
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2011, Article ID 738509, 13 pages
doi:10.1155/2011/738509

Research Article
Geometric Integrability of Some Generalizations of
the Camassa-Holm Equation

Ognyan Christov

Faculty of Mathematics and Informatics, Sofia University, 5 J. Bouchier boulevard., 1164 Sofia, Bulgaria

Correspondence should be addressed to Ognyan Christov, christov@fmi.uni-sofia.bg

Received 27 May 2011; Accepted 17 July 2011

Academic Editor: V. A. Yurko

Copyright q 2011 Ognyan Christov. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We study the Camassa-Holm (CH) equation and recently introduced μCH equation from the
geometric point of view. We show that Kupershmidt deformations of these equations describe
pseudospherical surfaces and hence are geometrically integrable.

1. Introduction

The modern theory of integrable nonlinear partial differential equations arose as a result
of the inverse scattering method (ISM) discovered by Gardner et al. [1] for Korteweg de
Vries (KdV) equation. Soon after, it was realized that this method can be applied to several
important nonlinear equations like nonlinear Shrödinger equation, sine-Gordon, and so forth.

Sasaki [2] gave a natural geometric interpretation for ISM in terms of pseudospherical
surfaces. Motivated by Sasaki, Chern and Tenenblat [3] introduce the notion of a scalar
equation of pseudospherical type and study systematically the evolution equations that
describe pseudospherical surfaces. It appears that almost all important equations and
systems in mathematical physics enjoy this property [3–7]. The advantage of this geometric
treatment is that most of the ingredients connected with the integrable equations such as Lax
pair, zero curvature representation, conservation laws, and symmetries come naturally.

Let us recall some facts about the equations we study in this paper.
The Camassa-Holm equation (CH)

ut − uxxt + 2ωux + 3uux − 2uxuxx − uuxxx = 0, (1.1)

where ω ∈ R, has appeared in [8] as an equation with bi-Hamiltonian structure. Later, in
[9], it was considered as a model, describing the unidirectional propagation of shallow water
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waves over a flat bottom. CH is a completely integrable equation; see, for example, [10–12].
Furthermore, CH is geometrically integrable [6]. Here, we consider the case ω = 0. Then,
(1.1) is

mt + umx + 2mux, m = uxx − u. (1.2)

The bi-Hamiltonian form of (1.2) is [8, 9]

mt = −B1 δH2[m]
δm

= −B2 δH1[m]
δm

, (1.3)

where B1 = ∂ − ∂3,B2 = m∂ + ∂m are the two compatible Hamiltonian operators (∂ stands for
∂/∂x), and the corresponding Hamiltonians are

H1[m] =
1
2

∫
mudx, H2[m] =

1
2

∫(
u3 + uu2x

)
dx. (1.4)

There exists an infinite sequence of conservation laws (multi-Hamiltonian structure)
Hn[m], n = 0,±1,±2, . . . including (1.4) such that

B1 δHn[m]
δm

= B2 δHn−1[m]
δm

. (1.5)

Very recently a “modified” CH equation (mCH) was introduced by analogy of “Miura
transform” from the theory of KdV equation in [5].

The μCH equation was derived recently in [13, 14] as

−uxxt = −2μ(u)ux + 2uxuxx + uuxxx, (1.6)

where μ(u) =
∫1
0 udx and u(t, x) is a spatially periodic real-valued function of time variable t

and space variable x ∈ S1 = [0, 1). In order to keep a certain symmetry and analogy with CH,
one can write the above equation in the form (see also [15])

μ(ut) − uxxt = −2μ(u)ux + 2uxuxx + uuxxx. (1.7)

Note that μ(ut) = 0 in the periodic case. Introducingm = Au = μ(u) − uxx (1.7) becomes

mt + umx + 2mux = 0, m = μ(u) − uxx. (1.8)

The μCH is an integrable equation and arises as an asymptotic rotator equation in a liquid
crystal with a preferred direction if one takes into account the reciprocal action of dipoles on
themselves [13, 14].

