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We establish the existence of ground states on R
N for the Laplace operator involving the Hardy-

type potential. This gives rise to the existence of the principal eigenfunctions for the Laplace
operator involving weighted Hardy potentials. We also obtain a higher integrability property for
the principal eigenfunction. This is used to examine the behaviour of the principal eigenfunction
around 0.

1. Introduction

In this paper, we investigate the existence of ground states of the Schrödinger operator
associated with the quadratic form

QV (u) =
∫

RN

(
|∇u|2 −ΛV V (x)u2

)
dx, u ∈ C∞

◦
(
R
N
)
, N ≥ 3, (1.1)

where V belongs to the Lorentz space LN/2, ∞(RN) and ΛV is the largest constant (whenever
exists) for which the form QV is nonnegative. This assumption implies, when V ≥ 0, that the
potential term

∫
RN V (x)u2 dx is continuous inD1,2(RN), whereD1,2(RN) is the Sobolev space

obtained as the completion of C∞
◦ (RN) with respect to the norm

‖u‖2D1,2 =
∫

RN

|∇u|2dx. (1.2)
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We are mainly interested in the case of the Hardy-type potential V (x) = m(x)/|x|2 with
m ∈ L∞(RN). Assuming that V is positive on a set of positive measure, the constant ΛV is
given by the variational problem

ΛV = inf
u∈D1,2(RN),

∫
RN Vu2dx=1

∫
RN

|∇u|2dx, (1.3)

and the continuity of
∫
RN V (x)u2dx implies that ΛV > 0. If problem (1.3) has a minimizer u,

then it satisfies

−Δu −ΛV V (x)u = 0. (1.4)

A solution of (1.4) is understood in the weak sense

∫
RN

∇u∇φ dx = ΛV

∫
RN

V (x)uφ dx, (1.5)

for every φ ∈ D1,2(RN).
Since |u| is also a minimizer forΛV , we may assume that u ≥ 0 a.e. on R

N . In particular,
when V (x) = m(x)/|x|2 with m ∈ L∞(RN), then u > 0 on R

N by the Harnack inequality [1].
If the potential term is weakly continuous inD1,2(RN), for example, when V (x) = m(x)/|x|2
withm ∈ L∞(RN) and lim|x|→∞m(x) = limx→ 0m(x) = 0, then there exists a minimizer forΛV .
We will call the minimizer of (1.3) a ground state of finite energy. In general, (1.3)may not have
a minimizer. This is the case for the Hardy potential V (x) = 1/|x|2 with the corresponding
optimal constant ΛV = ΛN = ((N − 2)/2)2. In fact, the ground state of finite energy is a
particular case of the generalized ground state, defined as follows (see [2–4]).

Definition 1.1. LetΩ ⊂ R
N be an open set, and letQV be as in (1.1). A sequence of nonnegative

functions vk ∈ C∞
◦ (Ω) is said to be a null sequence for the functional QV if QV (vk) → 0, as

k → ∞, and there exists a nonnegative function ψ ∈ C∞
◦ (Ω) such that

∫
Ω ψvkdx = 1 for each

k.

Let us recall that the capacity of a compact set E relative to an open set Ω ⊂ R
N , with

E ⊂ Ω, is given by

cap(E,Ω) = inf
{∫

Ω
|∇u|2dx;u ∈ C∞

◦ (Ω), with u(x) ≥ 1 on E

}
. (1.6)

In the case Ω = R
N , we use notation cap(E) (see [5]).

We can now formulate the following “ground state alternative” (see [3, 4]).

Theorem 1.2. Let V be a measurable function bounded on every compact subset of Ω = R
N − Z,

where Z is a closed set of capacity zero, and assume that QV (u) ≥ 0 for all u ∈ C∞
◦ (Ω). Then, if QV

admits a null sequence vk, then the sequence vk converges weakly in H1
loc(R

N) to a unique (up to a
multiplicative constant) positive solution of (1.4).

This theorem gives rise to the definition of the generalized ground state.
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Definition 1.3. A unique positive solution v of (1.4) is called a generalized ground state of the
functional QV , if the functional admits a null sequence weakly convergent to v.

If V (x) = 1/|x|2, then the functional QV has a ground state v(x) = |x|(2−N)/2 of infinite
D1,2 norm, while (1.3) has no minimizer in D1,2(RN).

It is important to note that the functional QV with the optimal constant ΛV does not
necessarily have a ground state. We quote the following statement from [4].

Theorem 1.4. Let V be a measurable function bounded on every compact subset of Ω = R
N − Z,

where Z is a closed set of capacity zero, and assume that QV (u) ≥ 0 for all u ∈ C∞
◦ (Ω). Then either

QV admits a null sequence, or there exists a functionW , positive and continuous on Ω, such that

QV (u) ≥
∫

RN

W(x)u2dx. (1.7)

For example, letm be a continuous function on R
N−{0} such thatm(x) = 1/|x|2 for 0 <

|x| ≤ 1,m(x) ∈ [1/2, 1] for |x| ∈ (1, 2) andm(x) = 1/2|x|2 for |x| ≥ 2. Then, ΛV = ((N − 2)/2)2

and the functional QV does not admit a null sequence. From Theorem 1.4 follows that QV

satisfies (1.7) with some functionW positive on R
N − {0}.

Obviously, ground states of finiteD1,2 norm are principal eigenfunctions of (1.4). There
is a quite extensive literature on principal eigenfunctions with indefinite weight functions
for elliptic operators on R

N or on unbounded domains of R
N , with the Dirichlet boundary

conditions. We mention papers [2, 6–13], where the existence of principal eigenfunctions has
been established under various assumptions on weight functions. These conditions require
that a potential belongs to some Lebesgue space, for example Lp(RN) with p > N/2. These
results have been recently greatly improved in papers [14, 15], where potentials from the
Lorentz spaces have been considered. To describe the results from [14, 15] we recall the
definition of the Lorentz space [16–18].

Let f : R
N → R be a measurable function. We define the distribution function αf and

a nonincreasing rearrangement f∗ of f in the following way

αf(s) =
∣∣∣{x ∈ R

N ;
∣∣f(x)∣∣ > s}∣∣∣, f∗(t) = inf

{
s > 0;αf(s) ≤ t

}
. (1.8)

We now set

∥∥f∥∥∗(p,q) =
⎧⎪⎪⎨
⎪⎪⎩

(∫∞

0

[
t1/pf∗(t)

]q dt
t

)1/q

, if 1 ≤ p, q <∞,

sup
t>0

t1/pf∗(t), if 1 ≤ p ≤ ∞, q = ∞.
(1.9)

The Lorentz space Lp,q(RN) is defined by

Lp,q
(
R
N
)
=
{
f ∈ L1

loc

(
R
N
)
;
∥∥f∥∥∗(p,q) <∞

}
. (1.10)
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The functional ‖f‖∗(p,q) is only a quasinorm. To obtain a norm we replace f by f∗∗(t) =

(1/t)
∫ t
0 f

∗(s)dx in the definition of ‖f‖∗(p,q), that is, the norm is given by

∥∥f∥∥(p,q)=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫∞

0

[
t1/pf∗∗(t)

]q dt
t

)1/q

, if 1 ≤ p, q <∞,

sup
t>0

t1/pf∗∗(t), if 1 ≤ p ≤ ∞, q = ∞.

(1.11)

Lp,q(RN) equipped with the norm ‖f‖(p,q) is a Banach space.
In paper [15] the existence of principal eigenfunctions has been established for weights

belonging to
⋃

1≤q<∞ LN/2, q(RN). This was extended in [14] to a larger class of weights FN/2

obtained as the completion of C∞
◦ (RN) in norm ‖ · ‖N/2,∞.

