Γ((1/2) − (α/2)s) where the poles are given by
(1/2) − (α/2)s = −ν, ν = 0, 1, 2, . . ., we will get the series representation as

H1,1
2,1

[
−z|(1/2, α/2),(0, α/2)(0,β)

]
=

2
α

∞∑

ν=0

(−1)νΓ((β/α)[2ν + 1]
)

ν!Γ(ν + 1/2)
(−z)−(2ν+1)/α. (D.2)

TheH-function exists for all z, z /= 0 where z = −2αeiθ(π/2)|x|−αyβ.
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