The bi-Hamiltonian form of (1.8) is

mt = −B1 δH2[m]
δm

= −B2 δH1[m]
δm

, (1.9)
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where B1 = ∂A = −∂3,B2 = m∂ + ∂m are the two compatible Hamiltonian operators, and the
corresponding Hamiltonians are

H1[m] =
1
2

∫
mudx, H2[m] =

∫(
μ(u)u2 +

1
2
uu2x

)
dx. (1.10)

Also the μCH equation is geometrically integrable [15] (see there for other geometric
descriptions of this equation).

Recently in [16], a new 6th-order wave equation, named KdV6, was derived. After
some rescaling, this equation can be presented as the following system;

ut = 6uux + uxxx −wx,

wxxx + 4uwx + 2uxw = 0.
(1.11)

This system gives a perturbation to KdV equation (w = 0), and since the constrain on w is
differential, this is a nonholonomic deformation.

Kupershmidt [17] suggested a general construction applicable to any bi-Hamiltonian
systems providing a nonholonomic perturbation on it. This perturbation is conjectured to
preserve integrability. In the case of KdV6, the system (1.11) can be converted into

ut = B1 δHn+1

δu
− B1(w) = B2 δHn

δu
− B1(w),

B2(w) = 0,

(1.12)

where B1 = ∂,B2 = ∂3 + 2(m∂ + ∂m) are the two standard Hamiltonian operators of the KdV
hierarchy and

H1 =
∫
udx, H2 =

1
2

∫
u2dx, . . . . (1.13)

In the same paper, Kupershmidt verifies integrability of KdV6, as well as integrability of such
nonholonomic deformations for some representative cases: the classical long-wave equation,
the Toda lattice (both continuous and discrete), and the Euler top.

In fact, Kersten et al. [18] prove that the Kupershmidt deformation of every bi-
Hamiltonian equation is again bi-Hamiltonian system and every hierarchy of conservation
laws of the original bi-Hamiltonian system, gives rise to a hierarchy of conservation laws of
the Kupershmidt deformation.

The aim of this paper is to show that the CH and the μCH equations have geometrically
integrable Kupershmidt deformations. We also show that the KdV6 equation and two-
component CH system [19] are also geometrically integrable.

As a matter of fact, Yao and Zeng [20] propose a generalized Kupershmidt
deformation and verify that this generalized deformation also preserves integrability in few
representative cases: KdV equation, Boussinesq equation, Jaulent-Miodek equation, and CH
equation.
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Kundu et al. [21] consider slightly generalized form of deformation for the KdV
equation and extend this approach to mKdV equation and to AKNS system.

Guha [22] uses Kirillov’s theory of coadjoint representation of Virasoro algebra to
obtain a large class of KdV6-type equations, equivalent to the original one. Also, applying
the Adler-Konstant-Symes scheme, he constructs a new nonholonomic deformation of the
coupled KdV equation.

The paper is organized as follows. In Section 2, we recall some facts about equations
that describe pseudospherical surfaces. The main results are in Section 3. There we show
that the Kupershmidt deformations for the CH equation and for the μCH equation
are of pseudospherical type and hence are geometrically integrable. We also derive the
corresponding quadratic pseudopotentials which turn out to be very useful in obtaining
conservation laws and symmetries. At the end, wemake some speculations about “modified”
μCH equation.

2. Equations of Pseudospherical Type and Pseudopotentials

In this section, we recall some definitions and facts. One can consult, for example, [3–7] for
more details.