However, these conditions do not cover the singular weight functions considered in
this paper. By contrast, in our approach, we give an exact upper bound for the principal
eigenvalue which allows us to prove the existence of the principal eigenfunction. We point
out that if V ∈ LN/2,∞(RN), then the functional

∫
RN V (x)u2dx is continuous on D1,2(RN), but

not necessarily weakly continuous.
The paper is organized as follows. In Section 2, we prove the existence of minimizers

with finite norm D1,2(RN) and also with infinite norm D1,2(RN). In Section 3 we discuss
perturbation of a given quadratic form QV◦ with V◦ ∈ LN/2,∞(RN). We show that if QV◦ has
ground state, then this property is stable under small perturbations of V◦. This is not true
if QV◦ does not have a ground state; rather it is stable under larger perturbation of V◦. The
final Section is devoted to a higher integrability property of minimizers of QV◦ in the case
where V◦(x) = m(x)/|x|2 with m ∈ L∞(RN). We also examine the behaviour of the principal
eigenfunction around 0.

Throughout this paper, in a given Banach space, we denote strong convergence by
“→ ” and weak convergence by “⇀”. The norms in the Lebesgue space Lp(Ω), 1 ≤ p ≤ ∞, are
denoted by ‖u‖p.

2. Existence of Minimizers

We consider the Hardy-type potential V (x) = m(x)/|x|2 with m ∈ L∞(RN). In Theorem 2.2
we formulate conditions on m guaranteeing the existence of a principal eigenfunction. Let
γ+ > 1 and γ− > 1. In our approach to problem (1.3), the following two limits play an
important role: it is assumed that the following limits exist a.e.

m+(x) = lim
j∈N,j→∞

m
(
γ
j
+x
)
, (2.1)

m−(x) = lim
j∈N,j→∞

m
(
γ
−j
− x
)
. (2.2)

Both functionsm± satisfym±(γ±x) = m±(x). We now define the following infima:

Λm = inf
u∈D1,2(RN)−{0}

∫
RN |∇u|2dx∫

RN

(
m(x)/|x|2

)
u2dx

, (2.3)
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(we use the notation Λm instead of ΛV ) and

Λ± = inf
u∈D1,2(RN)−{0}

∫
RN |∇u|2dx∫

RN

(
m±(x)/|x|2

)
u2dx

. (2.4)

Lemma 2.1. The following holds true

Λm ≤ min(Λ+,Λ−). (2.5)

Proof. Let u ∈ D1,2(RN) − {0}. Testing Λm with γ−(N−2)/2
+ u(γ−j+ x) gives

Λm ≤
∫
RN |∇u|2dx∫

RN

(
m
(
γ
j
+x
)
/|x|2

)
u2dx

. (2.6)

Letting j → ∞ and using the Lebesgue dominated convergence theorem, we obtain

Λm ≤
∫
RN |∇u|2dx∫

RN

(
m+(x)/|x|2

)
u2dx

. (2.7)

The inequality Λm ≤ Λ+ follows. The proof of the inequality Λm ≤ Λ− is similar.

In the case when the inequality (2.5) is strict problem, (2.2) has a minimizer.

Theorem 2.2. Assume that the convergence in (2.1) is uniform on sets {x ∈ R
N ; |x| ≥ R} for every

R > 0 and that the convergence in (2.2) is uniform on sets {x ∈ R
N ; |x| ≤ ρ} for every ρ > 0. If

Λm < min(Λ+,Λ+), then problem (2.3) has a minimizer.

Proof. Let {uk} ⊂ D1,2(RN) be a minimizing sequence for Λm, that is,

∫
RN

|∇uk|2dx −→ Λm,

∫
RN

m(x)

|X|2
u2kdx = 1. (2.8)

We can assume, up to a subsequence, that uk ⇀ w inD1,2(RN), L2(RN, dx/|x|2), and uk → w
in L2

loc(R
N) for some w ∈ D1,2(RN). Let vk = uk −w. We then have

1 =
∫

RN

m(x)

|x|2
u2kdx =

∫
RN

m(x)

|x|2
w2dx +

∫
RN

m(x)

|x|2
v2
kdx + o(1), (2.9)

Λm =
∫

RN

|∇uk|2dx + o(1) =
∫

RN

|∇w|2dx +
∫

RN

|∇vk|2dx + o(1). (2.10)
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We define a radial function χj+ ∈ C1(RN) such that 0 ≤ χ
j
+(x) ≤ 1, χj+(x) = 0 for |x| ≤ γ

−2j
− and

χ
j
+(x) = 1 for |x| > γ

2j
+ . Let χj−(x) = 1 − χj+(x). In what follows, we use o(j)

k→∞(1) to denote a

quantity such that for each j ∈ N, o(j)k→∞(1) → 0 as k → ∞. Thus,

∫
RN

m(x)

|x|2
v2
kdx =

∫
RN

m(x)

|x|2
(
vkχ

j
−
)2
dx +

∫
RN

m(x)

|x|2
(
vkχ

j
+

)2
dx + o(j)

k→∞(1)

=
∫

RN

m
(
γ
−j
− x
)

|x|2
(
v−
k

)2
dx +

∫
RN

m
(
γ
j
+x
)

|x|2
(
v+
k

)2
dx + o(j)

k→∞(1),

(2.11)

where

v−
k(x) = γ

(−(N−2)/2)j
− vk

(
γ
−j
− x
)
χ−
(
γ
−j
− x
)
,

v+
k(x) = γ

((N−2)/2)j
+ vk

(
γ
j
+x
)
χ+

(
γ
j
+x
)
.

(2.12)

We now estimate the integrals involving v−
k
and v+

k
. We have

∣∣∣∣∣∣∣
∫

RN

m
(
γ
−j
− x
)

|x|2
(
v−
k

)2
dx −

∫
RN

m−(x)

|x|2
(
v−
k

)2
dx

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∫
|x|<γ−j−

m
(
γ
−j
− x
)
−m−(x)

|x|2
(
v−
k

)2
dx

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫
γ
−2j
− <|x|<γ2j+

m
(
γ
−j
− x
)
−m−(x)

|x|2
(
v−
k

)2
dx

∣∣∣∣∣∣∣
= J1 + J2.

(2.13)

By the uniform convergence of m(γ−j− x) to m−(x), we see that J1 ≤ ε for j sufficiently large
uniformly in k. For J2 we have

J2 ≤ 2‖m‖∞
∫
γ
−2j
− <|x|<γ2j+

v2
k

|x|2
dx. (2.14)

It is clear that J2 is a quantity of type o(j)k→∞(1). Therefore, we have

∣∣∣∣∣∣∣
∫

RN

m
(
γ
−j
− x
)

|x|2
(
v−
k

)2
dx −

∫
RN

m−(x)

|x|2
(
v−
k

)2
dx

∣∣∣∣∣∣∣
≤ ε + o(j)

k→∞(1). (2.15)
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In a similar way, we obtain

∣∣∣∣∣∣∣
∫

RN

m
(
γ
j
+x
)

|x|2
(
v+
k

)2
dx −

∫
RN

m+(x)

|x|2
(
v+
k

)2
dx

∣∣∣∣∣∣∣
≤ ε + o(j)

k→∞(1) (2.16)

for j sufficiently large. We now fix j ∈ N so that (2.15) and (2.16) hold. Consequently, we have

1 ≤
∫

RN

m(x)

|x|2
w2dx +

∫
RN

m−(x)

|x|2
(
v−
k

)2
dx +

∫
RN

m+(x)

|x|2
(
v+
k

)2
dx + 2ε + o(j)

k→∞(1). (2.17)

We now estimate
∫
RN |∇vk|2dx in the following way

∫
RN

|∇vk|2dx =
∫

RN

∣∣∣∇(vkχj− + vkχj+
)∣∣∣2dx

=
∫

RN

∣∣∣∇(vkχj−
)∣∣∣2dx +

∫
RN

∣∣∣∇(vkχj+
)∣∣∣2dx

+ 2
∫

RN

∇
(
vkχ

j
−
)
∇
(
vkχ

j
+

)
dx

=
∫

RN

∣∣∇v−
k

∣∣2dx +
∫

RN

∣∣∇v+
k

∣∣2dx + 2
∫

RN

|∇vk|2χj−χj+dx

+ 2
∫

RN

vk∇vk∇χj−χj+dx + 2
∫

RN

vk∇vkχj−∇χj+dx + 2
∫

RN

v2
k∇χ

j
−∇χj+dx

≥
∫

RN

∣∣∇v−
k

∣∣2dx +
∫

RN

∣∣∇v+
k

∣∣2dx + 2
∫

RN

vk∇vk∇χj−χj+dx

+ 2
∫

RN

vk∇vkχj−∇χj+dx + 2
∫

RN

v2
k∇χ

j
−∇χj+dx.

