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We study a nonlinear parabolic system governing the biological dynamic in the soil. We prove
global existence (in time) and uniqueness of weak and positive solution for this reaction-diffusion
semilinear system in a bounded domain, completed with homogeneous Neumann boundary
conditions and positive initial conditions.

1. Introduction

Modelling biological dynamic in the soil is of great interest during these last years. Several
attempts are made in 1D, 2D, and rarely in 3D. For more details, readers are referred to [1–3].
We deal here with the mathematical study of the model described in [2].

Let T > 0 be a fixed time, Ω ⊂ R
3 an open smooth bounded domain, QT = ]0, T[×Ω,

and ΓT = ]0, T[× ∂Ω.
The set of equations describing the organic matter cycle of decomposition in the soil is

given by the following system:

(S)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ui
∂t

−DiΔui + qi(u)ui = fi(u) in QT,

∂ui
∂n

= 0 over ΓT ,

ui(0, x) = u0i(x) in Ω,

(1.1)

for i = 1, . . . , 6.
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We have noticed u = (u1, u2, . . . , u6)
T with u1 is the density of microorganisms (MB),

u2 is the density of DOM, u3 is the density of SOM, u4 is the density of FOM, u5 is the density
of enzymes, and u6 is the density of CO2,

q1(u) = − ku2
Ks + u2

+ μ + r + ν, q2(u) =
ku1

Ks + u2
,

q3(u) =
c1u5

Km + u5
, q4(u) =

c2u5
Km + u5

, q5(u) = ζ, q6(u) = 0,

f1(u) = 0, f2(u) =
u5

Km + u5
(c1u3 + c2u4) +

ζu5 + μu1
2

,

f3(u) =
ζu5 + μu1

2
, f4(u) = 0, f5(u) = νu1, f6(u) = ru1,

(1.2)

with μ mortality rate, r is the breathing rate, ν is the enzymes production rate, ζ is the
transformation rate of deteriorated enzymes, c1 is the maximal transformation rate of SOM,
c2 is the maximal transformation rate of FOM, k maximal growth rate, Km and Ks represent
half-saturation constants, and Di, i = 1 to 6, are strictly positive constants.

System (S) is introduced in [2]. To our knowledge, it is the first time that diffusion
is used to model biological dynamics and linking it to real soil structure described by a 3D
computed tomography image.

Similar systems to (S) operate in other situations. It comes in population dynamics
as Lotka-Voltera equation which corresponds to the case f = 0, ui denoting the densities
of species present and qi growth rate. This system is also involved in biochemical reactions.
In this case, the ui are the concentrations of various molecules, qi is the rate of loss, and fi
represents the gains.

For models in biology, interested reader can consult with profit [4] where the author
presents some models based on partial differential equations and originating from various
questions in population biology, such as physiologically structured equations, adaptative
dynamics, and bacterial movement. He describes original mathematical methods like the
generalized relative entropy method, the description of Dirac concentration effects using a
new type of Hamilton-Jacobi equations, and a general point of view on chemotaxis including
various scales of description leading to kinetic, parabolic, or hyperbolic equations.

Theoretical study of semilinear equations is widely investigated. Some interesting
mathematical difficulties arise with these equations because of blowup in finite time,
nonexistence and uniqueness of solution, singularity of the solutions, and noncontinuity of
the solution regarding data.

In [5], the authors prove the blowup in finite time for the system in 1D,

ut = uxx − a(x, t)f(u) 0 < x < 1, t ∈ (0, T),

ux(0, t) = 0 t ∈ (0, T),

ux(1, t) = b(t)g(u(1, t)) t ∈ (0, T).

(1.3)

A sufficient condition for the blowup of the solution of parabolic semilinear second-
order equation is obtained in [6]with nonlinear boundary conditions, and so the set in which
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the explosion takes place. He also gives a sufficient condition for the solution of this equation
which tends to zero, and its asymptotic behavior.

Existence and uniqueness of weak solutions for the following system are considered
in [7]:

(∂t +L)u + F(t, x, u,∇u) = 0 ∀(t, x) ∈ [0, T[ × R
d,

u(x, T) = g(x) ∀x ∈ R
d,

(1.4)

with

F : [0, T] × R
d × R

m × R
m×d −→ R

m, b ∈ C2
b

(
R
d;Rd
)
, σ ∈ C3

b

(
R
d;Rd×d

)
, a = σσt,

L =
d∑

i=1

bi
∂

∂xi
+
1
2

d∑

i,j=1

ai,j
∂2

∂xi∂xj
,

(1.5)

with obstacles, giving a probabilistic interpretation of solution. This problem is solved using
a probabilistic method under monotony assumptions.

By using bifurcation theory, in [8], authors determine the overall behavior of the
dynamic system

∂u

∂t
= DΔu + uf(x, u) x ∈ Ω, t > 0,

u(x, 0) = u0(x) ≥ 0 x ∈ Ω.
(1.6)

A Cauchy problem for parabolic semilinear equations with initial data in Hs
p(R

n) is
studied in [9]. Particularly the author solves local existence using distributions data.

Michel Pierre’s paper, see [10], presents few results and open problems on reaction-
diffusion systems similar to the following one:

∀i = 1, . . . , m,

∂tui − diΔui = fi(u1, . . . , um) in(0, T) ×Ω,

αi
∂ui
∂n

+ (1 − αi)ui = βi on (0, T) × ∂Ω,
ui(0) = ui0 in Ω,

(1.7)

where the fi : R
m → R are C1 functions of u = (u1, . . . , um), and di ∈ (0,∞), αi ∈ [0, 1],

βi ∈ C2([0, T] ×Ω), βi ≥ 0.
The systems usually satisfy the two main properties:

(i) the positivity of the solutions is preserved for all time,

(ii) the total mass of the components is uniformly controlled in time.

