
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2011, Article ID 871693, 9 pages
doi:10.1155/2011/871693

Research Article
Existence of Positive Periodic Solutions for a Class
of n-Species Competition Systems with Impulses

Peilian Guo and Yansheng Liu

Department of Mathematics, Shandong Normal University, Jinan 250014, China

Correspondence should be addressed to Yansheng Liu, yanshliu@gmail.com

Received 20 May 2011; Accepted 11 July 2011

Academic Editor: Khalil Ezzinbi

Copyright q 2011 P. Guo and Y. Liu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

By using the fixed point theorem on cone, some sufficient conditions are obtained on the
existence of positive periodic solutions for a class of n-species competition systems with impulses.
Meanwhile, we point out that the conclusion of (Yan, 2009) is incorrect.

1. Introduction

In recent years, the problem of periodic solutions of the ecological species competition
systems has always been one of the active areas of research and has attracted much attention.
For instance, the traditional Lotka-Volterra competition system is a rudimentary model on
mathematical ecology which can be expressed as follows:

ẋi(t) = xi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)xj

⎤
⎦, i = 1, 2, . . . , n. (1.1)

Owing to its theoretical and practical significance, the systems have been studied extensively
by many researchers. And many excellent results which concerned with persistence,
extinction, global attractivity of periodic solutions, or almost periodic solutions have been
obtained.

However, the Lotka-Volterra competition systems ignoremany important factors, such
as the age structure of a population or the effect of toxic substances. So, more complicated
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competition systems are needed. In 1973, Ayala and Gilpin proposed several competition
systems. One of the systems is the following competition system:

Ṅi(t) = riNi

⎡
⎣1 −

(
Ni

Ki

)θi

−
n∑

j=1,j /= i

αij

Nj

Kj

⎤
⎦, i = 1, 2, . . . , n, (1.2)

where Ni is the population density of the ith species; ri is the intrinsic exponential growth
rate of the ith species; Ki is the environmental carrying capacity of species i in the absence
of competition; θij provides a nonlinear measure of interspecific interference, αij provides a
nonlinear measure of interspecific interference.

On the other hand, in the study of species competition systems, the effect of some
impulsive factors has been neglected, which exists widely in the real world. For example,
the harvesting or stocking occur at fixed time, natural disaster such as fire or flood happen
unexpectedly, and some species usually migrate seasonally. Consequently, such processes
experience short-time rapid change which can be described by impulses. Therefore, it is
important to study the existence of the periodic solutions of competitive systems with
impulse perturbation (see [1–7] and the references therein).

For example, by using the method of coincidence degree, Wang [1] considered
the existence of periodic solutions for the following n-species Gilpin-Ayala impulsive
competition system:

ẋi(t) = xi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)x
αij

j (t) −
n∑
j=1

bij(t)x
αij

j

(
t − τij(t)

) −
n∑
j=1

cij(t)x
αii

i (t)x
αij

j (t)

⎤
⎦, t /= tk;

Δxi(tk) = xi

(
t+k
) − xi

(
t−k
)
= pikxi(tk), k = 1, 2, 3, . . . ,

(1.3)

where the constant pik satisfied −1 < pik < 0, i = 1, 2, . . . , n. What is more, [1] also obtained
several results for the persistence and global attractivity of the periodic solution of the model.

In [2], Yan applied the Krasnoselskii fixed point theorem to investigate the following
n-species competition system:

ẏi(t) = yi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)y
αij

j (t) −
n∑
j=1

bij(t)y
βij
j

(
t − τij(t)

)

−
n∑
j=1

cij(t)
∫0

−σij

Kij(ξ)y
γij
i (t + ξ)y

δij
j (t + ξ)dξ

⎤
⎦, i = 1, 2, . . . , n,

(1.4)

where the constants αij , βij , γij ≥ 1, i, j = 1, 2, . . . , n. He obtained a necessary and sufficient
condition for the existence of periodic solutions of system (1.4). Unfortunately, its last
conclusion is wrong. Please see the remark in Section 3 of this paper.
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Motivated by [1, 2], in this paper, we investigate the following impulsive n-species
competition system:

ẏi(t) = yi(t)

⎡
⎣ri(t) −

n∑
j=1

aij(t)y
αij

j (t) −
n∑
j=1

bij(t)y
βij
j

(
t − τij(t)

)

−
n∑
j=1

cij(t)
∫0

−σij

Kij(ξ)y
γij
i (t + ξ)y

δij
j (t + ξ)dξ

⎤
⎦, t /= tk, i = 1, 2, . . . , n,

Δyi(tk) = yi

(
t+k
) − yi

(
t−k
)
= Iik

(
y1(tk), y2(tk), . . . , yn(tk)

