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We study the existence of periodic solutions for n-th order functional differential equations
x(n)(t) =

∑n−1
i=0 bi[x(i)(t)]

k
+ f(x(t − τ(t))) + p(t). Some new results on the existence of periodic

solutions of the equations are obtained. Our approach is based on the coincidence degree theory
of Mawhin.

1. Introduction

In this paper, we are concerned with the existence of periodic solutions of the following n-th
order functional differential equations:

x(n)(t) =
n−1∑

i=0

bi
[
x(i)(t)

]k
+ f(x(t − τ(t))) + p(t), (1.1)

where bi, i = 0, 1, . . . , n − 1 are constants, k is a positive odd, f ∈ C1(R,R) for ∀x ∈ R, p ∈
C(R,R) with p(t + T) = p(t).

In recent years, there are many papers studying the existence of periodic solutions of
first-, second- or third-order differential equations [1–12]. For example, in [5], Zhang and
Wang studied the following differential equations:

x′′′(t) + ax′′2k−1(t) + bx
′2k−1(t) + cx2k−1(t) + g

(
t, x(t − τ1), x′(t − τ2)

)
= p(t). (1.2)
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The authors established the existence of periodic solutions of (1.2) under some conditions on
a, b, c, and 2k − 1.

In [13–24], periodic solutions for n, 2n, and 2n + 1 th order differential equations were
discussed. For example, in [22, 24], Pan et al. studied the existence of periodic solutions of
higher order differential equations of the form

x(n)(t) =
n−1∑

i=1

bix
(i)(t) + f(t, x(t), x(t − τ1(t)), . . . , x(t − τm(t))) + p(t). (1.3)

The authors obtained the results based on the damping terms x(i)(t) and the delay τi(t).
In present paper, by using Mawhin’s continuation theorem, we will establish some

theorems on the existence of periodic solutions of (1.1). The results are related to not only bi
and f(t, x) but also the positive odd k. In addition, we give an example to illustrate our new
results.

2. Some Lemmas

We investigate the theorems based on the following lemmas.

Lemma 2.1 (see [17]). Let n1 > 1, α ∈ [0,+∞) be constants, s ∈ C(R,R) with s(t+T) = s(t), and
s(t) ∈ [−α, α], for all t ∈ [0, T]. Then for ∀x ∈ C1(R,R) with x(t + T) = x(t), one has

∫T

0
|x(t) − x(t − s(t))|n1dt ≤ 2αn1

∫T

0

∣
∣x′(t)

∣
∣n1dt. (2.1)

Lemma 2.2. Let k ≥ 1, α ∈ [0,+∞) be constants, s ∈ C(R,R) with s(t + T) = s(t), and s(t) ∈
[−α, α], for all t ∈ [0, T]. Then for ∀x ∈ C1(R,R) with x(t + T) = x(t), one has

∫T

0

∣
∣
∣xk(t) − xk(t − s(t))

∣
∣
∣

(k+1)/k

dt ≤ 2α(k+1)/k k1/k

[

(k − 1)
∫T

0
|x(t)|k+1dt +

∫T

0

∣
∣x′(t)

∣
∣k+1dt

]

.

(2.2)

Proof. Let F(t) = xk(t). By Lemma 2.2, one has

∫T

0

∣
∣
∣xk(t) − xk(t − s(t))

∣
∣
∣
(k+1)/k

dt =
∫T

0
|F(t) − F(t − s(t))|(k+1)/kdt

≤ 2α(k+1)/k
∫T

0

∣
∣F ′(t)

∣
∣(k+1)/kdt

= 2α(k+1)/k
∫T

0

∣
∣
∣kxk−1(t)x′(t)

∣
∣
∣
(k+1)/k

dt

= 2α(k+1)/kk(k+1)/k
∫T

0
|x(t)|((k−1)(k+1))/k∣∣x′(t)

∣
∣(k+1)/kdt.

(2.3)
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By inequality

xy ≤ xp

p
+
yq

q
, x ≥ 0, y ≥ 0,

1
p
+
1
q
= 1, (2.4)

one has

|x(t)|((k−1)(k+1))/k∣∣x′(t)
∣
∣(k+1)/k ≤ (k − 1)|x(t)|k+1

k
+
|x′(t)|k+1

k
. (2.5)

Thus we obtain

∫T

0

∣
∣
∣xk(t) − xk(t − s(t))

∣
∣
∣
(k+1)/k

dt ≤ 2α(k+1)/k k1/k

[

(k − 1)
∫T

0
|x(t)|k+1dt +

∫T

0

∣
∣x′(t)

∣
∣k+1dt

]

.