He recalls classical local existence result [11–13] under the above hypothesis.
It is assumed throughout the paper that

(i) all nonlinearities are quasipositives,
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(ii) they satisfy a “mass-control structure”

∀r = (r1, . . . , rn),
m∑

i=1

f(r) ≤ C
(

1 +
m∑

i=1

ri

)

, C > 0. (1.8)

It follows that the total mass is bounded on any interval. Few examples of reactions-diffusion
systems for which these properties hold are studied.

Systems where the nonlinearities are bounded in L1((0, T)×Ω) are also considered, for
instance, for fi in L1((0, T),Ω)whose growth rate is less than |u|(N+2)/N whenN tends to +∞
[14].

Other situations are investigated, namely, when the growth of the nonlinearities is not
small. But many questions are still unsolved, so several open problems are indicated.

A global existence result for the following system:

∂tu − d1Δu = f(u, v),

∂tv − d2Δv = g(u, v),

u(0, ·) = u0(·) ≥ 0, v(0, ·) = v0(·) ≥ 0

with either:
∂u

∂n
= β1,

∂v

∂n
= β2 on (0,+∞) × ∂Ω,

or: u = β1, v = β2 on (0,+∞) × ∂Ω,

(1.9)

where d1, d2 ∈ (0,+∞), β1, β2 ∈ [0,+∞), and f, g : [0,+∞)2 → R are C1, holds for the
additional following hypothesis:

∀u ≥ U, ∀v ≥ 0, f(u, v) ≤ C[1 + u + v], U,C ≥ 0,
∃r ≥ 1, ∀ u, v ≥ 0,

∣
∣g(u, v)

∣
∣ ≤ C[1 + ur + vr]. (1.10)

This approach has been extended tom ×m systems for which f1,f1 + f2,f1 + f2 + f3, . . .
are all bounded by a linear of the ui (see [15]).

However, L∞(Ω)-blow up may occur in finite time for polynomial 2 × 2 systems as
proved in [16, 17].

A very general result for systems which preserves positivity and for which the
nonlinearities are bounded in L1 may be found in [18]. It is assumed that, for all i = 1, . . . , m,

fi : ]0, T[ ×Ω × [0,+∞)m −→ R is measurable, fi(·, 0) ∈ L1(]0, T[ ×Ω)

∃K : ]0, T[ ×Ω × [0,+∞) −→ [0,+∞) with ∀M > 0, K(·,M) ∈ L1(]0, T[ ×Ω)

and a.e.(t, x) ∈ ]0, T[ ×Ω, ∀r, r̃ ∈ [0,+∞)m with |r|, |r̃| ≤M,
∣
∣fi(t, x, r) − fi(t, x, r̃)

∣
∣ ≤ K(t, x,M)|r − r̃|, ∀r ∈ [0,+∞)m,

fi(t, x, r1, . . . , ri−1, 0, ri+1, . . . , rm) ≥ 0,

(1.11)

there is a sequence which converges in L1(]0, T[×Ω) to a supersolution of (1.7).
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One consequence is that global existence of weak solutions for systems whose
nonlinearities are at most quadratic with u0 ∈ L2(Ω)m can be obtained.

Results are also obtained in the weak sense for systems satisfyingWt−ΔZ ≤ H, where
W =

∑
i ui, Z =

∑
i diui, andH ∈ L2(]0, T[×Ω).

The aim of our paper is to study the global existence in time of solution for the system
(S). In our work, we use an approach based both on variational method and semigroups
method to demonstrate existence and uniqueness of weak solution.

The difficulty is that u being in the denominator of some qi(u) and fi(u), it is necessary
to guarantee that u is nonnegative to avoid explosion of these expressions, whereas the
classical methods assume that these expressions are bounded.

For instance, to show that weak solution is positive with an initial positive datum,
Stampachia’s method uses majoration of qi(u) by a function of t.

In our work, we show existence and unicity of a global positive weak solution of
System (S) for an initial positive datum.

The work is organized as follows. In the first part, we recall some preliminary
results concerning variational method and semigroups techniques. In the second part, we
prove, using these methods, existence, uniqueness, and positivity of weak solution under
assumptions of positive initial conditions.

2. Preliminary Results

2.1. Variational Method (See [19])

We consider two Hilbert spacesH and V such that V is embedded continuously and densely
inH.

Then, we have duality H ′ ↪→ V ′. Using Riesz theorem, we identify H and H ′. So we
get V ↪→ H ↪→ V ′.

Definition 2.1. We define the Hilbert space

W
(
0, T, V, V ′) =

{

u ∈ L2(]0, T[, V ) such that
∂u

∂t
∈ L2(]0, T[, V ′)

}

, (2.1)

equipped with the norm

‖u‖2W = ‖u‖2L2(]0,T[,V ) +
∥
∥
∥
∥
∂u

∂t

∥
∥
∥
∥

2

L2(]0,T[,V ′)
. (2.2)

We assume the two following lemmas, see [19].

Lemma 2.2. There exists a continuous prolongation operator P from W(0, T, V, V ′) to W(−∞,
+∞, V, V ′) such that

Pu|]0,T[ = u ∀u ∈W(0, T, V, V ′). (2.3)

Lemma 2.3. D(R, V ) is dense inW(−∞,+∞, V, V ′).
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Corollary 2.4. C∞([0, T], V ) is dense inW(0, T, V, V ′).

Proof. If u ∈ W(0, T, V, V ′), one takes a sequence un of D(R, V ) which converges in
W(−∞,+∞, V, V ′) toward Pu, and then (un)|]0,T[ converges toward u and (un)|]0,T[ ∈
C∞([0, T], V ) for all n ∈ N.

