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We consider the dead-core problem for the fast diffusion equation with spatially dependent
coefficient and obtain precise estimates on the single-point final dead-core profile. The proofs rely
on maximum principle and require much delicate computation.

1. Introduction

In this paper, we study the porous medium equation with the following initial boundary
condition:

ut = (um)xx − xqup, (x, t) ∈ (0, 1) × (0, T),
ux(0, t) = 0, u(1, t) = k, t ∈ (0, T),

u(x, 0) = u0(x), x ∈ [0, 1],
(1.1)

where 0 < p < m < 1 and −2 < q < 0. Assume k > 0 and that the initial data u0 satisfies

u0 ∈ C([0, 1]), u0 > 0 in [0, 1], u0(0) = 0, u0(1) = k. (1.2)

Moreover, we denote

α =
1

1 − p
. (1.3)

Here we are mainly interested in the asymptotic behavior of nonnegative and global classical
solutions. However, Problem (1.1) is singular at x = 0 for −2 < q < 0. In fact, the solutions can
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be approximated, if necessary, by the ones satisfying the following equation ut = (um)xx−(x+
ε)qup with the same initial-boundary value conditions and taking the limit ε → 0. We set

θ(t) := min
0≤x≤1

u(x, t) (1.4)

and denote

T = T(u0) := inf{t > 0; θ(t) = 0} > 0. (1.5)

For suitable initial data, we will show that T(u0) < ∞ (see Theorem 1.1). We say that the
solution develops a dead core in finite time, and T is called the dead-core time.

In the past few years, much attentions have been taken to the dead-core problems.
For the semilinear case of 0 < p < m = 1 and q = 0, the temporal dead-core profile was
investigated in [1] by Guo and Souplet. For the quasilinear case of 0 < p < m < 1 and q = 0,
Guo et al. [2] firstly investigated the solution which develops a dead core in finite time; then
they obtained the spatial profile of the dead core and also studied the non-self-similar dead-
core rate of the solution. Numerous relatedworks have been devoted to some of the regularity
and the corresponding problems such as blowup, quenching, and gradient blowup; we refer
the interested reader to [3–11] and the references therein.

Our aim of this paper is to study the dead-core problem for the fast diffusion with
strong absorption. In view of the observation concerning the interaction of diffusion and
absorption, this question is of interest since the effect of fast diffusion, as compared with
linear diffusion, is much stronger near the level u = 0. Although our strategy of proof is close
to that in [2], the proof is technically much more difficult due to the presence of a nonlinear
operator and spatially dependent absorption coefficient.

The paper is organized as follows. In Section 2, we prove that the solution of the porous
medium equation develops a dead core in finite time. In Section 3, firstly, we obtain the spatial
profile of the dead-core upper bound estimate by the initial monotone assumption; then we
construct auxiliary function and derive the lower bound estimate by maximum principle.

Our first result gives sufficient conditions under which the solution of Problem (1.1)
develops a dead core in finite time. To formulate this, let us first recall some well-known
facts: (1.1) admits a unique steady state Uk ∈ C2((0, 1]) under the condition −2 < q < 0
for each given k > 0. Moreover, Uk is an even and nondecreasing function of x, and it is a
nondecreasing function of k. Furthermore, there exists k0 = k0(m, p) > 0 such that if k ∈ (0, k0)
then Uk vanishes on an interval of positive length, if k = k0 then Uk vanishes only at x = 0,
and if k > k0 then Uk is positive.

Theorem 1.1. Assume 0 < p < m < 1, −2 < q < 0 and (1.2).

(i) Let 0 < k < k0. Then T(u0) < ∞ for any u0.

(ii) Let k ≥ k0. For any η,M > 0 there exists δ = δ(η,M) > 0 such that T(u0) < ∞ whenever
‖u0‖ ≤ M and u0 ≤ δ on a subinterval of (0, 1] of length.

For our main results on the spatial profile of the dead-core problem, we will assume
that u0 satisfies the conditions
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u0 ∈ C2([0, 1]),
(
um
0

)′′ ≤ xqu
p

0 in (0, 1],

u0 is even and nondecreasing in x and T(u0) < ∞.
(1.6)

It then follows from the strong maximum principle that ut < 0 in QT := (0, 1) × (0, T),
u(−x, t) = u(x, t) for (x, t) ∈ (−1, 1) × (0, T) and ux > 0 in (0, 1) × (0, T).

Our main goal in this paper is thus to obtain the following precise estimates on the
single-point final dead-core profile near x = 0.