(2.18)

Since vk → 0 in L2
loc(R

N), we obtain the following estimate

∫
RN

|∇vk|2dx ≥
∫

RN

∣∣∇v−
k

∣∣2dx +
∫

RN

∣∣∇v+
k

∣∣2dx + o(j)k→∞(1). (2.19)
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This, combined with (2.9), gives the following estimate

Λm ≥
∫

RN

|∇w|2dx +
∫

RN

∣∣∇v−
k

∣∣2dx +
∫

RN

∣∣∇v+
k

∣∣2dx + o(j)
k→∞(1)

≥ Λm

∫
RN

m(x)

|x|2
w2dx + Λ−

∫
RN

m−(x)

|x|2
(
v−
k

)2
dx

+ Λ+

∫
RN

m+(x)

|x|2
(
v+
k

)2
dx + o(j)

k→∞(1).

(2.20)

Let Λ∗ = min(Λ−,Λ+). We deduce from (2.17) and (2.20) that

(Λ∗ −Λm)

(∫
RN

m−(x)

|x|2
(
v−
k

)2
dx +

m+(x)

|x|2
(
v+
k

)2
dx

)
≤ 2εΛm + o(j)k→∞(1). (2.21)

Letting k → ∞, we obtain

lim sup
k→∞

(∫
RN

m−(x)

|x|2
(
v−
k

)2
dx +

m+(x)

|x|2
(
v+
k

)2
dx

)
≤ 2εΛm

(Λ∗ −Λm)
. (2.22)

It then follows from (2.17) that

1 ≤
∫

RN

m(x)

|x|2
w2dx +

2εΛm

(Λ∗ −Λm)
. (2.23)

Since ε > 0 is arbitrary, we get
∫
RN (m(x)/|x|2)w2dx = 1, and the result follows.

In what follows, we denote m(∞) = lim|x|→∞m(x), assuming that this limit exists. As
a direct consequence of Theorem 2.2, we obtain the following result.

Theorem 2.3. Let m ∈ L∞(RN), and assume that m is continuous at 0. Further, suppose that
m(∞) > 0 and m(0) > 0. If Λm < ΛN min(1/m(∞), 1/m(0)), then there exists a minimizer
for Λm.

Remark 2.4. Λm has a minimizer also in the following cases, corresponding formally to Λ+ or
Λ− taking the value +∞.

(i) Letm(0) = 0 andm(∞) > 0. If Λm < ΛN/m(∞), then a minimizer for Λ1(m) exists.

(ii) Letm(0) > 0 andm(∞) = 0. If Λm < ΛN/m(0), then a minimizer for Λ1(m) exists.

(iii) Ifm(0) = m(∞) = 0,m(x) ≥ 0 and /≡ 0 on R
N , then Λm has a minimizer.

We point out that Theorem 2.3 and the results described in Remark 2.4 can be deduced
from [19, Theorem 1.2]. Unlike in paper [19], to obtain Theorem 2.3 we avoided the use of
the concentration-compactness principle.

We now give examples of weight functions m satisfying conditions of Theorems 2.2
and 2.3. In general, functions satisfying this condition have large local maxima.
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Example 2.5. Let

mA(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1(x), for 0 < |x| < 1,

Am2(x), for 1 ≤ |x| ≤ 2,

m3(x), for 2 < |x|,
(2.24)

where A > 0 is a constant to be chosen later and m1 : B(0, 1) − {0} → [0,∞), m2 : (1 ≤ |x| ≤
2) → [0,∞), andm3 : R

N \B(0, 2) → [0,∞) are continuous bounded functions satisfying the
following conditions: m1(x) = 0 for |x| = 1, m2(x) = 0 for |x| = 1, m2(x) = 0 for |x| = 2, and
m2(x) > 0 for 1 < |x| < 2, m3(x) = 0 for |x| = 2. Further we assume that

m3(x) =
a + |x1||x2| + · · · + |xN−1||xN |

b + |x|2
, (2.25)

for |x| ≥ R > 2, where a > 0, b > 0 and R constants. A function m1(x) for small δ > 0 is given
by

m1(x) =
|x1| + · · · + |xN |

|x| , (2.26)

for 0 < |x| ≤ δ < 1. We have

lim
j→∞

mA

(
γ
j
+x
)
= lim

j→∞
γ
−2j
+ a + |x1||x2| + · · · + |xN−1||xN |

γ
−2j
+ b + |x|2

=
|x1||x2| + · · · + |xN−1||xN |

|x|2
= m+(x),

lim
j→∞

mA

(
γ
−j
− x
)
=

|x1| + · · · + |xN |
|x| = m−(x).

(2.27)

Both limits are uniform. Sincem− andm+ are bounded, Λ− and Λ+ are positive and finite. We
have

Λm = inf
D1,2(RN)−{0}

∫
RN |∇u|2dx∫

RN

(
mA(x)/|x|2

)
u2dx

≤ 1
A

inf
D1,2(RN)−{0}

∫
RN |∇u|2dx∫

1≤|x|≤2
(
m2(x)/|x|2

)
u2dx

< min(Λ−,Λ+),

(2.28)

for A large. By Theorem 2.2, Λm withm = mA has a minimizer.

Example 2.6. Consider a sequence of functions of the form mk(x) = BMk(x) + Af(x), k =
1, 2, . . . , where A > 0, B > 0 are constants andMk and f are continuous functions satisfying
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the following conditions:

(a) Mk(0) = 1,Mk(x) > 0 on R
N ,Mk(∞) = 0, for k = 1, 2, . . . ,

(b) Mk(x) = k on 1 < |x| < 2 for k = 1, 2, . . . ,

(c) f(x) ≥ 0 on R
N , f(0) = 0 and f(∞) = 1.

Then mk(0) = B and mk(∞) = A for k = 1, 2, . . . . We show that for k sufficiently large mk

satisfies the conditions of Theorem 2.3. Let u(x) = exp(−|x|) (one can take any other function
from D1,2(RN) which is /≡ 0 on (1 < |x| < 2)). Thus

Λmk ≤
∫
RN

∣∣∇(exp(−|x|))∣∣2dx∫
RN

((
BMk(x) +Af(x)

)
/|x|2

)
exp(−2|x|)dx

≤
∫
RN

∣∣∇(exp(−|x|))∣∣2dx
B
∫
RN

(
Mk(x)/|x|2

)
exp(−2|x|)dx

−→ 0,
(2.29)

as k → ∞. So we can find k◦ ≥ 1 so that

Λmk < ΛN min
(

1
A
,
1
B

)
for k ≥ k◦. (2.30)

In Proposition 2.7, we described a class of weight functionsm satisfying conditions of
Theorem 2.3.