Proposition 2.5. Every element u ∈ W(0, T, V, V ′) is almost everywhere equal to a function in
C0([0, T],H).

Furthermore, the injection of W(0, T, V, V ′) into C0([0, T],H) is continuous when
C0([0, T],H) is equipped with the supnorm.

Proof. See [19].

Application

For all t ∈ [0, T], a bilinear form (u, v) → a(t;u, v) is given on V × V such that for u and v
fixed, t → a(t;u, v) is measurable and

∃M > 0, such that |a(t;u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V. (2.4)

For each fixed t, one defines a continuous linear application A(t) ∈ L(V, V ′) by

〈A(t)u, v〉 = a(t;u, v). (2.5)

Then, we have

‖A(t)‖L(V,V ′) ≤M. (2.6)

Also we associate, for all fixed t, an unbounded operator inH whose domain is the set
of u ∈ V such that v → a(t;u, v) is continuous on V for the induced norm byH. It is exactly
the set of u ∈ V such that A(t)u ∈ H and then

a(t;u, v) = (A(t)u, v)H. (2.7)

To simplify the writting the unbounded operator is noted A(t).
Let ψ ∈ C∞([0, T], V ), we have, for v ∈ V ,

d

dt

(
ψ(t), v

)

H =
(
∂ψ

∂t
, v

)

H

=
〈
ψ ′(t), v

〉
, (2.8)

where the bracket is the duality between V ′ and V because V ↪→ V ′. By density, if u ∈
W(0, T, V, V ′), one has, for all v ∈ V ,

d

dt
(u(t), v)H =

〈
u′(t), v

〉
for a.e. t. (2.9)
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The variational parabolic problem associated to the triple (H,V, a(t; ·, ·)) is the
following.

Given f(t) ∈ L2(]0, T[;V ′) and u0 ∈ H, find u ∈W(0, T, V, V ′) such that

(P)

⎧
⎪⎨

⎪⎩

d

dt
(u(t), v)H + a(t;u(t), v) =

(
f(t), v

) ∀v ∈ V,
u(0) = u0.

(2.10)

This problem is equivalent to

du(t)
dt

+A(t)u(t) = f(t),

u(0) = u0.
(2.11)

Definition 2.6. The form a is coercive or V coercive if α > 0 exists such that

a(t;u, u) ≥ α‖u‖2V ∀(t, u) ∈ [0, T] × V. (2.12)

Theorem 2.7. If the form is coercive, then the problem (P) admits a unique solution.

Proof. See Dautray-Lions [19].

Definition 2.8. The form isH coercive if there exist two constants λ and α > 0 such that

a(t;u, u) + λ‖u‖2H ≥ α‖u‖2V , ∀t ∈ [0, T], ∀u ∈ V. (2.13)

If we set u(t) = eλtw(t), then u is solution of (P) if and only if w is solution of

(P′)

⎧
⎪⎨

⎪⎩

d

dt
(w(t), v)H + a(t;w,v) + λ(w,v)H =

〈
e−λtf(t), v

〉 ∀v ∈ V,
w(0) = u0.

(2.14)

Writing

b(t;u, v) = a(t;u, v) + λ(u, v)H, (2.15)

b is a coercive form, and then (P′) admits a unique solution, and therefore (P) too. We
apply Theorem 2.7 in the following case:

H = L2(Ω), V = H1(Ω), (2.16)
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and defining

a(t;u, v) =
3∑

i,j=1

∫

Ω
aij(t, x)

∂u

∂xi

∂v

∂xj
dx, (2.17)

we assume that

aij(t, x) ∈ L∞(]0, T[ ×Ω) ∀i, j, (2.18)

and there exists α > 0 such that, for all ζ = (ζi)i=1,2,3, we have

3∑

i,j=1

aij(t, x)ζiζj ≥ α‖ζ‖2R3 a.e. in ]0, T[ ×Ω. (2.19)

Then, we deduce that

a(t;u, u) ≥ α
3∑

i=1

∥
∥
∥
∥
∂u

∂xi

∥
∥
∥
∥

2

L2(Ω)
. (2.20)

The form is thenH coercive, and it suffices to take λ = α.
In addition, let us take a0 ∈ L∞(]0, T[×Ω)with a0(t, x) ≥ 0 for all t, x.
The form

b(t;u, v) = a(t;u, v) + (a0(t)u, v)H (2.21)

is stillH coercive. We have the following theorem.

Theorem 2.9. Under the previous hypothesis, problem (P) associated to the triple (H,V, b) admits a
unique solution for all u0 ∈ H and f ∈ L2(]0, T[;V ′).

Moreover, if u0 ≥ 0 and

〈
f(t), v

〉 ≥ 0 ∀v ∈ V such that v ≥ 0, t ∈ ]0, T[ a.e., (2.22)

one has u(t) ≥ 0 for all t ∈ [0, T].