Theorem 1.2. Let k > 0 and assume 0 < p < m < 1, p +m > 1, −1 < q < 0, (1.2), and (1.6), then
there exist C1, C2 > 0 such that

C1x
(q+2)/(m−p) ≤ u(x, T) ≤ C2x

(q+2)/(m−p), 0 ≤ x ≤ 1, (1.7)

where C1 = [ε(m − p)/m(q + 2)]1/(m−p), C2 = [(m − p)/m(q + 1)(q + 2)]1/(m−p), and ε ≤ (p +m −
1)/(2p +m − 1)(q + 1) is an arbitrary positive constant.

Remark 1.3. Due to the technical difficulty, we cannot prove that the coefficients of the upper
and lower bounds in Theorem 1.2 are not identical. Also, it is very interesting whether
Problem (1.1), even for the case q > 0, exists the non-self-similar dead-core rate similar to
that in [1, 2]. We leave these open questions to the interested readers.

2. Quenching in Finite Time

Proof of Theorem 1.1.

Step 1. We look for a supersolution u of ut − (um)xx + xqup = 0 in QT := (0, 1) × (0, T), which
develops a dead core at time T . For any T ∈ (0, T0), we will construct u under the following
self-similar form:

u(x, t) = ε(T − t)αV
(
y
)
, y = x(T − t)−β, V

(
y
)
=
(
1 + y2

)γ
, (2.1)

where

0 < β <
α
(
m − p

)

2
=

m − p

2
(
1 − p

) (2.2)

and γ, ε, T0 > 0 will be determined. Note that u(0, T) = 0. Computations yield

Pu = ut −
(
um)

xx + xqup

= ε(T − t)α−1
(−αV + βyV ′) − εm(T − t)αm−2β(Vm)′′ + εpxq(T − t)αpV p

= ε(T − t)αp
{
εp−1xqV p − αV + βyV ′ − εm−1(T − t)λ(Vm)′′

}
(2.3)
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for (x, t) ∈ QT , where λ = α(m − p) − 2β > 0. Assuming T ≤ T0(ε) := ε(1−m)/λ, we see that

Pu ≥ ε(T − t)αp
{
εp−1xq − h

(
y
)}

, where h
(
y
)
= αV − βyV ′ +

∣
∣(Vm)′′

∣
∣. (2.4)

Next taking γ > α/(2β) and using |(Vm)′′| ∼ C|y|2mγ−2 as |y| → ∞, we observe that

h
(
y
) ∼ (

α − 2βγ
)∣∣y

∣
∣2γ −→ −∞, as

∣
∣y

∣
∣ −→ ∞. (2.5)

It follows that supy∈R
h(y) < ∞ and choosing ε = ε(m, p, β, γ) > 0 sufficiently small, we con-

clude that Pu ≥ 0 in QT . For further reference we also note that

u(x, t) ≥ ε|x|2γT−μ in QT, where μ = 2βγ − α > 0. (2.6)

Step 2 (we prove assertion (ii)). Fix η,M > 0 and x0 ∈ [η/2, 1 − η/2]. Let u, T0 be as in
Step 1 and set v(x, t) = u(x − x0, t). Taking T ≤ min(T0, T1), where T1 = T1(η,M) > 0 is
sufficiently small, and using (2.6), we see that v(x, t) ≥ M for |x − x0| ≥ η/2 and t ∈ (0, T),
hence in particular v(±1, t) ≥ k (here, we deal with the symmetry case in one dimension).
Next put δ := min|x−x0|≥η/2v(x, 0). Then assuming ‖u0‖∞ ≤ M and u0 ≤ δ for |x − x0| ≥ η/2,
we get u0 ≤ v(x, 0), and it follows from the comparison principle that u ≤ v in QT ; hence
T(u0) ≤ T < ∞. This proves conclusion (ii).

Step 3 (we prove assertion (i)). First observe that assertion (ii) is actually true for any k > 0 in
view of Step 2. On the other hand, by standard energy arguments, one can show that u(x, t)
converges to Uk in L∞(0, 1) as t → ∞. Since Uk = 0 on [0, η/2] for some η > 0, it follows
that for t0 large, the new initial data ũ0 := u(x, t0) satisfies the assumptions of part (ii) with
M = k + 1. The conclusion follows.