Definition 2.1. A scalar differential equation Ξ(x, t, u, ux, . . . , uxntm) = 0 in two independent
variables x, t is of pseudospherical type (or, it describes pseudospherical surfaces) if there
exist one-forms ωα /= 0

ωα = fα1(x, t, u, . . . , uxrtp)dx + fα2(x, t, u, . . . , uxstq)dt, α = 1, 2, 3, (2.1)

whose coefficients fαβ are smooth functions which depend on x, t and finite number of
derivatives of u, such that the 1-forms ωα = ωα(u(x, t)) satisfy the structure equations

dω1 = ω3 ∧ω2, dω2 = ω1 ∧ω3, dω3 = ω1 ∧ω2, (2.2)

whenever u = u(x, t) is a solution of Ξ = 0.
Equations (2.2) can be interpreted as follows. The graphs of local solutions of

equations of pseudospherical type can be equippedwith structure of pseudospherical surface
(see [3, 6, 7]): ifω1∧ω2

/= 0, the tensorω1⊗ω1+ω2⊗ω2 defines a Riemannianmetric of constant
Gaussian curvature −1 on the graph of solution u(x, t), and ω3 is the corresponding metric
connection one-form.

An equation of pseudospherical type is the integrability condition for a sl(2,R)-valued
problem

dψ = Ωψ, (2.3)

where Ω is the matrix-valued one-form

Ω = X dx + T dt =
1
2

(
ω2 ω1 −ω3

ω1 +ω3 −ω2

)
. (2.4)
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Definition 2.2. An equation Ξ = 0 is geometrically integrable if it describes a nontrivial one-
parameter family of pseudospherical surfaces.

Hence, if Ξ = 0 is geometrically integrable, it is the integrability condition of one-
parameter family of linear problems ψx = Xψ, ψt = Tψ. In fact, this is equivalent to the zero
curvature equation

Xt − Tx + [X, T] = 0, (2.5)

which is an essential ingredient of integrable equations.
Another important property of equations of pseudospherical type is that they admit

quadratic pseudopotentials. Pseudopotentials are a generalization of conservation laws.

Proposition 2.3 (see [6]). Let Ξ = 0 be a differential equation describing pseudospherical surfaces
with associated one-forms ωα. The following two Pfaffian systems are completely integrable whenever
u(x, t) is a solution of Ξ = 0:

−2dΓ = ω3 +ω2 − 2Γω1 + Γ2
(
ω3 −ω2

)
, (2.6)

2dγ = ω3 −ω2 − 2γω1 + γ2
(
ω3 +ω2

)
. (2.7)

Moreover, the one-forms

Θ = ω1 − Γ
(
ω3 −ω2

)
,

Θ̂ = −ω1 + γ
(
ω3 +ω2

) (2.8)

are closed whenever u(x, t) is a solution of Ξ = 0 and Γ (resp. γ) is a solution of (2.6) (resp. (2.7)).

Geometrically, Pfaffian systems (2.6) and (2.7) determine geodesic coordinates on the
pseudospherical surfaces associated with the equation Ξ = 0 [3, 6].

3. Results

In this section, we consider the nonholonomic deformation of CH equation and μCH
equation. We show that they are geometrically integrable and consider their quadratic
pseudopotentials. The nonlocal symmetries will be studied elsewhere.

3.1. CH Equation

Recall from Introduction the CH equation (1.2) and its bi-Hamiltonian form (1.3) with the
corresponding Hamiltonian operators B1 and B2.
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Following Kupershmidt’s construction, we introduce the nonholonomic deformation
of the CH equation

mt = −umx − 2mux − B1(w),

B2(w) = 0.
(3.1)

Proposition 3.1. The system (3.1) describes pseudospherical surface and hence is geometrically
integrable.

Let us give the corresponding 1-forms

ω1 = (m + 1)dx +
[
−um +

η + 1
η

(ux − u) + 1
η
−wxx +

(
η + 1

)
wx − ηw(m + 1)

]
dt,

ω2 =
(
η + 1

)
dx +

[
η + 1
η

− (η + 1
)
u + ux − η

(
η + 1

)
w + ηwx

]
dt,

ω3 =
(
m + 1 + η

)
dx

+

[
−um+

η − (η + 1
)2

η
u+

η + 1
η

ux +
η + 1
η

−wxx+
(
η + 1

)
wx − ηw

(
m+1 + η

)]
dt.