Proof. It remains to show that the solution is nonnegative.
Given u ∈ L2(Ω), we set u+ = max(0, u(x)) and u− = max(0,−u(x)). If u ∈ H1(Ω), then

we have u+ and u− ∈ H1(Ω).
By replacing v by u−(t) in (P), we obtain

〈
du

dt
, u−(t)

〉

+ a
(
t;u(t), u−(t)

)
+
(
a0(t)u, u−

)

H =
〈
f(t), u−

〉
. (2.23)
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One gets

u = u+ − u−, u+u− = 0,
du+

dt
u− = 0, (2.24)

and by linearity, we obtain

−
〈
du−

dt
, u−
〉

− a(t;u−(t), u−(t)) − (a0(t)u−, u−
)

H =
〈
f(t), u−

〉
, (2.25)

but

〈
du−

dt
, u−
〉

=
1
2
d

dt

(
u−(t), u−(t)

)

H. (2.26)

Since

(
a(t)u−, u−

) ≥ 0,
(
a0(t)u−, u−

)

H ≥ 0,
〈
f(t), u−(t)

〉 ≥ 0, (2.27)

it comes that

d

dt

∥
∥u−(t)

∥
∥2
H ≤ 0. (2.28)

By integration over ]0, t[, we deduce

∥
∥u−(t)

∥
∥2
H ≤ ∥∥u−(0)∥∥2H, ∀t. (2.29)

But u0 ≥ 0, then u−0 = 0, so u−(0) = 0.
Hence, we conclude that u−(t) = 0 for all t.
Instead of a0(t, x) ≥ 0, assume that

∃C > 0 such that a0(t, x) ≥ −C ∀t, x. (2.30)

As previously mentioned, if we set u(t) = eλtw(t), w(t) is solution of

d

dt
(w(t), v)H + a(t;w(t), v) + ((a0(t) + λ)w,v)H =

〈
e−λtf(t), v

〉
, (2.31)

with

a0(t, x) + λ ≥ λ − C. (2.32)

It suffices to take λ ≥ C to reduce to the previous case, and w(t) ≥ 0 implies u(t) ≥ 0.
Then, we get.
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Corollary 2.10. Consider the triple (H,V, a) satisfying assumptions of Theorem 2.9.
If a0 ∈ L∞(]0, T[×Ω) and

∃C > 0 such that a0(t, x) ≥ −C for a.e. (t, x) ∈ ]0, T[ ×Ω, (2.33)

then the variational problem

d

dt
(u(t), v) + a(t;u, v) + (a0(t)u, v)H =

〈
f(t), v

〉 ∀v ∈ V,

u(0) = u0

(2.34)

admits a unique solution inW(0, T, V, V ′) for all u0 ∈ H and f ∈ L2(]0, T[, V ′).
Moreover, if u0 ≥ 0 and

〈
f(t), v

〉 ≥ 0 ∀v ∈ V, t ∈ ]0, T[a.e., (2.35)

then one has u(t) ≥ 0 for all t ∈ [0, T].

Equivalence of the Variational Solution with the Initial Problem

We have

∂QT = ({0} ×Ω) ∪ ({T} ×Ω) ∪ (]0, T[ × ∂Ω). (2.36)

For the sake of simplicity, we set aij = δij which is the Kronecker symbol.
Then, A = −Δ over D(Ω), and we have

∂u

∂t
−Δu + a0u = f in ]0, T[ ×Ω. (2.37)

We assume that f ∈ L2(]0, T[,H), then

∂u

∂t
−Δu ∈ L2(]0, T[,H) (2.38)

if u ∈ L2(]0, T[, V ). We set

v =
(
u,−grad(u))T =

(

u,− ∂u

∂x1
, − ∂u

∂x2
,− ∂u

∂x3

)T

. (2.39)

Consequently, we have v ∈ (L2(]0, T[×Ω))4 and

div(v) =
∂u

∂t
−Δu ∈ L2(]0, T[ ×Ω). (2.40)
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Then u(0, x), u(T, x), and ∂u/∂n|]0,T[×∂Ω are well defined.
It remains to show that ∂u/∂n|]0,T[×∂Ω = 0.
Let φ ∈ D(]0, T[), and we multiply (2.34)1 by φ, and by integration over ]0, T[, one

gets

∫T

0

∫

Ω
φv

∂u

∂t
dt dx +

3∑

i=1

∫T

0

∫

Ω
φ
∂u

∂xi

∂v

∂xi
dt dx +

∫T

0

∫

Ω
φa0uv dt dx

=
∫T

0

∫

Ω
fvφdt dx ∀v ∈ H1(Ω).

(2.41)

Using Green formula with (u,−grad(u))T , we have

∫T

0

∫

Ω
φv

(
∂u

∂t
−Δu + a0u

)

dx dt =
∫T

0

∫

Ω
fφvdx dt −

∫T

0

∫

∂Ω
φv

∂u

∂n
dsdt. (2.42)

As

∂u

∂t
−Δu + a0u = f, (2.43)

we can conclude the following statement:

∫T

0

∫

∂Ω
φv

∂u

∂n
dt ds = 0 ∀(φ, v) ∈ D(]0, T[) ×H1(Ω). (2.44)

We deduce that

〈

v,
∂u

∂n

〉

H1/2H−1/2
= 0 ∀v ∈ H1(Ω) and t a.e. (2.45)

Function v → v|∂Ω fromH1(Ω) intoH1/2(∂Ω) being surjective, we deduce that

∂u

∂n
= 0 in H−1/2(Γ) for t a.e. (2.46)

2.2. Semigroup Method

Consider the variational triple (H,V, a) where a is independent of t. We associate operators
A ∈ L(V, V ′) and AH inH with

D(AH) = {u ∈ V such that Au ∈ H}. (2.47)

Assume that a isH coercive, then AH is the infinitesimal generator of semigroup t �→
G(t) of class C0 overH, andG(t) operates over V and V ′. If we note G̃(t) the extension ofG(t)
by 0 for t < 0, then the Laplace transform of G̃(t) is the resolvent of AH .
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Proposition 2.11. For u0 ∈ H and f ∈ L2(]0, T[, V ′), problem (P) which consists in finding u ∈
W(0, T, V, V ′) such that

du

dt
+Au = f with u(0) = u0 (2.48)

admits a unique solution given by

u(t) = G(t)u0 +
∫ t

0
G(t − s)f(s)ds. (2.49)

Proof. Note ũ and f̃ the extensions by 0 of u and f outside ]0, T[, then we have

dũ

dt
=
du

dt
+ u(0)δ(t) − u(T)δ(T − t), (2.50)

with δ(t) the Dirac measure on R.
Thus,

dũ

dt
+Aũ =

du

dt
+ Ãu + u(0)δ(t) − u(T)δ(T − t)