(2.6)

Lemma 2.3. If k ≥ 1 is an integer, x ∈ Cn(R,R), and x(t + T) = x(t), then

(∫T

0

∣
∣x′(t)

∣
∣kdt

)1/k

≤ T

(∫T

0

∣
∣x′′(t)

∣
∣kdt

)1/k

≤ · · · ≤ Tn−1
(∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣
k
dt

)1/k

. (2.7)

The proof of Lemma 2.3 is easy, here we omit it.
We first introduce Mawhin’s continuation theorem.
Let X and Y be Banach spaces, L : D(L) ⊂ X → Y are a Fredholm operator of index

zero, here D(L) denotes the domain of L. P : X → X, Q : Y → Y be projectors such that

ImP = KerL, KerQ = ImL, X = KerL ⊕ KerP, Y = ImL ⊕ ImQ. (2.8)

It follows that

L|D(L)∩KerP : D(L) ∩ KerP −→ ImL (2.9)

is invertible, we denote the inverse of that map by Kp. Let Ω be an open bounded subset of
X, D(L) ∩ Ω/=Ø, the map N : X → Y will be called L-compact in Ω, if QN(Ω) is bounded
and Kp(I −Q)N : Ω → X is compact.

Lemma 2.4 (see [25]). Let L be a Fredholm operator of index zero and let N be L-compact on Ω.
Assume that the following conditions are satisfied:

(i) Lx/=λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(ii) QNx/= 0, for all x ∈ ∂Ω ∩ Ker L;

(iii) deg{QNx,Ω ∩ Ker L, 0}/= 0,

then the equation Lx = Nx has at least one solution in Ω ∩D(L).
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Now, we define Y = {x ∈ C(R,R) | x(t + T) = x(t)} with the norm |x|∞ =
maxt∈[0,T]{|x(t)|} and X = {x ∈ Cn−1(R,R) | x(t + T) = x(t)} with norm ‖x‖ =
max{|x|∞, |x′|∞, . . . , |x(n−1)|∞}. It is easy to see thatX, Y are two Banach spaces. We also define
the operators L andN as follows:

L : D(L) ⊂ X −→ Y, Lx = x(n), D(L) = {x | x ∈ Cn(R,R), x(t + T) = x(t)},

N : X −→ Y, Nx = −
n−1∑

i=1

bi
[
x(i)(t)

]k − f(t, x(t − τ(t))) + p(t).
(2.10)

It is easy to see that (1.1) can be converted to the abstract equation Lx = Nx. Moreover, from
the definition of L, we see that kerL = R, dim(kerL) = 1, ImL = {y | y ∈ Y,

∫T
0 y(s)ds = 0} is

closed, and dim(Y \ImL) = 1, one has codim(ImL) = dim(kerL). So L is a Fredholm operator
with index zero. Let

P : X −→ kerL, Px = x(0), Q : Y −→ Y \ ImL, Qy =
1
T

∫T

0
y(t)dt, (2.11)

and let

L|D(L)∩KerP : D(L) ∩ Ker P −→ ImL. (2.12)

Then L|D(L)∩KerP has a unique continuous inverseKp. One can easily find thatN is L-compact
in Ω, where Ω is an open bounded subset of X.

3. Main Result

Theorem 3.1. Suppose n = 2m + 1, m > 0 an integer and the following conditions hold:

(H1) The function f satisfies

lim
x→∞

∣
∣
∣
∣
f(t, x)
xk

∣
∣
∣
∣ ≤ γ, (3.1)

∣
∣f(t, x) − f

(
t, y
)∣
∣ ≤ β

∣
∣xk − yk

∣
∣, (3.2)

where γ ≥ 0.

(H2)

|b0| > γ + θ2. (3.3)

(H3) There is a positive integer 0 < s ≤ m such that

b2s /= 0, if s = m,

b2s /= 0, b2s+i = 0, i = 1, 2, . . . , 2m − 2s, if 0 < s < m.
(3.4)
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(H4)

A2(2s, k) + θ1T
(2s−1)k +

(
γ + θ2

)(
A1(2s, k) + θ1T

(2s−1)k)

|b0| − γ − θ2

+k|b0|T2s

[
A1(2s, k) + θ1T

(2s−1)k

|b0| − γ − θ2

](k−1)/k
< |b2s|, if 1 < s ≤ m,

θ1T
k +

(
γ + θ2

)(
A1(2, k) + θ1T

k
)

|b0| − γ − θ2
+ k|b0|T2

[
A1(2, k) + θ1T

k

|b0| − γ − θ2

](k−1)/k
< |b2|, if s = 1,

(3.5)

where A1(s, k) =
∑s

i=1 |bi|T (s−i)k, A2(s, k) =
∑s−2

i=1 |bi|T (s−i)k, θ1 = 2k/(k+1)β|τ(t)|∞k1/(k+1), θ2 =
2k/(k+1)β|τ(t)|∞k1/(k+1)(k − 1)k/(k+1). Then (1.1) has at least one T -periodic solution.

Proof. Consider the equation

Lx = λNx, λ ∈ (0, 1), (3.6)

where L and N are defined by (2.10). Let

Ω1 =
{

x ∈ D(L)
KerL

, Lx = λNx for some λ ∈ (0, 1)
}

. (3.7)

For x ∈ Ω1, one has

x(n)(t) = λ
2s∑

i=0

bi
[
x(i)(t)

]k
+ λf(t, x(t − τ(t))) + λp(t), λ ∈ (0, 1). (3.8)

Multiplying both sides of (3.8) by x(t), and integrating them on [0, T], one has for λ ∈ (0, 1)

∫T

0
x(n)(t)x(t)dt = λ

2s∑

i=0

bi

∫T

0

[
x(i)(t)

]k
x(t)dt

+ λ

∫T

0
f(t, x(t − τ(t)))x(t)dt + λ

∫T

0
p(t)x(t)dt.