Proposition 2.7. Let m ∈ C(RN). Suppose that m(x) ≥ 0, m(0) > 0, and m(∞) > 0. Assume that
there exists a ball B(xM, r) such thatm(x) ≥ m(xM) > 0 for x ∈ B(xM, r) and 0 /∈ B(xM, r). If

m(0)
m(xM)

,
m(∞)
m(xM)

<
r2(N − 2)2

2(r + |xM|)2(N + 1)(N + 2)
. (2.31)

Then Λm < ΛN min(1/m(0), 1/m(∞)). (Hence, there exists a minimizer for Λm.)

Proof. Let u ∈ H1
◦(B(xM, r)) − {0}. Then

∫
B(xM,r)

m(x)

|x|2
u2dx ≥ m(xM)

∫
B(xM)

u2

|x|2
dx ≥ m(xM)

(r + |xM|)2
∫
B(xM,r)

u2dx. (2.32)

Hence,

∫
B(xM,r)

|∇u|2dx
∫
B(xM,r)

(
m(x)/|x|2

)
dx

≤
(r + |xM|)2 ∫B(xM,r) |∇u|2dx

m(xM)
∫
B(xM,r)

u2dx
. (2.33)
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Since H1
◦(B(xM, r)) − {0} ⊂ {u ∈ D1,2(RN);

∫
RN (m(x)/|x|2) u2dx > 0}, we deduce from the

above inequality that

Λm ≤ (r + |xM|)2
m(xM)

λD1 (B(xM, r)), (2.34)

where λD1 (B(xM, r)) denotes the first eigenvalue for “−Δ” in B(xM, r) with the Dirichlet
boundary conditions. We now estimate λD1 = λD1 (B(xM, r)). We test λD1 with v(x) = r−|x−xM|
for x ∈ B(xM, r). We have

∫
B(xM,r)

v2dx =
∫
B(0,r)

(r − |x|)2dx = ωN

∫ r
0
(r − s)2sN−1ds =

2ωNr
N+2

N(N + 1)(N + 2)
,

∫
B(xM,r)

|∇v|2dx =
ωNr

N

N
.

(2.35)

Hence

λD1 ≤
∫
B(xM,r)

|∇v|2dx∫
B(xM,r)

v2dx
=

(N + 1)(N + 2)
2r2

. (2.36)

Combining this with (2.34), we derive

Λm ≤ (N + 1)(N + 2)(r + |xM|)2
2r2m(xM)

. (2.37)

Therefore Λm < ΛN min(1/(m(0)), 1/(m(∞))) if (2.31) holds.

The estimate (2.31) has terms that are easy to compute but are of course not optimal.
In particular, the factor ((N + 1)(N + 2))/2 can be replaced by the first eigenvalue of the
Laplacian on a unit ball with Dirichlet boundary conditions.

If m(x) is a continuous bounded and nonnegative function such that m(x) ≤ m(0) on
R
N and m(0) > 0 (or m(x) ≤ m(∞) on R

N , m(∞) > 0), then Λm does not have a minimizer.
Indeed, suppose thatm(x) ≤ m(0) on R

N and that Λm has a minimizer u. Then, by the Hardy
inequality, we obtain

ΛN

m(0)
≥

∫
RN |∇u|2dx∫

RN

(
m(x)/|x|2

)
u2dx

≥
∫
RN |∇u|2dx

m(0)
∫
RN

(
u2/|x|2

)
dx

≥ ΛN

m(0)
. (2.38)

So u is a minimizer for ΛN , which is impossible.
We now construct a ground state with infinite D1,2 norm.

Theorem 2.8. Let γ > 1, and assume that the functionm ∈ L∞(RN) satisfies

m
(
γx
)
= m(x) for x ∈ R

N. (2.39)
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Then the form QV with V (x) = m(x)/|x|2 and ΛV = Λ◦ (see (2.41) below) admits a ground state v
satisfying

v
(
γx
)
= γ (2−N)/2v(x) for x ∈ R

N. (2.40)

The function v is uniquely defined by its values on Aγ = {x ∈ R
N ; 1 < |x| < γ}, and, moreover, the

function v|Aγ is a minimizer for the problem

Λ◦ = inf

⎧⎨
⎩

∫
Aγ

|∇v|2dx
∫
Aγ

(
m(x)/|x|2

)
u2dx

; u ∈ H1(Aγ

) − {0}, u(γx) = γ (2−N)/2u(x) for |x| = 1

⎫⎬
⎭.
(2.41)

Proof. The problem (2.41) is a compact variational problem that has a minimizer v which
satisfies

−Δv = Λ◦
m(x)

|x|2
v, x ∈ Aγ, (2.42)

with the Neumann boundary conditions. Since the test functions satisfy u(γx) = γ (2−N)/2u(x)
for |x| = 1, one has

∂v

∂r

(
γx
)
= γ−N/2

∂v

∂r
(x) for |x| = 1. (2.43)

Note that |v| is also a minimizer, so we may assume that v is nonnegative. We now extend the
function v from Aγ to R

N − {0} by using (2.40) and denote the extended function again by v.
Since v satisfies (2.41), the extended function v is of class C1(RN − {0}) and satisfies

−Δv = Λ◦
m(x)

|x|2
v, (2.44)

in a weak sense. From this and the Harnack inequality on bounded subsets of R
N − {0} it

follows that v is positive on R
N −{0} and subsequently there exists a constant C > 0 such that

C−1|x|(2−N)/2 ≤ v(x) ≤ C|x|(2−N)/2. (2.45)

We can now explain the choice of the exponent (2 − N)/2 in the constraint u(γx) =
γ (2−N)/2u(x) from (2.41): with any other choice, the resulting Neumann condition would not
yield the continuity of the derivatives of the extended function v on the spheres |x| = γj , j ∈
N. Finally, we show that v is a ground state for the corresponding quadratic form Q with
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V (x) = Λ◦m(x)/|x|2 . Using the ground state formula (2.10), from [20] and (2.45), we have
wk(x) = |x|1/k for |x| ≤ 1 and wk(x) = |x|−1/k for |x| ≥ 1,

Q(vwk) =
∫

RN

v2|∇wk|2dx ≤ C
∫

RN

|x|2−N |∇wk|2dx

≤ C

k2

∫1

0
r−1+(2/k)dr +

C

k2

∫∞

1
r−1−(2/k) dr ≤ C

k
−→ 0,

(2.46)

as k → ∞. Since vwk → v uniformly on compact sets, this implies that v is a ground state
for Q. By (2.45) and the Sobolev inequality, v /∈ D1,2(RN).

3. Perturbations from Virtual Ground States

In this section, we show that if a potential term admits a (generalized or large or virtual)
ground state, then its weakly continuous perturbations in the suitable direction will admit a
ground state with the finite D1,2 norm. Then, we investigate potentials that do not give rise
to a ground state with finite D1,2 norm.

We need the following existence result.

Proposition 3.1. Let V◦ ∈ LN/2,∞(RN) be positive on a set of positive measure, and let

Λ◦ = inf
u∈D1,2(RN),

∫
RN V◦u2dx=1

∫
RN

|∇u|2dx. (3.1)

Assume that V1 ∈ LN/2,∞(RN) is positive on a set of positive measure and that the functional∫
RN (V1(x) − V◦(x))u2dx is weakly continuous in D1,2(RN), and let

Λ1 = inf
u∈D1,2(RN),

∫
RN V1u2dx=1

∫
RN

|∇u|2dx. (3.2)

If Λ1 < Λ◦, then there exists a minimizer for Λ1.