= f̃ + u(0)δ(t) − u(T)δ(T − t).
(2.51)

Hence, an equation of the form

dU

dt
+AU = F in D′

+
(
V ′), (2.52)

where D′
+(V

′) is the space of distributions over R into V ′whose support is in [0,+∞[. By
Laplace transform, one is reduced to

(A + PI)L(U) = L(F), (2.53)

where

L(U) = (A + PI)−1L(F), (2.54)

and therefore, we haveU = G̃ ∗ F.
But since

supp(δ(T − t)) = T, supp
(
G̃ ∗ (U(T)δ(T − t))

)
⊂ [T,+∞[, (2.55)
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we have

U|]0,T[ = u =
(
G̃ ∗ F

)

|]0,T[
. (2.56)

Hence, we get the result.

3. System (S) Resolution

In this part, we go back to system (S) with assumptions and will analyze this problem by
using the framework described in the previous section.

We define H = L2(Ω) and V = H1(Ω) and the following hypothesis for initial
conditions:

u01 ∈ L∞(Ω), u0i ∈ H for i ∈ {2, . . . , 6}, u0i ≥ 0 for i ∈ {1, . . . , 6}. (3.1)

We will make a resolution component by applying Theorem 2.7 with, for each i, the
form

a(t;u, v) =
3∑

j=1

Di

∫

Ω

∂u

∂xj

∂v

∂xj
dx. (3.2)

One approaches the solution by a sequence of solutions of linear equations.

3.1. Recursive Sequence of Solutions

For n = 0, we note that u0i is the solution of

∂u0i
∂t

−DiΔu0i = 0 in QT,

u0i (0) = u0i in Ω,

∂u0i
∂n |∂Ω

= 0.

(3.3)

This equation admits strong solution and u0i ≥ 0.
By induction, we note that uni is solution of equation

∂uni
∂t

−DiΔuni + qi
(
un−1
)
uni = fi

(
un−1
)

in QT,

uni (0) = u0i in Ω,

∂uni
∂n |∂Ω

= 0.

(3.4)
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It is a linear equation within the framework of Corollary 2.10 with a0 = qi(un−1)
and f(t) = fi(un−1(t)). Let us suppose that there exists a unique nonnegative solution un−1.
Assuming by induction that uji ≥ 0 for 0 ≤ j ≤ n − 1, we have

0 ≤ kun−12

Ks + un−12

≤ k, (3.5)

which implies that

μ + r + ν − k ≤ q1
(
un−1
)
≤ μ + r + ν. (3.6)

un−1 is nonnegative also that implies that there are two positive constants C1, C2 such that

0 ≤ q3
(
un−1
)
≤ C1, 0 ≤ q4

(
un−1
)
≤ C2. (3.7)

For the rest, we notice that q5 and q6 are constant.
We have shown that qi(un−1) ∈ L∞(]0, T[×Ω) for i /= 2. It remains to prove that the same

property is satisfied by q2(un−1).
To prove that q2(un−1) is bounded, we need to show that un1 ∈ L∞(0, T ;L∞(Ω)).

Case of u01

Let k ∈ N
∗, we multiply (3.3)1 by (u01)

2k−1 and integrate it over Ω, and it comes that

1
2k

d

dt

∫

Ω

(
u01

)2k
dx + (2k − 1)D1

∫

Ω

(
u01

)2(k−1)∣∣
∣∇u01

∣
∣
∣
2
dx = 0. (3.8)

The second term is nonnegative, then we have

1
2k

d

dt

∫

Ω

(
u01

)2k
dx ≤ 0. (3.9)

By integrating over ]0, t[, we obtain

∥
∥
∥u01(t)

∥
∥
∥
L2k(Ω)

≤ ‖u01‖L2k(Ω). (3.10)

When k tends to +∞, it comes that,

∥
∥
∥u01(t)

∥
∥
∥
L∞(Ω)

≤ ‖u01‖L∞(Ω), (3.11)

which implies that u01 ∈ L∞(0, T ;L∞(Ω)).
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Case of un1 with n ∈ N
∗

By induction, we suppose that u01, u
1
1, . . . , u

n−1
1 are in L∞(0, T ;L∞(Ω)).

Remark 3.1. We make the following change: wn
i = e−λtuni , i = 1, . . . , 6. We obtain

∂wn
1

∂t
−D1Δwn

1 +
(
λ + q1

((
eλtwn−1

i

)

i

))
wn

1 = 0. (3.12)

The function q1 being undervalued, we can choose λ ≥ 0 such that

λ + q1
((
eλtwn−1

i

)

i

)
≥ 0. (3.13)

We multiply (3.12) by (wn
1 )

2k−1 and integrate it over Ω. We obtain

1
2k

d

dt

∫

Ω

(
wn

1

)2k
dx + (2k − 1)D1

∫

Ω

(
wn

1

)2(k−1)∣∣∇wn
1

∣
∣2dx

+
∫

Ω

(
λ + q1

((
eλtwn−1

i

)

i

))(
wn

1

)2k
dx = 0.

(3.14)

The second and third term being nonnegative, we can conclude as in the previous case that

∥
∥wn

1 (t)
∥
∥
L2k(Ω) ≤ ‖u01‖L2k(Ω). (3.15)

Since k tends to ∞, it follows that

∥
∥wn

1 (t)
∥
∥
L∞(Ω) ≤ ‖u01‖L∞(Ω). (3.16)

As a result, we have proved that wn
1 ∈ L∞(0,∞;L∞(Ω)), and since un1 = eλtwn

1 , we have
un1 ∈ L∞(0, T ;L∞(Ω)).