(3.9)

Since for any positive integer i,

∫T

0
x(2i−1)(t)x(t)dt = 0, (3.10)
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and in view of n = 2m + 1 and k is odd, it follows from (3.3) and (3.9) that

|b0|
∫T

0
|x(t)|k+1dt

≤
2s∑

i=1

|bi|
∫T

0

∣
∣
∣x(i)(t)

∣
∣
∣
k
|x(t)|dt +

∫T

0

∣
∣f(t, x(t − τ(t)))

∣
∣|x(t)|dt +

∫T

0

∣
∣p(t)

∣
∣|x(t)|dt

≤
2s∑

i=1

|bi|
∫T

0

∣
∣
∣x(i)(t)

∣
∣
∣
k
|x(t)|dt +

∫T

0

∣
∣f(t, x(t))

∣
∣|x(t)|dt

+
∫T

0

∣
∣f(t, x) − f(t, x(t − τ(t)))

∣
∣|x(t)|dt +

∫T

0

∣
∣p(t)

∣
∣|x(t)|dt.

(3.11)

By using Hölder inequality and Lemma 2.1, from (3.11), we obtain

|b0|
∫T

0
|x(t)|k+1dt

≤
(∫T

0
|x(t)|k+1dt

)1/(k+1)
⎡

⎣
2s∑

i=1

|bi|
(∫T

0

∣
∣
∣x(i)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x) − f(t, x(t − τ(t)))

∣
∣(k+1)/kdt

)k/(k+1)

+

(∫T

0

∣
∣p(t)

∣
∣(k+1)/kdt

)k/(k+1)
⎤

⎦

≤
(∫T

0
|x(t)|k+1dt

)1/(k+1)
⎡

⎣
2s∑

i=1

|bi|T (2s−i)k
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x) − f(t, x(t − τ(t)))

∣
∣(k+1)/kdt

)k/(k+1)

+
∣
∣p(t)

∣
∣
∞T

k/(k+1)

]

.

(3.12)
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So

|b0|
(∫T

0
|x(t)|k+1dt

)k/(k+1)

≤ A1(2s, k)

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t)) − f(t, x(t − τ(t)))

∣
∣(k+1)/kdt

)k/(k+1)

+ u1,

(3.13)

where u1 is a positive constant. Choosing a constant ε > 0 such that

γ + ε + θ2 < |b0|, (3.14)

A2(2s, k) + θ1T
(2s−1)k +

(
γ + ε + θ2

)(
A1(2s, k) + θ1T

(2s−1)k)

|b0| −
(
γ + ε

) − θ2

+k|b0|T2s

[
A1(2s, k) + θ1T

(2s−1)k

|b0| −
(
γ + ε

) − θ2

](k−1)/k
< |b2s|, if 1 < s ≤ m,

θ1T
k +

(
γ + ε + θ2

)(
A1(2, k) + θ1T

k
)

|b0| −
(
γ + ε

) − θ2
+ k|b0|T2

[
A1(2, k) + θ1T

k

|b0| −
(
γ + ε

) − θ2

](k−1)/k
< |b2|, if s = 1,

(3.15)

for the above constant ε > 0, we see from (3.1) that there is a constant δ > 0 such that

∣
∣f(t, x(t))

∣
∣ <
(
γ + ε

)|x(t)|k, for |x(t)| > δ, t ∈ [0, T]. (3.16)

Denote

Δ1 = {t ∈ [0, T] : |x(t)| ≤ δ}, Δ2 = {t ∈ [0, T] : |x(t)| > δ}. (3.17)

Since

∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt ≤

∫

Δ1

∣
∣f(t, x(t))

∣
∣(k+1)/kdt +

∫

Δ2

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

≤ (fδ
)(k+1)/k

T +
(
γ + ε

)(k+1)/k
∫T

0
|x(t)|k+1dt

=
(
fδ
)(k+1)/k

T +
(
γ + ε

)(k+1)/k
∫T

0
|x(t)|k+1dt,

(3.18)
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using inequality

(a + b)l ≤ al + bl for a ≥ 0, b ≥ 0, 0 ≤ l ≤ 1, (3.19)

it follows from (3.18) that

(∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

)k/(k+1)

≤ fδT
k/(k+1) +

(
γ + ε

)
(∫T

0
|x(t)|k+1dt

)k/(k+1)

. (3.20)

From (3.2) and by Lemma 2.2, one has

(∫T

0

∣
∣f(t, x(t)) − f(t, x(t − τ(t)))

∣
∣(k+1)/kdt

)k/(k+1)

≤ β

[∫T

0

∣
∣
∣xk(t) − xk(t − τ(t))

∣
∣
∣
(k+1)/k

dt

]k/(k+1)

≤ 2k/(k+1)β|τ(t)|∞k1/(k+1)

[

(k − 1)
∫T

0
|x(t)|k+1dt +

∫T

0

∣
∣x′(t)

∣
∣k+1dt

]k/(k+1)

≤ 2k/(k+1)β|τ(t)|∞k1/(k+1)

⎡

⎣(k − 1)k/(k+1)
(∫T

0
|x(t)|k+1dt

)k/(k+1)

+

(∫T

0

∣
∣x′(t)

∣
∣k+1dt

)k/(k+1)
⎤

⎦

≤ 2k/(k+1)β|τ(t)|∞k1/(k+1)(k − 1)k/(k+1)
(∫T

0
|x(t)|k+1dt

)k/(k+1)

+ 2k/(k+1)β|τ(t)|∞k1/(k+1)T (2s−1)k
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

= θ2

(∫T

0
|x(t)|k+1dt

)k/(k+1)

+ θ1T
(2s−1)k

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

.