Proof. Let {uk} ⊂ D1,2(RN) be a minimizing sequence for (3.2), that is,
∫
RN V1(x)u2kdx = 1

and
∫
RN |∇uk|2dx → Λ1. We may assume that, up to a subsequence, uk ⇀ w in D1,2(RN) and

L2(RN, V1(x)dx). Let vk = uk −w. Then,

1 =
∫

RN

V1(x)u2kdx =
∫

RN

V1(x)v2
kdx +

∫
RN

V1(x)w2dx + o(1) =
∫

RN

V1(x)w2dx

+
∫

RN

(V1(x) − V◦(x))v2
kdx +

∫
RN

V◦(x)v2
kdx + o(1)

=
∫

RN

V◦(x)v2
kdx +

∫
RN

V1(x)w2dx + o(1).

(3.3)
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Let t =
∫
RN V1(x)w2dx. Then

∫
RN V◦(x)v2

kdx → 1 − t. Assuming that t < 1 we get

Λ1 =
∫

RN

|∇vk|2dx +
∫

RN

|∇w|2dx + o(1) ≥ Λ◦(1 − t) + Λ1t + o(1). (3.4)

From this, we deduce that Λ1 ≥ Λ◦ which is impossible. Hence,
∫
RN V1(x)w2dx = 1. From this

and the lower semicontinuity of the norm with respect to weak convergence, we derive that
w is a minimizer and uk → w in D1,2(RN).

Proposition 3.1 is related to [19, Theorem 1.7] which asserts that a potential of the
form V (x) = (1/|x|2) + g(x), with a subcritical potential g (for the definition of a subcritical
potential see [19]), has a principal eigenfunction. This follows from the fact that g is weakly
continuous in D1,2(RN) (see [12]) and the potential g admits a principal eigenfunction.

Remark 3.2. (i) If V1 > V◦, then Λ1 ≤ Λ◦, but not necessarily Λ1 < Λ◦.
(ii) If, in Proposition 3.1, assumption Λ1 < Λ◦ is replaced by Λ◦ < Λ1, then Λ◦ is

attained.

Example 3.3. Let M be a continuous function R
N such that M ≥ 0, /≡ 0 on R

N and M(0) =
M(∞) = 0. Define mA,B(x) = BM(x) + A, where A > 0 and B > 0 are constants.
Let V1(x) = mA,B(x)/|x|2 and V◦(x) = A/|x|2. The functional

∫
RN (V1(x) − V◦(x))u2dx =∫

RN (BM(x)/|x|2) u2dx is weakly continuous in D1,2(RN). It is easy to show that for every
A > 0 there exists B◦ > 0 such that Λ1 < Λ◦ for B > B◦. By Proposition 3.1 Λ1 has a minimizer
for B > B◦.

We now give a sufficient condition for the inequality Λ1 < Λ◦.

Theorem 3.4. Suppose that V1 and V◦ satisfy assumptions of Proposition 3.1. Moreover, assume that
the quadratic form QV◦ has a positive ground state v, possibly with infinite D1,2 norm, and that if
{vk} ⊂ C∞

◦ (RN) is a null sequence corresponding to Λ◦, then

lim sup
k→∞

∫
RN

(V1(x) − V◦(x))v2
kdx > 0. (3.5)

Then Λ1 < Λ◦ and Λ1 has a minimizer.

Proof. It suffices to show that the inequality

∫
RN

|∇u|2dx −Λ◦

∫
RN

V1(x)u2dx ≥ 0 (3.6)

fails for some u ∈ D1,2(RN). We have

∫
RN

|∇vk|2dx −Λ◦

∫
RN

V1(x)v2
kdx = QV◦(vk) −Λ◦

∫
RN

(V1(x) − V◦(x))v2
kdx

= o(1) −Λ◦

∫
RN

(V1(x) − V◦(x))v2
kdx < 0,

(3.7)

for sufficiently large k, which completes the proof of the theorem.
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Note that the conditions of Theorem 3.4 are satisfied if, in particular, V1 ≥ V◦ on R
N ,

with the strict inequality on a set of positive measure. Indeed, the sequence {vk} converges
weakly in H1

loc(R
N) to v > 0, and the condition lim supk→∞

∫
RN (V1(x) − V◦(x))v2

k
dx > 0

follows from the Fatou lemma.
The situation becomes different if QV◦ does not have a ground state. The absence of

the ground state is stable property under small (in some sense) compact perturbation, but
not under compact perturbations that are not small.

Theorem 3.5. Assume that V◦ satisfies the conditions of Proposition 3.1 and that (1.7) holds. (This
occurs under conditions of Theorem 1.4 if QV ◦ has no ground state.) Let W be as in (1.7). Then, for
every t ∈ (0, 1/Λ◦), the functional QV◦+tW has no ground state and ΛV◦+tW = ΛV◦ . Furthermore,
if the functional

∫
RN W(x)u2dx is weakly continuous in D1,2(RN), the same conclusion holds for

−∞ < t < 0.

Proof. First, we observe that the constants Λ◦ and Λ1 corresponding to V◦ and V1 = V◦ + tW ,
respectively, are equal. Indeed, since V1 > V◦, one has Λ1 ≤ Λ◦ by monotonicity. On the other
hand, it follows from (1.7) that

∫
RN

|∇u|2dx −Λ◦

∫
RN

(V◦(x) + tW(x))u2dx ≥ 0, (3.8)

for t ∈ (0, 1/Λ◦)which implies Λ1 ≥ Λ◦. Let vk ∈ C∞
◦ (RN − Z) satisfy QV1(vk) → 0. Then

(1 −Λ◦t)
∫

RN

Wv2
kdx ≤ QV1(vk) −→ 0, (3.9)

which implies that, up to subsequence, vk → 0 a.e. If vk were a null sequence, it would
converge inH1

loc(R
N) and it would have a limit zero. Therefore, QV1 admits no null sequence

and consequently no ground state. Assume now that the functional
∫
RN W(x)u2dx is weakly

continuous in D1,2(RN). Let {wk} ⊂ D1,2(RN) be a minimizing sequence for Λ◦. If {wk} has
a subsequence weakly convergent in D1,2(RN) to some w/= 0, then it is easy to see that |w|
would be a minimizer for Λ◦ and thus a ground state for QΛ◦ . Therefore, wk ⇀ 0. By the
weak continuity of

∫
RN W(x)u2dx, we get

∫
RN

V1(x)w2
kdx =

∫
RN

V◦(x)w2
kdx + o(1) = 1 + o(1), (3.10)

and thus

Λ1 ≤
∫

RN

|∇wk|2dx = Λ◦ + o(1). (3.11)
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This yields Λ1 ≤ Λ◦. Then,

∫
RN

|∇u|2dx −Λ1

∫
RN

V1(x)u2dx

≥ Λ1

Λ◦

(∫
RN

|∇u|2dx −Λ◦

∫
RN

V1(x)u2dx
)

=
Λ1

Λ◦

(
QV◦(u) − tΛ◦

∫
RN

W(x)u2dx
)

≥ Λ1

∫
RN

(
Λ−1

◦ − t
)
W(x)u2dx.

(3.12)

Since t < 0, this implies that QV1 has no ground state.

Theorem 3.5 concerns with small perturbations of a potential that does not change the
constant Λ or the absence of a ground state. The next theorem shows that a large compact
perturbation of the potential term yields a ground state of finite D1,2(RN) norm.

Theorem 3.6. Assume that V◦ satisfies conditions of Proposition 3.1 and thatW ∈ L2,∞(RN) is such
that the functional

∫
RN W(x)u2dx is weakly continuous in D1,2(RN). Then, for every λ ∈ (0,Λ◦)

there exists σ ∈ R such that QV◦+σW has a ground state of finite D1,2(RN) norm corresponding to the
energy constant (3.2).