Conclusion 1. With the previous demonstration, we obtain by induction that if u01 ∈ L∞(Ω)
with u01 ≥ 0, then qi(un) ∈ L∞(]0, T[×Ω) for all n and i = 1, . . . , 6.

We also have fi(un−1) ≥ 0 and fi(un−1) ∈ L2(]0, T[;V ′). Then by means of
Corollary 2.10, there exists a unique solution uni ∈W(0, T, V, V ′)with uni ≥ 0.

3.2. Boundedness of the Solution

Let us show that the sequence is bounded. uni satisfies (2.34), so

∂

∂t

(
uni , v
)

H +Dia
(
uni , v
)
+
(
qi
(
un−1
)
uni , v
)

H
=
〈
fi
(
un−1
)
, v
〉

∀v ∈ V. (3.17)
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We remark that

∂

∂t

(
uni , v
)

H =
〈
∂uni
∂t

, v

〉

. (3.18)

For ψ ∈ C∞([0, T], V ),

〈
∂ψ(t)
∂t

, ψ(t)
〉

=
1
2
d

dt

(
ψ(t), ψ(t)

)

H. (3.19)

By density and choosing v = uni (t), we have

〈
∂uni (t)
∂t

, uni (t)
〉

=
1
2
d

dt

(
uni (t), u

n
i (t)
)

H. (3.20)

Hence,

1
2
d

dt

∥
∥uni
∥
∥2
H +Dia

(
uni , u

n
i

)
+
(
qi
(
un−1
)
uni , u

n
i

)

H
=
〈
fi
(
un−1
)
, uni

〉
. (3.21)

We have seen that we can obtain problem (P′) replacing u(t) by w(t) = e−λtu(t), and
since 0 ≤ t ≤ T , if w is bounded, u is also bounded.

We take then λ = β + δ, and one is reduced to

1
2
d

dt

∥
∥uni
∥
∥2
H +Dia

(
uni , u

n
i

)
+ β
∥
∥uni
∥
∥2
H +
((
δ + qi

(
un−1
))
uni , u

n
i

)

H
=
〈
fi
(
un−1
)
, uni

〉
. (3.22)

The form Dia isH coercive, so we take β such that

Dia(u, u) + β‖u‖2H ≥ α‖u‖2V ∀u ∈ V. (3.23)

The qi are bounded, so

∃δ > 0 such that δ + qi(u) ≥ l ∀i, u ≥ 0. (3.24)

Therefore,

1
2
d

dt

∥
∥uni
∥
∥2
H
+ α
∥
∥uni
∥
∥2
V
+ l
∥
∥uni
∥
∥2
H

≤ ∥∥fi
(
un−1
)∥
∥
V ′
∥
∥uni
∥
∥
V

≤ ε

2
∥
∥uni
∥
∥2
V
+

1
2ε
∥
∥fi
(
un−1
)∥
∥2
V ′ ε > 0.

(3.25)

We take ε small enough such that α − ε/2 = γ > 0. Hence,

1
2
∥
∥uni
∥
∥2
H + γ

∥
∥uni
∥
∥2
V + l
∥
∥uni
∥
∥2
H ≤ 1

2ε

∥
∥
∥fi
(
un−1
)∥
∥
∥
2

V ′
. (3.26)
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For i = 1 and i = 4, fi = 0. Therefore, by integration,

1
2
∥
∥uni (t)

∥
∥2
H + γ

∫ t

0

∥
∥uni (s)

∥
∥2
V ds + l

∫ t

0

∥
∥uni (s)

∥
∥2
H ≤ 1

2
∥
∥uni (0)

∥
∥2
H. (3.27)

We deduce that (un1) and (un4) remain bounded in C0([0, T],H) and L2(]0, T[, V ).
f5(u) = νu1, thus, f5(un−1) = νun−11 remains bounded in L2(]0, T[, V ); therefore, un5 has

the same property as un1 , u
n
4 . It is the same for un6 because f6(u) = ru1.

We have f3(u) = (ζu5 + μu1)/2; therefore, we have the same conclusion for un3 and
finally for un2 because f2(u) depends on u1, u2, u4, and u5.

3.3. Convergence of the Sequence

We deduce at this stage that the sequence (uni )n≥0 (one can extract subsequence (umi )m≥0)
converges weakly in L2(]0, T[, V ) to ui and weakly star in L∞(]0, T[,H) to ui.

But it is not enough to pass to the limit in the equation, we need the pouctual
convergence for almost all t to deduce that ui ≥ 0 for all i and to pass to the limit in qi(un−1)
and fi(un−1). To pass to the limit, we need strong compactness. Using Proposition 2.11, for all
n, we have

uni (t) =
∫ t

0
Gi(t − s)gn

i (s)ds +Gi(t)u0i, (3.28)

where Gi(t) is the semigroup generated by the unbounded operator −DiAH . Let us denote

gni (s) = −qi
(
un−1(s)

)
uni (s) + fi

(
un−1(s)

)
, (3.29)

and we deduce gni ∈ L2(]0, T[, V ).
Moreover, the sequence (uni )n≥0 is bounded in C0([0, T],H) which implies that the

sequence (gni )n≥0 is bounded in C0([0, T],H) for all i.
Then, we can conclude showing that operator Gi from C0([0, T],H) into C0([0, T],H)

defined by

Gi

(
f
)
(t) =

∫ t

0
Gi(t − s)f(s)ds (3.30)

is compact.
One takes the triple (L2(Ω),H1(Ω), a)with

a(u, v) =
n∑

j=1

∫

Ω

∂u

∂xj

∂v

∂xj
dx, (3.31)

where Ω is regular and bounded. The unbounded variational operator AH associated to a is
a positive symmetric operator with compact resolvent. It admits a sequence (λk)k of positive
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eigenvalues with limk→+∞λk = +∞ and a Hilbert basis (ek)k of H consisting of eigenvectors
of AH . If (G(t))t>0 is the semigroup generated by −AH , then for all u0 ∈ H,