(3.2)

For the proof of Proposition 3.1, we need only to verify the structure equations (2.2)
and to check that the parameter η is intrinsic.

For the matrices X and T in, we get

X =
1
2

(
η + 1 −η

2(m + 1) + η −(η + 1
)
)
, T =

1
2

(
T11 T12

T21 −T11

)
, (3.3)

where

T11 =
η + 1
η

− (η + 1
)
u + ux − η

(
η + 1

)
w + ηwx,

T12 = ηu + η2w − 1,

T21 = −2um −
(
η + 1

)2 + 1
η

u +
2
(
η + 1

)
η

ux

+
η + 2
η

− 2wxx + 2
(
η + 1

)
wx − η

(
η + 2

)
w − 2ηwm.

(3.4)
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Hence, we have a zero curvature representationXt −Tx +[X, T] = 0 for the system (3.1). From
(3.3), it is straightforward to obtain the corresponding scalar linear problem

ψxx =
(
1
4
− η

2
m

)
ψ,

ψt =
(
−u − ηw +

1
η

)
ψx +

ux + ηwx

2
ψ.

(3.5)

In order to apply Proposition 2.3 to nonholonomic deformation of the CH equation,
we consider new 1-forms ωα

new

ω1
new = ω2, ω2

new = −ω1, ω3
new = ω3. (3.6)

With these forms the Pfaffian system (2.7) becomes

2γx = ηγ2 − 2
(
η + 1

)
γ + 2(m + 1) + η,

2γt = γ2 − 2wxx − 2
[
ηγ − (η + 1

)]
wx − 2wηγx

− 2
[
γ − η + 1

η

]
ux − 2u

(
γx +

1
η

)
+
η + 2
η

− 2γ
η + 1
η

.

(3.7)

Applying the transform

γ �−→ γ +
η + 1
η

, (3.8)

after some algebraic manipulations and setting λ = −1/η, we obtain the following result.

Proposition 3.2. The nonholonomic deformation of the CH equation (3.1) admits a quadratic pseudo-
potential γ , defined by the equations

m =
γ2

2λ
+ γx − λ

2
, (3.9)

γt =
γ2

2

[
1 +

1
λ

(
u − w

λ

)]
− γ
(
u − w

λ

)
x
−
(
u − w

λ

)(
m +

λ

2

)
+ λu − λ2

2
, (3.10)

where λ/= 0, m = uxx − u. Moreover, (3.1) possesses the parameter-dependent conservation law

γt = λ
[
(u +w)x − γ −

1
λ

(
u − w

λ

)
γ

]
x

. (3.11)

Conservation densities can be obtained by expanding (3.9) and (3.11) in powers of λ.
Note that the left hand side of (3.11) and (3.9) does not depend on w as it should be. The
corresponding expansions are performed in [6].
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3.2. μCH Equation

Consider now the μCH equation (1.8), its bi-Hamiltonian form (1.9) with the corresponding
Hamiltonian operators B1,B2. Applying Kupershmidt’s procedure to (1.8), we obtain the
nonholonomic deformation of the μCH equation

mt = −umx − 2mux − B1(w),

B2(w) = 0,
(3.12)

or

mt = −umx − 2mux +wxxx,

2mwx +wmx = 0, m = μ(u) − uxx.
(3.13)

Proposition 3.3. The nonholonomic deformation of the μCH equation (3.13) describes pseudospher-
ical surfaces and, hence, is geometrically integrable.

For validation of Proposition 3.3, we give the 1-forms associated with (3.13)

ω1 =
1
2

(
ηm − η2

2
+ 2

)
dx

+
1
2

[
η2

2
u−η

(
ux+um +

1
2

)
+μ(u)−2u +

2
η
+

(
η3

2
− 2η

)
w − η2wx + ηwxx − η2mw

]
dt,

ω2 = ηdx +
(
1 − ηu + ux − η2w + ηwx

)
dt,

ω3 =
1
2

(
ηm − η2

2
− 2

)
dx

+
1
2

[
η2

2
u−η

(
ux+um +

1
2

)
+μ(u)+2u− 2

η
+

(
η3

2
+2η

)
w−η2wx+ηwxx − η2mw

]
dt.