(3.21)
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Substituting the above formula into (3.13), one has

[|b0| −
(
γ + ε

) − θ2
]
(∫T

0
|x(t)|k+1dt

)k/(k+1)

≤
[
A1(2s, k) + θ1T

(2s−1)k
]
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+ u2,

(3.22)

where u2 is a positive constant. That is

(∫T

0
|x(t)|k+1dt

)k/(k+1)

≤ A1(2s, k) + θ1T
(2s−1)k

|b0| −
(
γ + ε

) − θ2

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+ u3, (3.23)

where u3 is a positive constant.

On the other hand, multiplying both sides of (3.8) by x(2s)(t), and integrating on [0, T],
one has

∫T

0
x(n)(t)x(2s)(t)dt

=
2s∑

i=0

bi

∫T

0

[
x(i)(t)

]k
x(2s)(t)dt +

∫T

0
f(t, x(t − τ(t)))x(2s)(t)dt +

∫T

0
p(t)x(2s)(t)dt.

(3.24)

If 1 < s ≤ m, since

∫T

0
x(2m+1)(t)x(2s)(t)dt = 0,

∫T

0

[
x(2s−1)(t)

]k
x(2s)(t)dt = 0, (3.25)

∫T

0
[x(t)]kx(2s)(t)dt = −k

∫T

0
[x(t)]k−1x(2s−1)(t)x′(t)dt, (3.26)
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by using Hölder inequality and Lemma 2.1, from (3.23), one has

|b2s|
∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

≤
∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣

[
2s−2∑

i=1

|bi|
∣
∣
∣x(i)(t)

∣
∣
∣
k
+
∣
∣f(t, x(t − τ(t)))

∣
∣ +
∣
∣p(t)

∣
∣

]

dt

+ k|b0|
∫T

0
|x(t)|k−1

∣
∣
∣x(2s−1)(t)

∣
∣
∣
∣
∣x′(t)

∣
∣dt

≤
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)
⎡

⎣
2s−2∑

i=1

|bi|T (2s−i)k
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t))

∣
∣(k+1)/kdt

)k/(k+1)

+

(∫T

0

∣
∣f(t, x(t)) − f(t, x(t − τ))

∣
∣(k+1)/kdt

)k/(k+1)

+
∣
∣p(t)

∣
∣
∞T

k/(k+1)

]

+ k|b0|
∣
∣x′(t)

∣
∣
∞

∫T

0
|x(t)|k−1

∣
∣
∣x(2s−1)(t)

∣
∣
∣dt.

(3.27)

Since x(0) = x(T), there exists ξ ∈ [0, T] such that x′(ξ) = 0. So for t ∈ [0, T]

x′(t) = x′(ξ) +
∫ t

ξ

x′′(σ)dσ. (3.28)

Using Hölder inequality and Lemma 2.1, one has

∣
∣x′(t)

∣
∣
∞ ≤
∫T

0

∣
∣x′′(t)

∣
∣dt ≤ Tk/(k+1)

(∫T

0

∣
∣x′′(t)

∣
∣k+1dt

)1/(k+1)

≤ T2s−1−(1/(k+1))
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)

.

(3.29)

Using inequality

(
1
T

∫T

0

∣
∣|x(t)|r∣∣

)1/r

≤
(

1
T

∫T

0

∣
∣
∣|x(t)|l

∣
∣
∣

)1/l

for 0 ≤ r ≤ l, ∀x ∈ R. (3.30)
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and applying Hölder inequality and by Lemma 2.1, we obtain

∫T

0
|x(t)|k−1

∣
∣
∣ x(2s−1)(t)

∣
∣
∣dt ≤

(∫T

0
|x(t)|kdt

)(k−1)/k(∫T

0

∣
∣
∣x(2s−1)(t)

∣
∣
∣
k
dt

)1/k

≤ T1/(k+1)

(∫T

0
|x(t)|k+1dt

)(k−1)/(k+1)(∫T

0

∣
∣
∣x(2s−1)(t)

∣
∣
∣
k+1

dt

)1/(k+1)

≤ T1 + 1/(k+1)

(∫T

0
|x(t)|k+1dt

)(k−1)/(k+1)(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)

.

(3.31)

Substituting the above formula, (3.20), (3.27), and (3.30) into (3.26), one has

|b2s|
∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

≤
⎛

⎝
∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣

k+1

dt

⎞

⎠

1/(k+1)⎧
⎨

⎩

[
A2(2s, k) + θ1T

(2s−1)k
]
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+
[(
γ + ε

)
+ θ2
]
(∫T

0
|x(t)|k+1dt

)k/(k+1)

+
(∣
∣p(t)

∣
∣
∞ + fδ

)
Tk/(k+1)

⎫
⎬

⎭

+ k|b0|T2s

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)2/(k+1)(∫T

0

∣
∣
∣|x(t)|k+1

∣
∣
∣dt

)(k−1)/(k+1)
.