G(t)u0 =
+∞∑

k=0

e−tλk(u0, ek)ek, (3.32)

which proves that the operator is compact for all t > 0 because

lim
k→+∞

e−tλk = 0. (3.33)

We have the same formula for Gi(t), and it suffices to replace λk by Diλk.
If we set

GN(t)u =
N∑

k=0

e−tλk(u, ek)ek, (3.34)

then GN(t) is an operator with finite rank which converges to G(t).

Theorem 3.2. Let t → G(t) be an application from [0,∞[ intoL(H). One assumes that there exists
a sequence of operators (GN(t))N≥0 ofH with the following properties:

(1) for allN and all t > 0, GN(t) is finite rank independent of t,

(2) t → GN(t) is continuous from [0,∞[ into L(H) for allN,

(3) forN → ∞, GN(t) converges to G(t) in L1(]0, T[,L(H)) for all T > 0,

then the operator G is compact from C0([0, T],H) into C0([0, T],H) for all T > 0.

Proof. Regarding property (3) of Theorem 3.2, G is well defined on C0([0, T],H), and we have

∥
∥
∥
∥
∥

∫ t

0
G(s)f(t − s)ds −

∫ t

0
GN(s)f(t − s)ds

∥
∥
∥
∥
∥
≤
(∫T

0
‖G(s) −GN(s)‖ds

)
∥
∥f
∥
∥
∞. (3.35)

This proves that GN converges to G in L([0, T],H) using property (3) of Theorem 3.2.
To show that G is compact, it suffices to show that for allN, GN is compact.
Let B be a bounded set of C0([0, T],H), GN(B) is bounded in C0([0, T],H), using

Ascoli result, it will be relatively compact if GN(B) is equicontinuous and if for all t0 in [0, T],
GN(B)(t0) is relatively compact inH.

But GN(B)(t0) being bounded and embedded in a subspace of finite dimension of H
is relatively compact inH. Then, let us show the equicontinuity on t0.

LetM and CN such that

∥
∥f
∥
∥
∞ ≤M, ∀f ∈ B, ‖GN(t)‖ ≤ CN ∀t ∈ [0, T]. (3.36)
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For 0 ≤ t0 ≤ t ≤ T , one has

GN

(
f
)
(t) − GN

(
f
)
(t0) =

∫ t0

0
(GN(t − s) −GN(t0 − s))f(s)ds +

∫ t

t0

GN(t − s)f(s)ds. (3.37)

We have

∥
∥
∥
∥
∥

∫ t

t0

GN(t − s)f(s)ds
∥
∥
∥
∥
∥
≤MCN |t − t0|,

∥
∥
∥
∥
∥

∫ t0

0
(GN(t − s) −GN(t0 − s))f(s)ds

∥
∥
∥
∥
∥
≤M

∫ t0

0
‖GN(t − s) −GN(t0 − s)‖ds,

(3.38)

which tend to 0 when t → t0 using property (2) of Theorem 3.2 and the continuity under the
integral.

We apply Theorem 3.2 to the semigroup generated by the Laplacien, and we obtain

(1) GN(t) is of rankN + 1 for all t ≥ 0,

(2) ‖GN(t) −GN(t0)‖2 ≤
∑N

k=0 |e−tλk − e−t0λk |2 which tends to 0 if t → t0,

(3) ‖G(t)u − GN(t)u‖2 ≤ ∑∞
k=N+1 e

−2tλk |uk|2 ≤ e−2tλN+1‖u‖2 if we take an increasing
sequence (λk), then one gets

‖G(t) −GN(t)‖ ≤ e−tλN+1 . (3.39)

Thus, we have

∫T

0
‖G(t) −GN(t)‖dt ≤ 1

λN+1
, (3.40)

which tends to 0 ifN → ∞.

Thus, Gi is compact for all i. We have

uni (t) = Gi(t)u0i + Gi

(
gni
)
(t), (3.41)

where (gni )n≥0 is bounded in C0([0, T],H), then (uni )n≥0 belongs to a relatively compact set of
C0([0, T],H).

Therefore, from the sequence (uni )n≥0, we can extract a subsequence (umi )m≥0 which
converges uniformly to ui ∈ C0([0, T],H) for each i.

Moreover, we can assume that umi converges weakly to ui in L2(]0, T[, V ).
But Ai ∈ L(V, V ′) and (uni ) bounded in L2(]0, T[, V ) imply

∫T

0

∥
∥Aiu

n
i

∥
∥2
V ′dt ≤ ‖Ai‖2

∫T

0

∥
∥uni
∥
∥2
V dt. (3.42)
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Thus, the sequence (Aiu
n
i )n≥0 is bounded in L2(]0, T[, V ′). We can assume that Aiu

m
i

converges weakly to Aiui in L2(]0, T[, V ′).
Remark that for all T <∞, we have

C0([0, T],H) ↪→ L2(]0, T[, V ′). (3.43)

Conclusion 2. One has

umi −→ ui in C0([0, T],H). (3.44)

Thus, ui ≥ 0 and ui(0) = u0i.
We check that

qi
(
um−1
)
−→ qi(u),

qi
(
um−1
)
umi −→ qi(u)ui in C0([0, T],H) ∀i.