3. Dead-Core Profile Upper and Lower Bound

In this section, we will derive some a prior estimates for solutions of (1.1). Since ut < 0 in QT

and ux > 0 in (0, 1) × (0, T), we have (um)xx < xqup. Let v = um. Then from vx = mum−1ux, 0 <
u ≤ k in QT and

vxx(x, t) < xqvr(x, t), (x, t) ∈ (0, 1) × (0, T), (3.1)

it follows that vx and ux are bounded in QT .
Integrating the inequality vxx(x, t) < xqvr(x, t) using vx ≥ 0, we obtain

vx(x, t) =
∫x

0
vxx

(
y, t

)
dy ≤

∫x

0
yqvr(y, t

)
dy ≤ vr(x, t)

∫x

0
yqdy ≤ xq+1

q + 1
vr(x, t); (3.2)

hence v1−r(x, t) − v1−r(0, t) ≤ ((1 − r)/(q + 1)(q + 2))xq+2. Consequently

u(x, T) = v1/m(x, T) ≤ Cx(q+2)/m(1−r) = Cx(q+2)/(m−p), (3.3)
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where C = [(m− p)/m(q+ 1)(q+ 2)]1/(m−p). Together with the following lower bound lemma,
we obtain Theorem 1.2.

Lemma 3.1. Let 0 < p < m < 1, p +m > 1 and −1 < q < 0. Let (1.2), and (1.6) be in force and fix
t0 ∈ (0, T). Then there exists ε > 0 such that the auxiliary function

J := (um)x − εxq+1up (3.4)

satisfies J ≥ 0 in [0, 1] × (t0, T). In particular, there exists Cε > 0 such that

u(x, t) ≥ Cεx
(q+2)/(m−p), (x, t) ∈ (0, 1) × (t0, T), (3.5)

where Cε = [ε(m − p)/m(q + 2)]1/(m−p) and 0 < ε ≤ (p +m − 1)/(2p +m − 1)(q + 1).

Proof. The equation in (1.1) can be written under the form

ut − auxx = m(m − 1)um−2(ux)2 − xqup, (3.6)

with a = mum−1. For (x, t) ∈ (0, 1) × (0, T), we compute

(
xq+1up

)

t
= pxq+1up−1ut,

(
xq+1up

)

x
=
(
q + 1

)
xqup + pxq+1up−1ux

(
xq+1up

)

xx
=
(
q + 1

)
qxq−1up + 2

(
q + 1

)
pxqup−1ux + p

(
p − 1

)
xq+1up−2(ux)2 + pxq+1up−1uxx.

(3.7)

Therefore

(
xq+1up

)

t
− a

(
xq+1up

)

xx
= pxq+1up−1(ut − auxx)

− a
((

q + 1
)
qxq−1up + 2

(
q + 1

)
pxqup−1ux + p

(
p − 1

)
xq+1up−2(ux)2

)

= pm(m − 1)xq+1up+m−3u2
x − px2q+1u2p−1 − 2m

(
q + 1

)
pxqum+p−2ux

−mq
(
q + 1

)
xq−1um+p−1 −mp

(
p − 1

)
xq+1um+p−3u2

x

= −pm−1(−m + p
)
xq+1up−m−1(um)2x − 2p

(
q + 1

)
xqup−1(um)x

− px2q+1u2p−1 −mq
(
q + 1

)
xq−1um+p−1.

(3.8)

Using

(um)x = J + εxq+1up, (3.9)
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we deduce that

(
xq+1up

)

t
− a

(
xq+1up

)

xx
= b1J − px2q+1u2p−1

{
1 + 2ε

(
q + 1

)
+ ε2m−1(p −m

)
xq+2up−m

}

−mq
(
q + 1

)
xq−1um+p−1

(3.10)

with b1 = pm−1(m − p)xq+1up−m−1(um)2x(J + 2εxq+1up) − 2p(q + 1)xqup−1.
On the other hand, we have

(um)xt − a(um)xxx = (aux)t − a(um)xxx = a(ut − (um)xx)x + atux

= −aqxq−1up − apxqup−1ux +m(m − 1)um−2utux

= −mqxq−1um+p−1 − pxqup−1(um)x + (m − 1)u−1ut(um)x

= −mqxq−1um+p−1 − pxqup−1
(
J + εxq+1up

)
+ (m − 1)u−1ut

(
J + εxq+1up

)

= b2J + εxq+1u2p−1{−pxq + (m − 1)u−put

} −mqxq−1um+p−1

= b2J + εxq+1u2p−1{(1 −m − p
)
xq + (m − 1)u−p(um)xx

} −mqxq−1um+p−1

(3.11)

where b2 = −pxqup−1 + (m − 1)u−1ut.
Since

(um)xx =
(
J + εxq+1up

)

x
= Jx + ε

[(
q + 1

)
xqup + pxq+1up−1ux

]

= Jx + εxqup
[
q + 1 + pm−1xu−m(um)x

]

= Jx + εxqup
[
q + 1 + pm−1xu−m

(
J + εxq+1up

)]

= Jx + b3J + εxqup
[
q + 1 + εpm−1xq+2up−m

]

(3.12)

with b3 = εpm−1xq+1up−m being a smooth function on [0, 1] × (0, T), it follows that