(3.32)

Then, one has

[
|b2s| −A2(2s, k) − θ1T

(2s−1)k
]
⎛

⎝
∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣

k+1

dt

⎞

⎠

k/(k+1)

≤ k|b0|T2s

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)(∫T

0

∣
∣
∣|x(t)|k+1

∣
∣
∣ dt

)(k−1)/(k+1)

+
[(
γ + ε

)
+ θ2
]
(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+ u4,

(3.33)
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where u4 is a positive constant. Using inequality

(a + b)l ≤ al + bl for a ≥ 0, b ≥ 0, 0 ≤ l ≤ 1, (3.34)

it follows from (3.23) that

(∫T

0
|x(t)|k+1dt

)(k−1)/(k+1)

≤
[
A1(2s, k) + θ1T

(2s−1)k

|b0| −
(
γ + ε

) − θ2

](k−1)/k(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)(k−1)/(k+1)
+ u5,

(3.35)

where u5 is a positive constant. Substituting the above formula and (3.23) into (3.33), one has

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|b2s| −A2(2s, k) − θ1T
(2s−1)k −

(
γ + ε + θ2

)(
A1(2s, k) + θ1T

(2s−1)k)

|b0| −
(
γ + ε

) − θ2

−k|b0|T2s

[
A1(2s, k) + θ1T

(2s−1)k

|b0| −
(
γ + ε

) − θ2

](k−1)/k
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

≤ u5k|b0|T2s

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)

+ u6,

(3.36)

where u6 is a positive constant.
If s = 1, since

∫T
0 [x′(t)]kx′′(t)dt = 0,

∫T
0 [x(t)]kx′′(t)dt = −k ∫T0 [x(t)]k−1[x′(t)]2dt, from

(3.24), one has

b2

∫T

0

[
x′′(t)

]k+1
dt

= −kb0
∫T

0
[x(t)]k−1

[
x′(t)
]2
dt −

∫T

0
f(t, x(t − τ))x′′(t)dt +

∫T

0
p(t)x′′(t)dt.

(3.37)

Applying the above method, one has

⎧
⎨

⎩
|b2| − θ1T

k −
(
γ + ε + θ2

)(
A1(2, k) + θ1T

k
)

|b0| −
(
γ + ε

) − θ2
− k|b0|T2

[
A1(2, k) + θ1T

k

|b0| −
(
γ + ε

) − θ2

](k−1)/k⎫⎬

⎭

×
(∫T

0

∣
∣x′′(t)

∣
∣k+1dt

)k/(k+1)

≤ u7k|b0|T2

(∫T

0

∣
∣x′′(t)

∣
∣k+1dt

)1/(k+1)

+ u8,

(3.38)
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where u7, u8 is a positive constant. Hence there is a constant M1,M2 > 0 such that

∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt ≤ M1, (3.39)

∫T

0
|x(t)|k+1dt ≤ M2. (3.40)

From (3.5), using Hölder inequality and Lemma 2.1, one has

∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt ≤

2s∑

i=0
|bi|
∫T

0

∣
∣
∣x(i)(t)

∣
∣
∣
k
dt +

∫T

0

∣
∣f(t, x(t))

∣
∣dt

+
∫T

0

∣
∣f(t, x(t)) − f(t, x(t − τ(t)))

∣
∣dt +

∫T

0

∣
∣p(t)

∣
∣dt

≤
[

2s∑

i=1

|bi|T (2s−i)k+1/(k+1) + θ1T
(2s−1)k+1/(k+1)

](∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+
[|b0| +

(
γ + ε

)
+ θ2
]
T1/(k+1)

(∫T

0
|x(t)|k+1dt

) k/(k+1)

+
(∣
∣p(t)

∣
∣
∞ + fδ

)
T

≤
[

2s∑

i=1

|bi|T (2s−i)k+1/(k+1) + θ1T
(2s−1)k+1/(k+1)

]

(M1)k/(k+1)

+ |b0| +
(
γ + ε

)
+ θ2(M2)k/(k+1) +

(∣
∣p(t)

∣
∣
∞ + fδ

)
T = M,

(3.41)

where M is a positive constant. We claim that

∣
∣
∣x(i)(t)

∣
∣
∣ ≤ Tn−i−1

∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt, i = 1, 2, . . . , n − 1. (3.42)

In fact, noting that x(n−2)(0) = x(n−2)(T), there must be a constant ξ1 ∈ [0, T] such that
x(n−1)(ξ1) = 0, we obtain

∣
∣
∣x(n−1)(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
x(n−1)(ξ1) +

∫ t

ξ1

x(n)(s)ds

∣
∣
∣
∣
∣
≤
∣
∣
∣x(n−1)(ξ1)

∣
∣
∣ +
∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt =

∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt.