)
, k = 1, 2, . . . , m,

(1.5)

where yi(t) is the population density of the ith species at time t; ri(t) is the intrinsic
exponential growth rate of the ith species at time t; τij(t) is the time delay; σij is a positive
constant; aij(t), bij(t), cij(t) (i /= j) measure the amount of competition between the species
Yi and Yj ; αij , βij , δij (i /= j) provide a nonlinear measure of interspecific interference; yi(t+k)
(yi(t−k)) is the left (right) limits of yi(t) at t = tk, i, j = 1, 2, . . . , n, k = 1, 2, . . . , m.

The main features of the present paper are as follows. The Gilpin-Ayala species
competition system (1.5) has impulsive effects. As is known to us, there were few papers
to study such system. Finally, we point out that the conclusion of [2] is incorrect.

For an ω-periodic function u(t) ∈ C(R,R), let u = 1/ω
∫ω
0 u(t)dt. Throughout this

paper, assume the following conditions hold.

(H1) ri, aij , bij , cij , τij are continuous ω-periodic functions, and ri > 0, aij(t),
bij(t), cij(t) ≥ 0, i, j = 1, 2, . . . , n, and there exists i0 (1 ≤ i0 ≤ n) such that
min1≤j≤n(ai0j + bi0j) > 0.

(H2) Kij ∈ C([−σij , 0],R), Kij ≥ 0, σij is a positive constant, and
∫0
−σij

Kij(t)dt = 1, i, j =
1, 2, . . . , n.

(H3) Iik ∈ C(Rn, [0,+∞)), and for 0 < t1 < t2 < · · · < tm < ω, there exists an positive
integer l > 0 such that tk+lm = tk + lω, Iik(y1, y2, . . . , yn) = Ii(k+lm)(y1, y2, . . . , yn),
where (y1, y2, . . . , yn) ∈ R

n, i = 1, 2, . . . , n, k = 1, 2, . . . , m.

(H4) αij , βij , δij > 0, γij ≥ 0 are constants, i, j = 1, 2, . . . , n.

In order to prove our main result, now we state the fixed point theorem of cone
expansion and compression.

Lemma 1.1 (see [4]). Let E be a Banach space, and let P be a cone in E. Assume that Ω1, Ω2 are
open subsets of E with 0 ∈ Ω1, Ω1 ⊆ Ω2. Let A : P ∩ (Ω2 \ Ω1) → P be a completely continuous
operator such that one of the following two conditions is satisfied:

(i) Ax��� for x ∈ P ∩ ∂Ω1; Ax��� for x ∈ P ∩ ∂Ω2,

(ii) Ax��� for x ∈ P ∩ ∂Ω2; Ax��� for x ∈ P ∩ ∂Ω1,

Then, A has a fixed point in P ∩ (Ω2 \Ω1).

The organization of this paper is as follows. In the next section, we introduce some
lemmas and notations. In Section 3, the main result will be stated and proved on the existence
of periodic solutions of system (1.5).
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2. Preliminaries

Let PC(R,Rn) = {y(t) = (y1(t), y2(t), · · ·yn(t)) : R → R
n | yi(t) be continuous at t /= tk,

left continuous at t = tk, and the right limit yi(t+k) exists for i = 1, 2, . . . , n, k = 1, 2, . . . , m}.
Evidently,

E =
{
y(t) =

(
y1(t), y2(t), . . . yn(t)

) ∈ PC(R,Rn) | yi(t) = yi(t +ω), i = 1, 2, . . . , n
}

(2.1)

is a Banach space with the norm ‖y‖ =
∑n

i=1 |yi|0, where |yi|0 = maxt∈[0,ω]|yi(t)|.
Define an operator T : E → E by (Ty)(t) = ((Ty)1(t), (Ty)1(t), . . . , (Ty)n(t)), where

(
Ty
)
i(t) =

∫ t+ω

t

Gi(t, s)yi(s)

⎡
⎣

n∑
j=1

aij(s)y
αij

j (s) +
n∑
j=1

bij(s)y
βij
j

(
s − τij(s)

)

+
n∑
j=1

cij(s)
∫0

−σij

Kij(ξ)y
γij
i (s + ξ)y

δij
j (s + ξ)dξ

⎤
⎦ds

+
m∑
k=1

Gi

(
t, tk+qkm

)
Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)
,

(2.2)

where Gi(t, s) = exp(− ∫st ri(ν)dν)/(1 − exp(−ωri)), t ≤ s ≤ t + ω, i = 1, 2, . . . , n, and tk+qkm =
tk + qkω ∈ [t, t +ω], where qk is a positive integer, k = 1, 2, . . . , m.