Proof. Assume without loss of generality thatW is positive on a set of positive measure. Let
0 < λ < Λ◦ and consider

σ = inf
u∈D1,2(RN),

∫
RN W(x)u2dx=1

λ−1
(∫

RN

|∇u|2dx − λ
∫

RN

V◦(x)u2dx
)
. (3.13)

Since (
∫
RN |∇u|2dx − λ ∫

RN V◦(x)u2dx)
1/2

defines an equivalent norm onD1,2(RN), it is easy to
show that there exists a minimizer for σ. It is clear that this minimizer is also a ground state
of QV◦+σW corresponding to the optimal constant λ.

If we assume additionally that W is positive on a set of positive measure, then it is
easy to show that σ is a continuous decreasing function of λ with limλ→ 0σ(λ) = +∞ and
σ◦ = limλ→Λ◦σ(λ) ≥ 0. In particular, if (1.7) holds with a weightW◦ satisfyingW◦ ≥ αW , then
σ◦ ≥ α. In other words, given V◦ and W as in Theorem 3.6, the potential V◦ + σW admits a
ground state whenever σ ≥ σ◦.

For further results of that nature, we refer to paper [19].

4. Behaviour of a Ground State Around 0

In what follows we consider the potential of the Hardy-type V (x) = m(x)/|x|2, where m(x)
is continuous and m(0) > 0 and m(∞) > 0. The corresponding ground state, if it exists, is
denoted by φ1, which is chosen to be positive on R

N . Obviously the ground state φ1 satisfies

Δu = Λm
m(x)

|x|2
u in R

N (4.1)

in a weak sense.
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We need the following extension of the Hardy inequality: let Ω ⊂ R
N be a bounded

domain and 0 ∈ Ω, then for every δ > 0, there exists a constant A(δ,Ω) > 0 such that

∫
Ω

u2

|x|2
dx ≤

(
1
ΛN

+ δ
)∫

Ω
|∇u|2dx +A(δ,Ω)

∫
Ω
u2dx, (4.2)

for every u ∈ H1(Ω) (see [21]).

Proposition 4.1. Let

Λm < ΛN min
(

1
m(0)

,
1

m(∞)

)
. (4.3)

Then φ1 ∈ L2∗(1+δ)(B(0, r)) for some δ > 0 and r > 0.

Proof. Let Φ ∈ C1(RN) be such that Φ(x) = 1 on B(0, r), Φ(x) = 0 on R
N − B(0, 2r), 0 ≤

Φ(x) ≤ 1 on R
N and |∇Φ(x)| ≤ 2/r. For simplicity, we set λ = Λm, u = φ1. We define v =

Φ2umin (u, L)p−2 = Φ2uu
p−2
L , where L > 0 and p > 2. Testing (4.1) with v, we get

∫
RN

(
|∇u|2up−2L Φ2 +

(
p − 2

)∇u∇uLup−2L Φ2 + 2∇u∇Φuup−2L Φ
)
dx = λ

∫
RN

m(x)

|x|2
u2u

p−2
L Φ2dx.

(4.4)

Applying the Young inequality to the third term on the left side, we get

(
1 − η)

∫
RN

|∇u|2up−2L Φ2dx +
(
p − 2

) ∫
RN

∇u∇uLup−2L Φ2dx

≤ λ
∫

RN

m(x)

|x|2
u2u

p−2
L Φ2dx + C

(
η
) ∫

RN

u2u
p−2
L |∇Φ|2dx,

(4.5)

where η > 0 is a small number to be suitably chosen. Since the second integral on the left side
is nonnegative, this inequality can be rewritten in the following form:

(
1 − η)

∫
RN

|∇u|2up−2L Φ2dx +
(
1 − η)(p − 2

) ∫
RN

∇u∇uLup−2L Φ2dx

≤ λ
∫

RN

m(x)

|x|2
u2u

p−2
L Φ2dx + C

(
η
) ∫

RN

u2u
p−2
L |∇Φ|2dx.

(4.6)
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Multiplying this inequality by (p + 2)/4 and noting that (p + 2)/4 > 1, we get

(
1 − η)

[∫
RN

|∇u|2up−2L Φ2dx +
p2 − 4

4

∫
RN

∇u∇uLup−2L Φ2dx

]

≤ λ
(
p + 2

)
4

∫
RN

m(x)

|x|2
u2u

p−2
L Φ2dx

+
C
(
η
)(
p + 2

)
4

∫
RN

u2u
p−2
L |∇Φ|2dx.

(4.7)

We now observe that

∫
RN

∣∣∣∇(uu(p/2)−1L

)∣∣∣2Φ2dx =
∫

RN

|∇u|2up−2L Φ2dx +
p2 − 4

4

∫
RN

|∇uL|2up−2L Φ2dx. (4.8)

Hence, (4.7) takes the form

(
1 − η)

∫
RN

∣∣∣∇(uu(p/2)−1L

)∣∣∣2Φ2dx ≤ λ
(
p + 2

)
4

∫
RN

m(x)

|x|2
u2u

p−2
L Φ2dx

+
C
(
η
)(
p + 2

)
4

∫
RN

u2u
p−2
L |∇Φ|2dx.

(4.9)

Since λm(0)/ΛN < 1, we can choose ε1 > 0 so that (λ/ΛN)(m(0) + ε1) < 1. By the continuity
of m, there exists 0 < r1 < r such that m(x) ≤ m(0) + ε1 for x ∈ B(0, r1). This is now used to
estimate the first integral on the right side of (4.9):

λ
(
p + 2

)
4

∫
RN

m(x)

|x|2
u2u

p−2
L Φ2dx ≤ λ

(
p + 2

)
4

∫
B(0,r1)

m(0) + ε1
|x|2

u2u
p−2
L dx

+
λ
(
p + 2

)‖m‖∞
4r21

∫
B(0,2r)

u2u
p−2
L dx.

(4.10)

Applying the Hardy inequality (4.2), we get

λ
(
p + 2

)
4

∫
B(0,r)

m(x)

|x|2
u2u

p−2
L dx ≤ λ

(
p + 2

)
4

(m(0) + ε1)
(

1
ΛN

+ ε
)∫

B(0,r1)

∣∣∣∇(uu(p/2)−1L

)∣∣∣2dx

+

(
λ
(
p + 2

)
4

A(B(0, r1), ε) +
λ
(
p + 2

)‖m‖∞
4r21

)∫
B(0,2r)

(
uu

p/2−1
L

)2
dx,

(4.11)
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for every ε > 0. Inserting this estimate into (4.9), we obtain

(
1−η − λ

(
p+2
)

4
(m(0)+ε1)

(
1
ΛN

+ε
))

×
∫
B(0,r)

∣∣∣∇(uu(p/2)−1L

)∣∣∣2dx≤C1

∫
B(0,2r)

(
uu

(p/2)−1
L

)2
dx,

(4.12)

where C1 = (λ(p + 2)/4) A(B(0, r1), ε) + ((λ(p + 2)‖m‖∞)/(4r21 )) + (p + 2)C(η)/r2. We put
p = 2 + δ, δ > 0. We now observe that we can choose δ and ε so small that

λ

(
1 +

δ

4

)
(m(0) + ε1)

(
1
ΛN

+ ε
)

=
λ

ΛN

(
1 +

δ

4

)
(m(0) + ε1) + λε

(
1 +

δ

4

)
(m(0) + ε1) < 1.