(3.43)

Similarly, since x(n−3)(0) = x(n−3)(T), there must be a constant ξ2 ∈ [0, T] such that x(n−2)(ξ2) =
0, from (3.43) we get

∣
∣
∣x(n−2)(t)

∣
∣
∣ =

∣
∣
∣
∣
∣
x(n−2)(ξ2) +

∫ t

ξ2

x(n−1)(s)ds

∣
∣
∣
∣
∣
≤
∫T

0

∣
∣
∣x(n−1)(t)

∣
∣
∣dt ≤ T

∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt. (3.44)
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By induction, we conclude that (3.42) holds. Furthermore, one has

∣
∣
∣x(i)(t)

∣
∣
∣
∞
≤ Tn−i−1

∫T

0

∣
∣
∣x(n)(t)

∣
∣
∣dt ≤ Tn−i−1M, i = 1, 2, . . . , n − 1. (3.45)

It follows from (3.39) that there exists a ξ ∈ [0, T] such that |x(ξ)| ≤ M
1/(k+1)
2 . Applying

Lemma 2.1, we get

|x(t)|∞ ≤ x(ξ) +
∫ t

ξ

x′(t)dt ≤ M
1/(k+1)
2

+ Tk/(k+1)

(∫T

0

∣
∣x′(t)

∣
∣k+1dt

)1/(k+1)

≤ M
1/(k+1)
2 + T2s−1+(k/(k+1))

(∫T

0

∣
∣
∣x(2s)(t)

∣
∣
∣
k+1

dt

)1/(k+1)

= M
1/(k+1)
2 + T2s−1+(k/(k+1))M1/(k+1)

1 .

(3.46)

It follows that there is a constant A > 0 such that ‖x‖ ≤ A. Thus Ω1 is bounded.
Let Ω2 = {x ∈ KerL,QNx = 0}. Suppose x ∈ Ω2, then x(t) = d ∈ R and satisfies

QNx =
1
T

∫T

0

[
−b0dk − f(t, d) + p(t)

]
dt = 0. (3.47)

We will prove that there exists a constant B > 0 such that |d| ≤ B. If |d| ≤ δ, taking δ = B, we
get |d| ≤ B. If |d| > δ, from (3.47), one has

|b0||d|k =

∣
∣
∣
∣
∣

1
T

∫T

0

[−f(t, d) + p(t)
]
dt

∣
∣
∣
∣
∣

≤ 1
T

∫T

0

∣
∣f(t, d)

∣
∣dt +

∣
∣p(t)

∣
∣
∞ ≤ (γ + ε

)|d|k + ∣∣p(t)∣∣∞.
(3.48)

Thus

|d| ≤
[ ∣
∣p(t)

∣
∣
∞

|b0| −
(
γ + ε

)

]1/k

. (3.49)

Taking [|p(t)|∞/(|b0| − (γ + ε))]1/k = B, one has |d| ≤ B, which implies Ω2 is bounded. Let Ω
be a nonempty open bounded subset of X such thatΩ ⊃ Ω1 ∪Ω2. We can easily see that L is a
Fredholm operator of index zero andN is L-compact onΩ. Then by the above argument, we
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have

(i) Lx/=λNx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1),

(ii) QNx/= 0, for all x ∈ ∂Ω ∩ Ker L.

At last we will prove that condition (iii) of Lemma 2.4 is satisfied. We take

H : (Ω ∩ KerL) × [0, 1] −→ KerL,

H
(
d, μ
)
= μd +

1 − μ

T

∫T

0

[
−b0dk − f(t, d) + p(t)

]
dt.

(3.50)

From assumptions (H1) and (H2), we can easily obtain H(d, μ)/= 0, for all (d, μ) ∈ ∂Ω ∩
KerL × [0, 1], which results in

deg{QN,Ω ∩ KerL, 0} = deg{H(·, 0),Ω ∩ KerL, 0} = deg{H(·, 1),Ω ∩ KerL, 0}/= 0. (3.51)

Hence, by using Lemma 2.2, we know that (1.1) has at least one T -periodic solution.

Theorem 3.2. Suppose n = 4m + 1, m > 0 an integer and conditions (H1), (H2) hold. If

(H5) there is a positive integer 0 < s ≤ m such that

b4s−3 /= 0, b4s−3+i = 0, i = 1, 2, . . . , 4m − 4s + 3, (3.52)

(H6)

A2(4s − 3, k) + θ1T
(4s−4)k +

(
γ + θ2

)(
A1(4s − 3, k) + θ1T

(4s−4)k)

|b0| − γ − θ2

+k|b0|T4s−3
[
A1(4s − 3, k) + θ1T

4s−4

|b0| − γ − θ2

](k−1)/k
< |b4s−3|, if 1 < s ≤ m,

θ1 +

(
γ + θ2

)
(A1(1, k) + θ1)

|b0| − γ − θ2
< |b1|, if s = 1,

(3.53)

then (1.1) has at least one T -periodic solution.