It is obvious that the functions Gi(t, s), i = 1, 2, . . . , n have the following properties.

(i) Gi(t, s) > 0 for (t, s) ∈ R
2, and Gi(t, s) = Gi(t +ω, s +ω).

(ii) A ≤ Gi(t, s) ≤ B for (t, s) ∈ R
2, where A = min1≤i≤n{exp(−ωri)/(1 − exp(−ωri))},

B = min1≤i≤n{exp(ωri)/(1 − exp(−ωri))}.
Now, we choose a set defined by

P =
{
y(t) =

(
y1(t), y2(t), . . . yn(t)

) ∈ E | yi(t) ≥ σ
∣∣yi

∣∣
0, t ∈ [0, ω], i = 1, 2, . . . , n

}
, (2.3)

where σ = A/B. Clearly, P is a cone in E.
For the sake of convenience, we define an operator F : P → E by (Fy)(t) =

((Fy)1(t), (Fy)2(t), . . . , (Fy)n(t)), where

(
Fy
)
i(t) = yi(t)

⎡
⎣

n∑
j=1

aij(t)y
αij

j (t) +
n∑
j=1

bij(t)y
βij
j

(
t − τij(t)

)

+
n∑
j=1

cij(t)
∫0

−σij

Kij(ξ)y
γij
i (t + ξ)y

δij
j (t + ξ)dξ

⎤
⎦, i = 1, 2, . . . , n.

(2.4)

Lemma 2.1. The operator T : P → P is completely continuous.
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Proof. First, it is easy to see T : PC(R,Rn) → PC(R,Rn). Next, since

(
Ty
)
i(t +ω)

=
∫ t+2ω

t+ω
Gi(t +ω, s)

(
Fy
)
i(s)ds +

m∑
k=1

Gi

(
t +ω, tk+qkm +ω

)
Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)

=
∫ t+ω

t

Gi(t +ω, υ +ω)
(
Fy
)
i(υ +ω)dυ +

m∑
k=1

Gi

(
t, tk+qkm

)
Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)

=
∫ t+ω

t

Gi(t, υ)
(
Fy
)
i(υ)dυ +

m∑
k=1

Gi

(
t, tk+qkm

)
Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)

=
(
Ty
)
i(t),

(2.5)

we have Ty ∈ E.
Observe thatA ≤ Gi(t, s) ≤ B, i = 1, 2, . . . , n, for all s ∈ [t, t+ω]. Hence, we obtain that,

for y ∈ P ,

∣∣(Ty)i
∣∣
0 ≤ B

∫ω

0

(
Fy
)
i(s)ds + B

m∑
k=1

Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)
,

(
Ty
)
i(t) ≥ A

∫ω

0

(
Fy
)
i(s)ds +A

m∑
k=1

Iik
(
y1(tk), y2(tk), . . . , yn(tk)

) ≥ A

B

∣∣(Ty)i
∣∣
0 = σ

∣∣(Ty)i
∣∣
0.

(2.6)

Thus, Ty ∈ P , that is, T(P) ⊂ P .
Obviously, the operator T is continuous. Next, we show that T is compact. Let S ⊂ E

be a bounded subset; that is, there exists d > 0 such that |yi|0 ≤ d, i = 1, 2, . . . , n for all y ∈ S.
From the continuity of F, Ik, k = 1, 2, . . . , m, we have, for all y ∈ S,

∣∣(Ty)i
∣∣
0 ≤ B

∫ω

0

(
Fy
)
i(s)ds + B

m∑
k=1

Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)

≤ Bωd
n∑
j=1

(
aijd

αij + bijd
βij + cijd

γij+δij
)
+ BmEi =: Di,

(2.7)

where Ei = maxy∈S|Iik(y1(tk), y2(tk), . . . , yn(tk)|, i = 1, 2, . . . , n.
Therefore, ‖Ty‖ =

∑n
i=1 |(Ty)i|0 ≤ ∑n

i=1 Di =: D, which implies that T(S) is uniformly
bounded.
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On the other hand, noticing that

d

dt

(
Ty
)
i(t) = ri(t)

(
Ty
)
i(t) +Gi(t, t +ω)

(
Fy
)
i(t +ω) −Gi(t, t)

(
Fy
)
i(t)

= ri(t)
(
Ty
)
i(t) + [Gi(t, t +ω) −Gi(t, t)]

(
Fy
)
i(t)

= ri(t)
(
Ty
)
i(t) +

(
Fy
)
i(t), t /= tk, k = 1, 2, . . . , m.