(3.45)

We have also

fi
(
um−1
)
−→ fi(u) in C0([0, T],H) ∩ L2(]0, T[, V ′) ∀i. (3.46)

For all i, umi is solution of

〈
∂umi
∂t

, v

〉

+
〈
Aiu

m
i , v
〉
+
(
qi
(
um−1
)
umi , v

)
=
〈
fi
(
um−1
)
, v
〉

∀v ∈ V. (3.47)

We take φ ∈ D(]0, T[), and therefore φv ∈ L2(]0, T[, V ),

∫T

0

〈
∂umi
∂t

, φv

〉

dt +
∫T

0

〈
Aiu

m
i , φv

〉
dt +
∫T

0

(
qi
(
um−1
)
umi , φv

)
dt

=
∫T

0

〈
fi
(
um−1
)
, φv
〉
dt.

(3.48)

The second term in the left side and the right side of the egality converges due to the
weak convergence in L2(]0, T[, V ′). The third term in the left-hand side also passes to the
limit, due to the convergence in C0([0, T],H).

We deduce that ∂umi /∂t converges weakly in L2(]0, T[, V ′).
But we have

umi −→ ui in C0([0, T],H), (3.49)
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then

∂umi
∂t

−→ ∂ui
∂t

in D′(]0, T[,H). (3.50)

Therefore, we obtain

∂umi
∂t

−→ ∂ui
∂t

weakly in L2(]0, T[, V ′),

∫T

0

〈
∂ui
∂t

, φv

〉

dt +
∫T

0

〈
Aiui, φv

〉
dt +
∫T

0

(
qi(u)ui, φv

)

Hdt =
∫T

0

〈
fi(u), φv

〉
dt.

(3.51)

This formulation being true for all φ, we have

〈
∂ui
∂t

, v

〉

+ 〈Aiui, v〉 +
(
qi(u)ui, v

)

H =
〈
fi(u), v

〉 ∀v ∈ V, (3.52)

that is to say,

d

dt
(ui, v)H + a(ui, v) +

(
qi(u)ui, v

)

H =
〈
fi(u), v

〉 ∀v ∈ V, i,

∂ui
∂t

= fi(u) −Aiui − qi(u)ui ∈ L2(]0, T[, V ′) ∀i.
(3.53)

For all i, one has

umi (t) = Gi(t)u0i +
∫ t

0
Gi(t − s)

(
−qi
(
um−1
)
umi + fi

(
um−1
i

))
(s)ds, (3.54)

and as qi(um−1)umi and fi(um−1) converge in C0([0, T],H), we have

ui(t) = Gi(t)u0i +
∫ t

0
Gi(t − s)

(−qi(u)ui + fi(u)
)
(s)ds. (R)

3.4. Main Result

Theorem 3.3. If the initial condition satisfies (3.1), then system (S) admits a unique nonnegative
solution ui ∈W(0, T, V, V ′) for all i.

Moreover, for all i, ui satisfies relation (3.62).

Proof. We have already shown existence of solution; thus, it remains to show uniqueness.
Let v be another solution of system (S)

vi ∈W
(
0, T, V, V ′) =⇒ vi ∈ C0([0, T],H), vi ≥ 0. (3.55)
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Consequently, we obtain

qi(v)vi + fi(v) ∈ L2(]0, T[, V ′). (3.56)

Thus, by Proposition 2.11, we have

vi(t) = Gi(t)u0i +
∫ t

0
Gi(t − s)

(−qi(v)vi + fi(v)
)
(s)ds. (3.57)

By subtraction, we have

ui(t) − vi(t) =
∫ t

0
Gi(t − s)

(−qi(u)ui + qi(v)vi + fi(u) − fi(v)
)
(s)ds, (3.58)

with

qi(u)ui − qi(v)vi = qi(u)(ui − vi) +
(
qi(u) − qi(v)

)
vi. (3.59)

ui being positive, we have

∥
∥
∥
∥

uj

K + ui

∥
∥
∥
∥ ≤

1
K

∥
∥uj
∥
∥
∞, (3.60)

where we have defined

∥
∥uj
∥
∥
∞ =
∥
∥uj
∥
∥
L∞(]0,T[,H). (3.61)

If we define

‖u‖∞ =
6∑

j=1

∥
∥uj
∥
∥
∞, (3.62)

there isM1 > 0 such that

∥
∥qi(u)

∥
∥
∞ ≤M1‖u‖∞ ∀u. (3.63)

So the numerator of qi(u) − qi(v) is the sum of terms of form (uk − vk)vj or (uj − vj)uk,
and we can findM2 > 0 such that

∣
∣qi(u) − qi(v)

∣
∣
H(s) ≤M2

⎛

⎝
6∑

j=1

∣
∣uj(s) − vj(s)

∣
∣
H

⎞

⎠. (3.64)



International Journal of Differential Equations 23

Also we can findM3 > 0 such that

∣
∣fi(u) − fi(v)

∣
∣
H(s) ≤M3

⎛

⎝
6∑

j=1

∣
∣uj(s) − vj(s)

∣
∣
H

⎞

⎠. (3.65)

Summing and noting that ‖Gi(t − s)‖ ≤ Nie
ΩiT with Ni, Ωi > 0, we can find M such

that

6∑

i=1

|ui(t) − vi(t)|H ≤M‖u − v‖∞. (3.66)

Replacing in (3.58), we obtain

6∑

i=1

|ui(t) − vi(t)|H ≤M2‖u − v‖∞
∫ t

0
sds =M2 t

2

2
‖u − v‖∞. (3.67)

By induction, we have

6∑

j=1

∣
∣uj(t) − vj(t)

∣
∣
H

≤ Mn

n!
Tn‖u − v‖∞,

lim
n→+∞

Mn

n!
Tn‖u − v‖∞ = 0.

(3.68)
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