(4.13)

We point out that we have used here the inequality (λ/ΛN)(m(0) + ε1) < 1. With this choice
of ε and δ, we now choose η > 0 so small that

C2 := 1 − η − λ
(
1 +

δ

4

)
(m(0) + ε1)

(
1
ΛN

+ ε
)
> 0. (4.14)

Finally, we apply the Sobolev inequality inH1(B(0, r)) and deduce

SC2

(∫
B(0,r)

∣∣∣uu(p/2)−1L

∣∣∣2∗dx
)2/2∗

≤ (C1 + C2)
∫
B(0,2r)

(
uu

(p/2)−1
L

)2
dx, (4.15)

where S denotes the best Sobolev constant of the embedding ofH1(B(0, r)) into L2∗(B(0, r)).
Letting L → ∞ we deduce that u ∈ L2∗(1+(δ/2))(B(0, r)). So the assertion holds with δ◦ =
δ/2.

We now establish the higher integrability property of the principal eigenfunction
on R

N \ B(0, R). Although this will not be used in the sequel, we add it for the sake of
completeness. We denote by D1,2(RN \ B(0, R)) the Sobolev space defined by

D1,2
(
R
N \ B(0, R)

)
=
{
u : ∇u ∈ L2

(
R
N \ B(0, R)

)
and u ∈ L2∗

(
R
N \ B(0, R)

)}
. (4.16)

Lemma 4.2. For every δ > 0, there exists a constant A = A(δ, R) > 0 such that

∫
|x|≥R

u2

|x|2
dx ≤

(
1
ΛN

+ δ
)∫

|x|≥R
|∇u|2dx +A

∫
R≤|x|≤R+1

u2dx, (4.17)

for every u ∈ D1,2(RN \ B(0, R)).
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Proof. Let Φ ∈ C1(RN) be such that Φ(x) = 0 on B(0, R), Φ(x) = 1 on R
N \ B(0, R + 1),

0 ≤ Φ(x) ≤ 1 on R
N \ B(0, R) and |∇Φ(x)| ≤ 2/R on R

N . Then, uΦ ∈ D1,2(RN), and, by the
Hardy and Young inequalities, we have

∫
|x|≥R

u2

|x|2
dx =

∫
|x|≥R

(uΦ)2

|x|2
dx +

∫
|x|≥R

(
1 −Φ2)u2

|x|2
dx

≤ Λ−1
N

∫
|x|≥R

|∇(uΦ)|2dx +
1
R2

∫
R≤|x|≤R+1

u2dx

≤ Λ−1
N

∫
|x|≥R

|∇u|2Φ2 dx + Λ−1
N

∫
|x|≥R

u2|∇Φ|2dx

+ 2Λ−1
N

∫
|x|≥R

uΦ∇u∇Φdx +
1
R2

∫
R≤|x|≤R+1

u2dx

≤
(
Λ−1
N + δ

)∫
|x|≥R

|∇u|2dx +
(
Λ−1
N + C(δ)

)∫
|x|≥R

u2|∇Φ|2dx +
1
R2

∫
R≤|x|≤R+1

u2dx,

(4.18)

and the result follows with A(δ, R) = (4/R2)(Λ−1
N + C(δ)) + 1/R2.

Proposition 4.3. Suppose that m(∞) > 0 and Λm < ΛN min(1/m(0), 1/m(∞)). Let φ1 be the
principal eigenfunction of problem (4.1). Then there exist δ > 0 andR > 0 such that φ ∈ L2∗(1+δ)(RN\
B(0, R)).

Proof. Wemodify the argument used in the proof of Proposition 4.1. SinceΛm < (ΛN/m(∞)),
there exist ε > 0 and R > 0 such that (Λm/ΛN) (m(∞) + ε) < 1 and m(x) < (m(∞) + ε) for
|x| ≥ R. Let Ψ ∈ C1(RN) be such that Ψ(x) = 0 on B(0, R), Ψ(x) = 1 on R

N − B(0, R + 1),
0 ≤ Ψ(x) ≤ 1 on R

N , and |∇Ψ(x)| ≤ (2/R) on R
N . Let λ = Λm, u = φ1, and v = uu

p−2
L Ψ2,

where L > 1, p > 2, and uL = min(u, L). It is clear that v ∈ D1,2(RN). Testing (4.1) with v and
applying the Young inequality, we obtain

(
1 − η)

∫
RN

|∇u|2up−2L Ψ2dx +
(
p − 2

) ∫
RN

∇u∇uLuP−2L Ψ2dx

≤ λ
∫

RN

m(x)

|x|2
u2u

p−2
L Ψ2dx + C

(
η
) ∫

RN

u2u
p−2
L |∇Ψ|2dx.

(4.19)

From this, as in the proof of Proposition 4.1, we derive that

(
1 − η)

∫
RN

∣∣∣∇(uu(p/2)−1L

)∣∣∣2Ψ2dx ≤ λ
(
p + 2

)
4

∫
RN

m(x)

|x|2
u2u

p−2
L Ψ2dx

+
C
(
η
)(
p + 2

)
4

∫
RN

u2u
p−2
L |∇Ψ|2dx.

(4.20)
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We now estimate the first integral on the right side of (4.20). Using Lemma 4.2, we have, for
every ε1 > 0,

∫
RN

m(x)

|x|2
u2u

p−2
L Ψ2dx ≤ (m(∞) + ε)

∫
|x|≥R+1

(
uu

(p/2)−1
L

)2
|x|2

dx + (m(∞) + ε)

×
∫
R≤|x|≤R+1

(
uu

(p/2)−1
L

)2
|x|2

dx

≤
(
Λ−1
N + ε1

)
(m(∞) + ε)

×
∫
|x|≥R+1

∣∣∣∇(uu(p/2)−1L

)∣∣∣2dx +A(ε1, R)(m(∞) + ε)
∫
R+1≤|x|≤R+2

(
uu

(p/2)−1
L

)2
dx

+
(m(∞) + ε)

R2
×
∫
R≤|x|≤R+1

(
uu

(p/2)−1
L

)2
dx

(4.21)

Inserting this into (4.20), we obtain

[
1 − η − λ

(
p + 2

)
4

(
Λ−1
N + ε1

)
(m(∞) + ε)

] ∫
|x|≥R+1

∣∣∣∇(uu(p/2)−1L

)∣∣∣2dx

≤ C1(δ, ε1, R)
∫
R≤|x|≤R+2

(
uu

(p/2)−1
L

)2
dx,

(4.22)

where

C1(δ, ε1, R) :=
λ
(
p + 2

)
4

(m(∞) + ε)A(ε1, R) +
λ
(
p + 2

)
4R2 (m(∞) + ε) +

C
(
η
)(
p + 2

)
R2

. (4.23)

We now set p = 2 + δ. We choose δ > 0 and ε1 > 0 such that

λ

(
1 +

δ

4

)(
Λ−1
N + ε1

)
(m(∞) + ε) < 1. (4.24)

Then we choose η > 0 small enough to guarantee the inequality

C2 := 1 − η − λ
(
1 +

δ

4

)(
Λ−1
N + ε1

)
(m(∞) + ε) > 0. (4.25)

Having chosen ε1 and δ, we apply the Sobolev inequality to deduce from (4.22)

SC2

(∫
|x|≥R+1

∣∣∣uu(p/2)−1L

∣∣∣2∗dx
)2/2∗

≤ C1

∫
R≤|x|≤R+1

(
uu

(p/2)−1
L

)2
dx, (4.26)
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where S is the best Sobolev constant for the embedding ofD1,2(RN −B(0, R+1)) into L2∗(RN −
B(0, R + 1)). Letting L → ∞, the result follows.