Proof. From the proof of Theorem 3.1, one has

(∫T

0
|x(t)|k+1dt

)k/(k+1)

≤ A1(4s − 3, k) + θ1T
(4s−4)k

|b0| −
(
γ + ε

) − θ2

(∫T

0

∣
∣
∣x(4s−3)(t)

∣
∣
∣
k+1

dt

)k/(k+1)

+ u9,

(3.54)
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where u9 is a positive constant. Multiplying both sides of (3.8) by x(4s−3)(t), and integrating
on [0, T], one has

∫T

0
x(n)(t)x(4s−3)(t)dt = − λ

4s−3∑

i=0

bi

∫T

0

[
x(i)(t)

]k
x(4s−3)(t)dt

− λ

∫T

0
f(t, x(t − τ))x(4s−3)(t)dt + λ

∫T

0
p(t)x(4s−3)(t)dt.

(3.55)

Since

∫T

0
x(4m+1)(t)x(4s−3)(t)dt = (−1)2m−2s+2

∫T

0

[
x(2m+2s−1)(t)

]2
dt, (3.56)

then it follows from (3.55) and (3.56) that

b4s−3

∫T

0

∣
∣
∣x(4s−3)(t)

∣
∣
∣
k+1

dt ≤ −
4s−4∑

i=0

bi

∫T

0

[
x(i)(t)

]k
x(4s−3)(t)dt

−
∫T

0
f(t, x(t − τ))x(4s−3)(t)dt +

∫T

0
p(t)x(4s−3)(t)dt.

(3.57)

By using the same way as in the proof of Theorem 3.1, the following theorems can be proved
in case 1 < s ≤ m or s = 1.

Theorem 3.3. Suppose n = 4m + 1, m > 0 for a positive integer and conditions (H1), (H2) hold. If

(H7) there is a positive integer 0 < s ≤ m such that

b4s−1 /= 0, b4s−1+i = 0, i = 1, 2, . . . , 4m − 4s + 1, (3.58)

(H8)

A2(4s − 1, k) + θ1T
(4s−2)k +

(
γ + θ2

)(
A1(4s − 1, k) + θ1T

(4s−2)k)

|b0| − γ − θ2

+ k|b0|T4s−1
[
A1(4s − 1, k) + θ1T

(4s−2)k

|b0| − γ − θ2

](k−1)/k
< |b4s−1|,

(3.59)

then (1.1) has at least one T -periodic solution.

Theorem 3.4. Suppose n = 4m + 3, m ≥ 0 an integer and conditions (H1), (H2) hold. If

(H9) there is a positive integer 0 ≤ s ≤ m such that

b4s+1 /= 0, b4s+1+i = 0, i = 1, 2, . . . , 4m − 4s + 1, (3.60)
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(H10)

A2(4s + 1, k) + θ1T
4sk +

(
γ + θ2

)(
A1(4s + 1, k) + θ1T

4sk)

|b0| − γ − θ2

+k|b0|T4s+1

[
A1(4s + 1, k) + θ1T

4sk

|b0| − γ − θ2

](k−1)/k
< |b4s+1|, if 0 < s ≤ m,

θ1 +

(
γ + θ2

)
(A1(1, k) + θ1)

|b0| − γ − θ2
< |b1|, if s = 0,

(3.61)

then (1.1) has at least one T -periodic solution.

Theorem 3.5. Suppose n = 4m + 3,m > 0 an integer and conditions (H1), (H2) hold. If

(H11) there is a positive integer 0 < s ≤ m such that

b4s−1 /= 0, b4s−1+i = 0, i = 1, 2, . . . , 4m − 4s + 3, (3.62)

(H12)

A2(4 − 1, k) + θ1T
(4s−2)k +

(
γ + θ2

)(
A1(4s − 1, k) + θ1T

(4s−2)k)

|b0| − γ − θ2

+ k|b0|T4s−1
[
A1(4s − 1, k) + θ1T

(4s−2)k

|b0| − γ − θ2

](k−1)/k
< |b4s−1|,

(3.63)

then (1.1) has at least one T -periodic solution.

Theorem 3.6. Suppose n = 4m, m > 0 an integer and conditions (H1) hold. If

(H13)

b0 > γ + θ2, (3.64)

(H14) there is a positive integer 0 < s ≤ 2m such that

b2s−1 /= 0, if s = 2m,

b2s−1 /= 0, b2s−1+i = 0, i = 1, 2, . . . , 4m − 2s, if 0 < s < 2m,
(3.65)
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(H15)

A2(2s − 1, k) + θ1T
(2s−2)k +

(
γ + θ2

)(
A1(2s − 1, k) + θ1T

(2s−2)k)

b0 − γ − θ2

+kb0T2s−1
[
A1(2s − 1, k) + θ1T

(2s−2)k

b0 − γ − θ2

](k−1)/k
< |b2s−1|, if 1 < s ≤ 2m,

θ1 +

(
γ + θ2

)
(A1(1, k) + θ1)

b0 − γ − θ2
< |b1|, if s = 1,

(3.66)

then (1.1) has at least one T -periodic solution.