(3.14)

For the matrices X and T in, we get

X =
1
2

⎛
⎜⎝

η 2

ηm − η2

2
−η

⎞
⎟⎠, T =

1
2

(
T11 T12

T21 −T11

)
, (3.15)
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where

T11 = 1 − ηu + ux − η2w + ηwx,

T12 = 2
(
−u +

1
η
− ηw

)
,

T21 =
η2

2
u − η

(
ux + um +

1
2

)
+ μ(u) − η2wx + ηwxx − η2mw +

η3

2
w.

(3.16)

Hence, we have a zero curvature representation Xt − Tx + [X, T] = 0 for the system (3.13).
From (3.3), it is straightforward to obtain the corresponding scalar linear problem

ψxx =
(η
2
m
)
ψ,

ψt =
(
−u − ηw +

1
η

)
ψx +

ux + ηwx

2
ψ,

(3.17)

which coincides with those in [13] upon setting w = 0 and λ = η/2.
In order to find pseudopotentials for the nonholonomic deformation of the μCH

equation, we proceed as before denoting

ω1
new = ω2, ω2

new = −ω1, ω3
new = ω3. (3.18)

With these forms, the Pfaffian system (2.7) becomes

2γx = −2γ2 − 2ηγ + ηm − η2

2
, (3.19)

2γt = −2γ
2

η
+ 2γ2

(
u + ηw

) − 2γ
(
1 − ηu + ux − η2w + ηwx

)

+

[
η2

2
u − η

(
ux +m +

1
2

)
+ μ(u) +

η3

2
w − η2wx + ηwxx − η2mw

]
.

(3.20)

After some manipulations, the above system obtains the form

2γx = −2γ2 − 2ηγ + ηm − η2

2
,

2γt = − 2
η
γ2 + ηwxx −

[(
2γ + η

)(
u + ηw

)]
x + μ(u) − 2γ − η

2
.

(3.21)
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Applying the transform γ �→ γ − η/2, we get

γx = −γ2 + η

2
m, (3.22)

γt = −γ
2

η
+
η

2
wxx −

[
γ
(
u + ηw

)]
x +

μ(u)
2

. (3.23)

Multiplying the first equation (3.22) by −1/η and then adding the result to the second
equation (3.23), we get the following result denoting λ = η/2.

Proposition 3.4. The nonholonomic deformation of the μCH equation (3.13) admits a quadratic
pseudopotential γ , defined by the equations

m =
γ2

λ
+
γx
λ
, (3.24)

γt = −2γ
2

λ
λwxx −

[
γ(u + 2λw)

]
x +

μ(u)
2

, (3.25)

where λ/= 0, m = μ(u) − uxx. Moreover, (3.13) possesses the parameter-dependent conservation law

γt =
1
2λ
[
γ + λ(u + 2λw)x − 2λ(u + 2λw)γ

]
x. (3.26)

As the conserved densities for the nonholonomic deformation are the same as for the
original bi-Hamiltonian system, we make use of the pseudopotentials to obtain them for the
μCH equation. One possible expansion of γ is

γ = λ1/2γ1 + γ0 +
∞∑
j=1

λ−j/2γ−j . (3.27)

Substituting this into (3.24) yields

γ1 =
√
m, γ0 = −mx

4m
, γ−1 =

1
32

m2
x

m5/2
+
1
8

(
mx

m3/2

)
x

, . . . and so forth. (3.28)

In this way, we can obtain local functionals; see [13].
We finish this section with the geometric integrability of one of the most popular two-

component generalization of CH equation and of KdV6 equation.
Another generalization of the Camassa-Holm equation is the following integrable two-

component CH system [19]:

ut − uxxt = −3uux + 2uxuxx + uuxxx + σρρx,

ρt +
(
uρ
)
x = 0,

(3.29)
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where σ = ±1. Introducing a new variable v = ρ2/2, the above system becomes

ut − uxxt = −3uux + 2uxuxx + uuxxx + σvx,

vt + 2vux + uvx = 0.
(3.30)