(2.8)

This guarantees that, for each y ∈ S, we have

∣∣∣∣
d

dt

(
Ty
)
i(t)
∣∣∣∣ ≤ rMi Di + d

n∑
j=1

(
aM
ij d

αij + bMij d
βij + cMij d

γij+δij
)
=: D̃i ≤ D̃ =

n∑
i=1

D̃i, (2.9)

where rMi = maxt∈[0,ω]ri(t), aM
ij = maxt∈[0,ω]aij(t), bMij = maxt∈[0,ω]bij(t), cMij = maxt∈[0,ω]cij(t),

i = 1, 2, . . . , n.
Consequently, T(S) is equicontinuous on Jk, k = 0, 1, 2, . . . , m, where J0 = [0, t1), J1 =

[t1, t2), . . . , Jm−1 = [tm−1, tm), Jm = [tm,ω). By the Ascoli-Arzela theorem, the function T : P →
P is completely continuous from P to P .

Lemma 2.2. The system (1.5) has a positiveω-periodic solution in P if and only if T has a fixed point
in P .

Proof. For y ∈ P satisfying Ty = y, that is, (Ty)i(t) = yi(t), t ∈ [0, ω], i = 1, 2, . . . , n, it follows
from (2.2) and (2.4) that

ẏi(t) =
d

dt

(
Ty
)
i(t)

= ri(t)
(
Ty
)
i(t) +Gi(t, t +ω)

(
Fy
)
i(t +ω) −G(t, t)

(
Fy
)
i(t)

= ri(t)
(
Ty
)
i(t) + [G(t, t +ω) −G(t, t)]

(
Fy
)
i(t)

= ri(t)
(
Ty
)
i(t) +

(
Fy
)
i(t), t /= tk, k = 1, 2, . . . , m.

(2.10)

And for t = tk, k = 1, 2, . . . , m,

Δyi(tk) = yi

(
t+k
) − yi

(
t−k
)
= Iik

(
y1(tk), y2(tk), . . . , yn(tk)

)
, i = 1, 2, . . . , n, (2.11)

which implies that y(t) is a positive ω-periodic solution of (1.5).
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Conversely, assume that y ∈ P is an ω-periodic solution of system (1.5). Then, the
system (1.5) can be transformed into

(
ẏi(t) + r(t)yi(t)

)
e
∫ t
0 r(ν)dν =

(
Fy
)
i(t)e

∫ t
0 r(ν)dν, (2.12)

that is,

(
yi(t)e

∫ t
0 r(ν)dν

)′
=
(
Fy
)
i(t)e

∫ t
0 r(ν)dν. (2.13)

So, integrating the above equality from t to t+ω and noticing that yi(t) = yi(t+ω), we
have

(
Ty
)
i(t) =

∫ t+ω

t

Gi(t, s)yi(s)

⎡
⎣

n∑
j=1

aij(s)y
αij

j (s) +
n∑
j=1

bij(s)y
βij
j

(
s − τij(s)

)

+
n∑
j=1

cij(s)
∫0

−σij

Kij(ξ)y
γij
i (s + ξ)y

δij
j (s + ξ)dξ

⎤
⎦ds

+
m∑
k=1

Gi

(
t, tk+qkm

)
Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)
,

(2.14)

where Gi(t, s) = exp(− ∫st ri(ν)dν)/(1 − exp(−ωri)), t ≤ s ≤ t +ω, i = 1, 2, . . . , n, and tk+qkm =
tk + qkω ∈ [t, t +ω], where qk is a positive integer, k = 1, 2, . . . , m, that is, Ty = y.

Therefore, y ∈ P is a fixed point of the operator T . The proof of the Lemma is complete.

3. Main Results

Theorem 3.1. Suppose (H1)–(H4) hold, and lim|v|→ 0Iik(v)/|v| = 0, k = 1, 2, . . . , m, i =
1, 2, . . . , n, where v = (v1, v2, . . . , vn), |v| = min1≤i≤n|vi|. Then system (1.5) has at least one positive
ω-periodic solution.

