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We prove a higher-order inequality of Hardy type for functions in anisotropic Sobolev spaces that
vanish at the boundary of the space domain. This is an important calculus tool for the study of
initial-boundary-value problems of symmetric hyperbolic systems with characteristic boundary.

1. Notations and Main Result

For n ≥ 2, let R
n
+ denote the n-dimensional positive half-space

R
n
+ :=

{
x =

(
x1, x

′), x1 > 0, x′ := (x2, . . . , xn) ∈ R
n−1

}
. (1.1)

Let σ ∈ C∞(R+) be a function such that σ(x1) = x1 close to x1 = 0, and σ(x1) = 1 for x1 ≥ 1.
For j = 1, 2, . . . , n, we set

Z1 := σ(x1)∂1, Zj := ∂j , for j ≥ 2. (1.2)

Then, for every multi-index α = (α1, . . . , αn) ∈ N
n, the conormal derivative Zα is defined by

Zα := Zα1
1 · · ·Zαn

n . (1.3)

For every positive integer m the anisotropic Sobolev spaceHm
∗ (Rn

+) is defined as

Hm
∗ (Rn

+) :=
{
w ∈ L2(Rn

+) : Z
α∂k1w ∈ L2(Rn

+), |α| + 2k ≤ m
}
. (1.4)
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InHm
∗ (Rn

+) we introduce the norm

‖w‖2Hm∗ (Rn
+)
:=

∑
|α|+2k≤m

∥∥∥Zα∂k1w
∥∥∥
2

L2(Rn
+)
. (1.5)

The spaceHm
∗ (Rn

+), endowedwith its norm (1.5) is a Hilbert space.We also introduce a second
anisotropic Sobolev space. For every positive integerm, the space Hm

∗∗(R
n
+) is defined as

Hm
∗∗(R

n
+) :=

{
w ∈ L2(Rn

+) : Z
α∂k1w ∈ L2(Rn

+), |α| + 2k ≤ m + 1, |α| ≤ m
}
. (1.6)

In particular, H1
∗∗(Ω) = H1(Ω). In Hm

∗∗(R
n
+), we introduce the natural norm

‖w‖2Hm∗∗(Rn
+)
:=

∑
|α|+2k≤m+1,|α|≤m

∥∥∥Zα∂k1w
∥∥∥
2

L2(Rn
+)
. (1.7)

The space Hm
∗∗(R

n
+), endowed with its norm (1.7) is a Hilbert space. For the sake of conve-

nience we also set H0
∗ (R

n
+) = H0

∗∗(R
n
+) = L2(Rn

+). We observe that

Hm(Rn
+) ↪→ Hm

∗∗(R
n
+) ↪→ Hm

∗ (Rn
+) ⊂ Hm

loc(R
n
+), (1.8)

Hm
∗ (Rn

+) ↪→ H[m/2](Rn
+), Hm

∗∗(R
n
+) ↪→ H[(m+1)/2](Rn

+), (1.9)

where [·] denotes the integer part (except for Hm
loc(R

n
+), all imbeddings are continuous).

The anisotropic spacesHm
∗ ,Hm

∗∗ are the natural function spaces for the study of initial-
boundary-value problems of symmetric hyperbolic systems with characteristic boundary, see
[1–6]. In fact, for such problems, the full regularity (i.e., solvability in the usual Sobolev
spaces Hm) cannot be expected generally because of the possible loss of derivatives in the
normal direction to the characteristic boundary, see [7, 8]. The introduction of the anisotropic
Sobolev spaces Hm

∗ ,Hm
∗∗ is motivated by the observation that the one-order gain of normal

differentiation should be compensated by two-order loss of conormal differentiation.
The equations of ideal magnetohydrodynamics provide an important example of ill-

posedness in Sobolev spacesHm, see [7]. Application to MHD ofHm
∗ andHm

∗∗ spaces may be
found in [9–13]. For an extensive study of such spaces we refer the reader to [2, 3, 14, 15] and
references therein. Function spaces of this type have also been considered in [16, 17].