(um)xt − a(um)xxx = b2J + εxq+1u2p−1
{(

1 −m − p
)
xq + (m − 1)u−p

×
(
Jx + b3J + εxqup

[
q + 1 + εpm−1xq+2up−m

])}

−mqxq−1um+p−1

= b4J + b5Jx + εxq+1u2p−1
{(

1 −m − p
)
xq + ε(m − 1)xq

×
[
q + 1 + εpm−1xq+2up−m

]}
−mqxq−1um+p−1,

(3.13)
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where

b4 = b2 + ε(m − 1)xq+1up−1b3,

b5 = ε(m − 1)xq+1up−1 is a smooth function on [0, 1] × (0, T).
(3.14)

Combining (3.10) and (3.13), we obtain

b4J + b5Jx −mqxq−1um+p−1

+ εxq+1u2p−1
{(

1 −m − p
)
xq + ε(m − 1)xq

[
q + 1 + εpm−1xq+2up−m

]}

= Jt − aJxx + εb1J − εmqxq−1um+p−1

− εx2q+1u2p−1
{
1 + 2ε

(
q + 1

)
+ ε2m−1(p −m

)
xq+2up−m

}
.

(3.15)

Namely

Jt − aJxx −
(
b5 + (m − 1)u−1

)
Jx − b7J

= εx2q+1u2p−1
{(

1 −m − p
)
+ ε(m − 1)

[
q + 1 + εpm−1xq+2up−m

]}

+ pεx2q+1u2p−1
{
1 + 2ε

(
q + 1

)
+ ε2m−1(p −m

)
xq+2up−m

}

−mq
(
1 − ε

(
q + 1

))
xq−1um+p−1

= εx2q+1u2p−1
{
1 −m + ε(m − 1)

[
q + 1 + εpm−1xq+2up−m

]}

+ pεx2q+1u2p−1
{
2ε
(
q + 1

)
+ ε2m−1(p −m

)
xq+2up−m

}

−mq
(
1 − ε

(
q + 1

))
xq−1um+p−1

(3.16)

with b6 = b5 + (m − 1)u−1 being a smooth function on [0, 1] × (0, T).
In order to make b7 ≤ 0 in force, we require ε ≤ (p + m − 1)/(2p + m − 1)(q + 1) and

p +m > 1.
Sincem < 1, by choosing 0 < ε ≤ ε0 with ε0 = ε0(m, p) > 0 small enough, it follows that

Jt − aJxx − b6Jx − b7J ≥ εx2q+1u2p−1
{
1 −m

2
− p

(
1 − p

)

m
ε2xq+2up−m

}

=
1 −m

2
εx2q+1u3p−m−1

{
um−p − κε2xq+2

}
,

(3.17)
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where κ := 2p(1 − p)/[m(1 −m)] > 0. Now observe that

[

um−p − m − p
(
q + 2

)
m
εxq+2

]

x

=
(
m − p

)[
um−p−1ux −m−1εxq+1

]

=
m − p

m
u−p

[
(um)x − εxq+1up

]
=

m − p

m
u−pJ,

(3.18)

hence

um−p − m − p
(
q + 2

)
m
εxq+2 ≥ m − p

m
u−p

∫x

0
u−pJ

(
y, t

)
dy. (3.19)

Thus, taking ε0 possible smaller, we get

Jt − aJxx − b6Jx − b7J ≥ 1 −m

2
εx2q+1u3p−m−1

{
um−p − m − p

2m
εxq+2

}
, (3.20)

hence

Jt − aJxx − b6Jx − b7J ≥ Cεx2q+1u3p−m−1
∫x

0
u−pJ

(
y, t

)
dy, (3.21)

with C = (1 −m)(m − p)/2m > 0. Now for any 0 < t0 < t1 < T , it follows from the maximum
principle that J attains its minimum inQ = [0, 1]×[t0, t1] on the parabolic boundary ofQ (see
[1, 2]).

It is thus sufficient to check that J ≥ 0 on the parabolic boundary of Q for ε small.
Clearly J = 0 for x = 0. Since ux is bounded on QT, u(x, t) ≥ η > 0 in [1 − η, 1] × (t0, T) for
some small constant δ > 0. Therefore u extends to a classical solution on [1 − η, 1] × (t0, T],
and Hopf’s Lemma implies that ux(1, t) ≥ δ̃ > 0 for t0 < t < T ; hence J(1, t) ≥ 0 for t0 < t < T
if ε is chosen small enough. Moreover, also as a consequence of Hopf’s Lemma, we have
ux(x, t0) ≥ cxq+1 in [0, 1] for some c > 0. Again decreasing ε if necessary, we deduce that
J(x, t0) ≥ 0 in [0, 1]. The lemma follows.
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