Proof. LetM0 = max1≤i≤n{
∑n

j=1(aij+bij+cij)} > 0. ChooseM1 ≥ M0 and ε = 1/(BωM1+Bm) >
0. Then, there exists δ > 0 such that, for 0 < x < δ and 0 < |v| < δ, we have

xαij < ε, xβij < ε, xγij+δij < ε,

Iik(v) < ε|v|, k = 1, 2, . . . , m, i, j = 1, 2, . . . , n.
(3.1)

Choose r < δ. Let Ω1 = {y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ E | |yi|0 < r, i = 1, 2, . . . , n}.
Now, we prove that

Ty���y, ∀y ∈ P ∩ ∂Ω1. (3.2)
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Suppose (3.2) does not hold. Then, there exists some y ∈ P ∩ ∂Ω1 such that Ty ≥ y.
Since y ∈ P ∩ ∂Ω1, we have σ|yi|0 ≤ yi(t) ≤ |yi|0 for t ∈ [0, ω], i = 1, 2, . . . , n. From (2.2) and
(2.4), it follows that

(
Tyi

)
(t) ≤ B

∫ t+ω

t

(
Fy
)
i(s)ds + B

m∑
k=1

Iik
(
y1(tk), y2(tk), . . . , yn(tk)

)

≤ Bω
∣∣yi

∣∣
0

(
n∑
i=1

aijr
αij + bijr

βij + cijr
γij+δij

)
+ Bmε

∣∣yi

∣∣
0

≤ (BM0ωε + Bmε)
∣∣yi

∣∣
0 <
∣∣yi

∣∣
0,

(3.3)

which implies |(Ty)i|0 < |yi|0, a contradiction. Hence, Ty���y for y ∈ P ∩ ∂Ω1.
On the other hand, let m0 = min1≤j≤n{ai0jσ

αij + bi0jσ
βij}, on the account of (H1), we

know m0 > 0. Choose 0 < m1 ≤ m0 and M = 1/Aσωm1 > 0. Then, there exists R1 > 0 such
that, for x > R1, we know that

xαij > M, xβij > M, i, j = 1, 2, . . . , n. (3.4)

Choose R > max{R1, r}. Let Ω2 = {y(t) = (y1(t), y2(t), . . . yn(t)) ∈ E | |yi|0 < R, i =
1, 2, . . . , n}. Then, ∂Ω2 = {y(t) = (y1(t), y2(t), . . . yn(t)) ∈ E | there exist some integers j0(1 ≤
j0 ≤ n) such that |yj0 |0 = R;|yi|0 ≤ R for i /= j0}.

Next we show that

Ty���y, ∀y ∈ P ∩ ∂Ω2. (3.5)

In fact, if there exists some y ∈ P ∩∂Ω2 such that Ty ≤ y and since y ∈ P ∩∂Ω2, we have
σ|yi|0 ≤ yi(t) ≤ |yi|0, i = 1, 2, . . . , n for t ∈ [0, ω], and there exists some j0 such that |yj0 |0 = R.
Therefore, this together with (H1) guarantees that, for i0 (1 ≤ i0 ≤ n),

yi0(t) ≥
(
Ty
)
i0
(t) ≥ A

∫ t+ω

t

(
Fy
)
i0
(s)ds

≥ Aσ
∣∣yi0

∣∣
0

∫ t+ω

t

(
ai0j0(s)y

αi0j0
j0

(s) + bi0j0(s)y
βi0j0
j0

(s − τ(s))
)
ds

≥ Aσ
∣∣yi0

∣∣
0

∫ t+ω

t

(
ai0j0(s)σ

αi0j0
∣∣yj0

∣∣αi0j0
0 + bi0j0(s)σ

βi0j0
∣∣yj0

∣∣βi0j0
0

)
ds

≥ Aσ
∣∣yi0

∣∣
0ωM

(
ai0j0σ

αi0j0 + bi0j0σ
βi0j0

)

≥ AσωMm0
∣∣yi0

∣∣
0 >
∣∣yi0

∣∣
0,

(3.6)

which is a contradiction. Thus, (3.5) is satisfied.
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From all the above, the condition (i) of Lemma 1.1 is satisfied. So the operator T has a
fixed point in P∩(Ω2\Ω1). That is, system (1.5) has at least one positive periodic solution.

Remark 3.2. For any R > 0, if we let Ω = {y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ E | |yi|0 < R, i =
1, 2, . . . , n}, then ∂Ω = {y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ E | ∃ j0(1 ≤ j0 ≤ n), |yj0 |0 = R, |yi|0 ≤
R, i /= j0}. However, in the proof of Theorem 1.1 of [2], it is regarded mistakenly as ∂Ω =
{y(t) = (y1(t), y2(t), . . . , yn(t)) ∈ E | |yi|0 = R, i = 1, 2, . . . , n}. Therefore, the proof of its
sufficiency is not correct. So the result of [2] is incorrect.
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