Continuing with the above notations λ = Λm, u = φ1, we put u = |x|−sv, with s > 0 to
be chosen later. We have

div
(
|x|−2s∇v

)
= −λ|x|−2−sm(x)u + u

(
−s2|x|−s−2 + sN|x|−s−2 − 2s|x|−s−2

)
. (4.27)

We now consider the above equation in a small ball B(0, r). Since

λ = Λm < ΛN min
(

1
m(0)

,
1

m(∞)

)
≤ ΛN

m(0)
, (4.28)

there exists r > 0 (small enough) such that λmaxx∈B(0,r)m(x) < ΛN . Let s =
√
ΛN−

√
ΛN − λmr

withmr = maxx∈B(0,r)m(x), then

−div
(
|x|−2s∇v

)
≤ 0 in B(0, r). (4.29)

Letmr = minx∈B(0,r)m(x), and set s =
√
ΛN −

√
ΛN − λmr . Then

−div
(
|x|−2s∇v

)
≥ 0 in B(0, r). (4.30)

Proposition 4.4. Letm(0) > 0 and

Λm < ΛN min
(

1
m(0)

,
1

m(∞)

)
. (4.31)

Then, there exists r > 0 such that

M1|x|−(
√

ΛN−
√

ΛN−λmr) ≤ φ1(x) ≤M2|x|−(
√

ΛN−
√

ΛN−λmr), (4.32)

for x ∈ B(0, r) and some constantsM1 > 0,M2 > 0.

The lower bound follows from [22, Proposition 2.2]. To apply it, we need inequality
(4.30). To establish the upper bound, we modify the argument used in paper [23]. Let η be a
C1 function such that η(x) = 1 on B(0, r), η(x) = 0 on R

N \ B(0, ρ), and |∇η(x)| ≤ 2/(ρ − r)
on R

N , where 0 < r < ρ. We use as a test function in (4.29)w = η2vv2(t−1)
l = η2vmin(v, l)2(t−1),

where l, t > 1. Substituting into (4.29), we obtain

∫
RN

|x|−2s
(
2ηvv2(t−1)

l ∇v∇η + η2v2(t−1)
l |∇v|2 + 2(t − 1)η2v2(t−1)

l |∇vl|2
)
dx ≤ 0, (4.33)
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where s =
√
ΛN −

√
ΛN − λmr . By the Young inequality, for every ε > 0, there exists C(ε) > 0

such that

2
∫

RN

|x|−2sηvv2(t−1)
l ∇η∇vdx ≤ ε

∫
RN

|x|−2sη2v2(t−1)
l |∇v|2dx

+ C(ε)
∫

RN

|x|−2s∣∣∇η∣∣2v2v
2(t−1)
l

dx.

(4.34)

Taking ε = 1/2, we derive from (4.33) that

∫
RN

|x|−2s
(
η2v

2(t−1)
l |∇v|2 + 2(t − 1)η2v2(t−1)

l |∇vl|2
)
dx

≤ C
∫

RN

|x|−2s∣∣∇η∣∣2v2v
2(t−1)
l

dx,

(4.35)

where C > 0 is a constant independent of l. To proceed further we use the Caffarelli-Kohn-
Nirenberg inequality [24]:

(∫
B(0,ρ)

|x|−bp|w|pdx
)2/p

≤ Ca,b

∫
B(0,ρ)

|x|−2a|∇w|2dx, (4.36)

for every w ∈ H1
◦(B(0, ρ), |x|−2adx), where −∞ < a < (N − 2)/2, a ≤ b ≤ (a + 1), p =

2N/((N − 2) + 2(b − a)), and Ca,b > 0 is a constant depending on a and b. We choose

a = b =
√
ΛN −

√
ΛN − λmr <

N − 2
2

. (4.37)

In this case we have p = 2∗. We then deduce from (4.35) and (4.36) with w = ηvvt−1
l

that

(∫
RN

|x|−2∗s
∣∣∣ηvvt−1l

∣∣∣2∗dx
)2/2∗

≤ Ca,b

∫
RN

|x|−2s
∣∣∣∇(ηvvt−1l

)∣∣∣2dx

≤ 2Ca,b

∫
RN

|x|−2s
(∣∣∇η∣∣2v2v

2(t−1)
l

+ η2v2(t−1)
l |∇v|2 + (t − 1)2η2v2(t−1)

l |∇vl|2
)
dx

≤ Ct
∫

RN

|x|−2∗s∣∣∇η∣∣2v2v
2(t−1)
l

dx.

(4.38)

We now observe that

∫
RN

|x|−2∗s∣∣η∣∣2∗v2v2∗t−2
l dx ≤

∫
RN

|x|−2∗s
∣∣∣ηvvt−1l

∣∣∣2∗dx. (4.39)
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Indeed, to show this, we need to check that v2v2∗t−2
l ≤ v2∗(t−1)

l v2∗ on suppη. This can be verified
by considering the cases vl = l and vl = v. The above inequality allows us to rewrite (4.38) as

(∫
RN

|x|−2∗s∣∣η∣∣2∗v2v2∗t−2
l dx

)2/2∗

≤ Ct
∫

RN

|x|−2∗s∣∣∇η∣∣2v2v
2(t−1)
l dx. (4.40)

Due to the properties of the function η, the above inequality becomes

(∫
B(0,r)

|x|−2∗sv2v2∗t−2
l dx

)2/2∗

≤ Ct(
ρ − r)2

∫
B(0,ρ)

|x|−2∗sv2v
2(t−1)
l

dx. (4.41)

One can easily check that the resulting integral on the right side is of (4.41) is finite. We now
choose N/(N − 2) < t∗ < (1 + δ◦)(N/(N − 2)), where δ◦ is a constant from Proposition 4.1.
We define the sequence tj = t∗(2∗/2)

j , j = 0, 1, . . . . Setting t = tj in (4.41), we obtain

(∫
B(0,r)

|x|−2∗sv2v
2tj+1−2
l dx

)1/2tj+1

≤
(

Ctj(
ρ − r)2

)1/2tj(∫
B(0,ρ)

|x|−2∗sv2v
2tj−2
l dx

)1/2tj

. (4.42)

We put rj = ρ◦(1 + ρj◦), j = 0, 1, . . . with ρ◦ small. Substituting in the last inequality ρ = rj ,
r = rj+1, we obtain

(∫
B(0,rj+1)

|x|−2∗sv2v
2tj+1−2
l dx

)1/2tj+1

≤
(

Ctj(
ρ◦ − ρ2◦

)2
ρ
2j
◦

)1/2tj(∫
B(0,rj )

|x|−2∗sv2v
2tj−2
l dx

)1/2tj

.

(4.43)

Iterating gives

(∫
B(0,rj+1)

|x|−2∗sv2v
2tj+1−2
l

dx

)1/2tj+1

≤
(

C

ρ◦ − ρ2◦

)∑∞
j=0 1/tj

ρ
−∑∞

j=0 j/tj
◦

∞∏
j=0

t
j/2tj
j

(∫
B(0,r◦)

|x|−2∗sv2v2t∗−2
l dx

)1/2t∗

.

(4.44)

We now notice that infinite sums and the infinite product in the above inequality are finite.
Since 2∗ < 2t∗ < (1 + δ◦)2∗, we have

∫
B(0,r◦)

|x|−2∗sv2v2t∗−2
l dx ≤

∫
B(0,r◦)

|x|(2t∗−2∗)s|u|2t∗dx ≤ r(2t∗−2∗)s◦

∫
B(0,r◦)

|u|2∗t∗dx <∞. (4.45)
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We now deduce from (4.44) and (4.45) that

‖vl‖L2tj+1 (B(0,ρ◦))
≤ ‖vl‖L2tj+1 (B(0,rj+1))

≤ r(2
∗s)/2tj+1

◦

(∫
B(0,rj+1)

|x|−2∗sv2v
tj+1−2
l

dx

)1/2tj+1

≤ C,
(4.46)

where C > 0 is a constant independent of l and j. Letting tj → ∞, we get ‖vl‖L∞(B(0,ρ◦)) ≤ C.
Finally, if l → ∞, we obtain ‖v‖L∞(B(0,ρ◦)) ≤ C, and this completes the proof of Proposition 4.4.
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