Theorem 3.7. Suppose n = 4m + 2, m > 0 an integer and conditions (H1) hold. If

(H16)

−b0 > γ + θ2, (3.67)

(H17) there is a positive integer 0 < s ≤ 2m + 1 such that

b2s−1 /= 0, if s = 2m + 1,

b2s−1 /= 0, b2s−1+i = 0, i = 1, 2, . . . , 4m − 2s, if 0 < s < 2m + 1,
(3.68)

(H18)

A2(2s − 1, k) + θ1T
(2s−2)k +

(
γ + θ2

)(
A1(2s − 1, k) + θ1T

(2s−2)k)

−b0 − γ − θ2

−kb0T2s−1
[
A1(2s − 1, k) + θ1T

(2s−2)k

−b0 − γ − θ2

](k−1)/k
< |b2s−1|, if 1 < s ≤ 2m + 1,

θ1 +

(
γ + θ2

)
(A1(1, k) + θ1)

−b0 − γ − θ2
< |b1|, if s = 1,

(3.69)

then (1.1) has at least one T -periodic solution.

Theorem 3.8. Suppose n = 4m, m > 0 is an integer, and conditions (H1), (H13) hold. If

(H19) there is a positive integer 0 < s ≤ m such that

b4s−2 /= 0, b4s−2+i = 0, i = 1, 2, . . . , 4m − 4s + 1, (3.70)
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(H20)

A2(4s − 2, k) + θ1T
(4s−3)k +

(
γ + θ2

)(
A1(4s − 2, k) + θ1T

(4s−3)k)

b0 − γ − θ2

+kb0T4s−2
[
A1(4s − 2, k) + θ1T

(4s−3)k

b0 − γ − θ2

](k−1)/k
< |b4s−2|, if 1 < s ≤ m,

(
γ + θ2

)(
A1(2, k) + θ1T

k
)

b0 − γ − θ2
+ kb0T

2

[
A1(2, k) + θ1T

k

b0 − γ − θ2

](k−1)/k
< |b2|, if s = 1,

(3.71)

then (1.1) has at least one T -periodic solution.

Theorem 3.9. Suppose n = 4m, m > 1 an integer and conditions (H1), (H13) hold. If

(H21) there is a positive integer 1 < s ≤ m such that

b4s−4 /= 0, b4s−4+i = 0, i = 1, 2, . . . , 4m − 4s + 3, (3.72)

(H22)

A2(4s − 4, k) + θ1T
(4s−5)k +

(
γ + θ2

)(
A1(4s − 4, k) + θ1T

(4s−5)k)

b0 − γ − θ2

+kb0T4s−4
[
A1(4s − 4, k) + θ1T

(4s−5)k

b0 − γ − θ2

](k−1)/k
< |b4s−4|,

(3.73)

then (1.1) has at least one T -periodic solution.

Theorem 3.10. Suppose n = 4m + 2, m ≥ 1 an integer and conditions (H1), (H16) hold. If

(H23) there is a positive integer 1 ≤ s ≤ m such that

b4s /= 0, b4s+i = 0, i = 1, 2, . . . , 4m − 4s + 1, (3.74)

(H24)

A2(4s, k) + θ1T
(4s−1)k +

(
γ + θ2

)(
A1(4s, k) + θ1T

(4s−1)k)

−b0 − γ − θ2

−kb0T4s

[
A1(4s, k) + θ1T

(4s−1)k

−b0 − γ − θ2

](k−1)/k
< |b4s|,

(3.75)

then (1.1) has at least one T -periodic solution.
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Theorem 3.11. Suppose n = 4m + 2, m ≥ 1 is an integer, and conditions (H1), (H16) hold. If

(H25) there is a positive integer 1 ≤ s ≤ m such that

b4s−2 /= 0, b4s−2+i = 0, i = 1, 2, . . . , 4m − 4s + 3, (3.76)

(H26)

A2(4s − 2, k) + θ1T
(4s−3)k +

(
γ + θ2

)(
A1(4s − 2, k) + θ1T

(4s−3)k)

−b0 − γ − θ2

−kb0T4s−2
[
A1(4s − 2, k) + θ1T

(4s−3)k

−b0 − γ − θ2

](k−1)/k
< |b4s−2|, if 1 < s ≤ m,

θ1T
k +

(
γ + θ2

)(
A1(2, k) + θ1T

k
)

−b0 − γ − θ2
− kb0T

2

[
A1(2, k) + θ1T

k

−b0 − γ − θ2

](k−1)/k
< |b2|, if s = 1,

(3.77)

then (1.1) has at least one T -periodic solution.

The proofs of Theorem 3.3–3.11 are similar to that of Theorem 3.1.

Example 3.12. Consider the following equation:

x(5)(t) + 300
[
x′′(t)

]3 +
1
50
[
x′(t)
]3 +

1
100

[x(t)]3 +
1
300

(sin t)
[

x

(

t − π

10

)]3
= cos t, (3.78)

where n = 5, k = 3, b4 = b3 = 0, b2 = 300, b1 = 1/50, b0 = 1/100, f(t, x) =
1/300(sin t)x3, p(t) = cos t, τ(t) = π/10. Thus, T = 2π, γ = 1/300, A1(2, k) = |b1|(2π)3+|b2| =
1/50 × (2π)3 + 200. Obviously assumptions (H1)–(H3) hold and

θ1T
k +

(
γ + θ2

)(
A1(2, k) + θ1T

k
)

|b0| − γ − θ2
+ k|b0|(2π)2

[
A1(2, k) + θ1T

k

|b0| − γ − θ2

](k−1)/k
< |b2|. (3.79)

By Theorem 3.1, we know that (3.78) has at least one 2π-periodic solution.
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