The system (3.30) is geometrically integrable. The corresponding 1-forms, satisfying the
structure equations (2.2), are the following:

ω1 =
(
uxx − u − σηv + 1

)
dx +

[
u2 − uuxx +

η + 1
η

(ux − u) + 1
η
− σv + ησuv

]
dt,

ω2 =
(
η + 1

)
dx +

(
η + 1
η

− (η + 1
)
u + ux

)
dt,

ω3 =
(
uxx − u − σηv + η + 1

)
dx

+

[
u2 − uuxx +

η − (η + 1
)2

η
u +

η + 1
η

(ux + 1) − σv + ησuv

]
dt.

(3.31)

We could easily include two-component Hunter-Saxon system [19] into this picture (see also
[7]).

Finally, we note that nonholonomic perturbation of KdV equation, known as KdV6
equation, is also of pseudospherical type, that is, KdV6 equation is geometrically integrable.
We just give the corresponding 1-forms

ω1 = (1 − u)dx +
[
−uxx + ηux − 2u2 +

1
η
wx − 1

η2
(wxx + 2uw) +

(
2 − η2

)
u +

2
η2
w + η2

]
dt,

ω2 = ηdx +
(
η3 + 2ηu +

2
η
w − 2ux − 2

η2
wx

)
dt,

ω3 = −(1 + u)dx +
[
−uxx + ηux − 2u2 +

1
η
wx − 1

η2
(wxx + 2uw) −

(
2 + η2

)
u − 2

η2
w − η2

]
dt,

(3.32)

which coincide with those for KdV equation [3]when w → 0.

4. Concluding Remarks

In this paper, we study the CH equation and some of its generalizations from the geometric
point of view. We show that Kupershmidt deformations for CH and μCH equations preserve
integrability and derive some important objects like quadratic pseudopotentials which turn
out to be useful for obtaining conservation laws and nonlocal symmetries. It is also shown
that the KdV6 equation and two-component CH system are also geometrically integrable.

Having at hand these examples of geometrically integrable Kupershmidt deforma-
tions, it is natural to think that maybe there exists a general link in this sense: a Kupershmidt
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deformation of geometrically integrable system is again geometrically integrable. We have
not succeeded in establishing such a link up to now, but we believe that this is true at least
for the systems with local Hamiltonian pair of operators as in the above examples.

Let us return, however, to the μCH equation (w = 0). It is obvious that pseudo-
potentials for the μCH equation (1.8) and parameter-dependent conservation law are
obtained from

m =
γ2

λ
+
γx
λ
, (4.1)

γt =
1
2λ
(
γ + λux − 2λuγ

)
x =

γx
2λ

+
uxx
2

− ∂(γu). (4.2)

Equation (4.1) is an analogue of the Miura transformation of KdV theory. We can repeat,
purely formally, the procedure for obtaining the “modified” CH (mCH) equation [5] in this
case. However, it is clear that since μCH contains nonlocal term, one can expect that the
“modified” equation also will have nonlocal terms.

Denote by A the operator A = μ − ∂2, A(u) = m = μ(u) − uxx. The operators A−1 and ∂
commute and μ(u) = μ(Au).

We have

u = A−1m, ux = A−1mx, uxx = A−1mxx, (4.3)

in whichm is determined by (4.1). Then, the second equation (4.2) takes the form

γt =
γx
2λ

+
A−1mxx

2
− γA−1mx − γxA−1m, (4.4)

or

Aγt =
Aγx
2λ

+
mxx

2
−A∂

(
γA−1m

)
. (4.5)

Formally, this equation can be named as a “modified” μCH equation. One can simplify
further this equation using (4.1) or even to present it as a system as in [5], it remains nonlocal
and, hence, it is of no immediate advantage.
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