The purpose of this note is the proof of the following Theorems 1.1 and 1.2. These
results are an important calculus tool in the use of the anisotropic spaces Hm

∗ ,Hm
∗∗, and

accordingly for the study of initial-boundary-value problems of symmetric hyperbolic
systems with characteristic boundary. Typically, in such problems one has to deal with terms
of the form A∂1U, where A is a real d × d matrix-valued function, and U is a vector function
with d components. The matrix A admits the decomposition

A = A1 +A2, A1 :=
(
AI,I 0
0 0

)
, A2|x1=0 = 0, (1.10)

with AI,I invertible in a neighborhood of the boundary {x1 = 0}. Hence, one may write

A2∂1U = HZ1U, (1.11)
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where H(x) = σ(x1)
−1A2(x), and looks for an estimate of HZ1U in Hm

∗ ,Hm
∗∗, as sharp

as possible. Given suitable estimates for the product of functions, the problem is then the
estimate of H inHm

∗ and Hm
∗∗. This motivates the following results.

Theorem 1.1. Letm ≥ 2. Let u ∈ Hm
∗ (Rn

+) ∩H1
0(R

n
+) be a function, and let H be defined by

H
(
x1, x

′) =
u(x1, x

′)
σ(x1)

. (1.12)

Then

‖H‖Hm−2∗ (Rn
+) ≤ C‖u‖Hm

∗ (Rn
+). (1.13)

Proof. For all integersm ≥ 1, the space C∞
(0)(R

n
+) (C

∞
(0)(R

n
+) denotes the set of restriction to R

n
+ of

functions in C∞
0 (Rn

+)) is dense in Hm
∗ (Rn

+), see [4]. Hence, without loss of generality, we may
assume that u is supported in a small neighborhood of x1 = 0 where σ(x1) = x1. For the proof
of the theorem we use an induction argument somehow inspired from [18].

The case m = 2 follows from the classical Hardy inequality, see [19]. Given any x′ ∈
R

n−1, the Hardy inequality yields

∫∞

0

∣∣∣∣
u(x1, x

′)
x1

∣∣∣∣
2

dx1 ≤ 4
∫∞

0

∣∣∂1u
(
x1, x

′)∣∣2dx1, ∀u ∈ H1
0(R

n
+). (1.14)

Integrating in x′ and using (1.9) withm = 2 we get
∥∥∥∥
u

x1

∥∥∥∥
L2(Rn

+)
≤ 2‖u‖H1(Rn

+) ≤ C‖u‖H2∗ (Rn
+). (1.15)

Let us now assume that inequality (1.13) holds for a given m ≥ 2, and suppose that u ∈
Hm+1

∗ (Rn
+) ∩H1

0(R
n
+). A simple computation shows that for k ∈ N,

∂k1

(
u

x1

)
=

f

xk+1
1

, (1.16)

with

f =
k∑

h=0

(
k
h

)
∂k−h1 uh!(−1)hxk−h

1 . (1.17)

From its definition, we see that f = 0 for x1 = 0. Next, we obtain the identity

∂1f =
k∑

h=0

(
k
h

)
∂k+1−h1 uh!(−1)hxk−h

1 +
k−1∑
h=0

(
k
h

)
∂k−h1 uh!(−1)hxk−h−1

1 (k − h)

= ∂k+11 uxk
1 +

k∑
h=1

(
k
h

)
∂k+1−h1 uh!(−1)hxk−h

1 +
k−1∑
h=0

(
k

h + 1

)
∂k−h1 u(h + 1)!(−1)hxk−h−1

1

= ∂k+11 uxk
1 .

(1.18)
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We deduce from (1.18) that

f
(
x1, x

′) =
∫x1

0
∂k+11 u

(
y1, x

′)yk
1dy1, (1.19)

which by substitution in (1.16) yields the identity

∂k1

(
u

x1

)(
x1, x

′) =

∫x1

0 ∂k+11 u
(
y1, x

′)yk
1dy1

xk+1
1

. (1.20)

Given any multi-index α = (α1, . . . , αn) ∈ N
n, with α1 = 0, we also get

Zα∂k1

(
u

x1

)
(x) =

∫x1

0 Zα∂k+11 u
(
y1, x

′)yk
1dy1

xk+1
1

, (1.21)

from which it readily follows that

∣∣∣∣Zα∂k1

(
u

x1

)
(x)

∣∣∣∣ ≤
∫x1

0

∣∣∣Zα∂k+11 u
(
y1, x

′)∣∣∣dy1

x1
. (1.22)

Setting

g
(
x1, x

′) =
∫x1

0

∣∣∣Zα∂k+11 u
(
y1, x

′)∣∣∣dy1 (1.23)

the Hardy inequality yields

∫∞

0

∣∣∣∣
g

x1

(
x1, x

′)
∣∣∣∣
2

dx1 ≤ 4
∫∞

0

∣∣∂1g
(
x1, x

′)∣∣2dx1. (1.24)

From (1.22) and (1.24) we deduce

∥∥∥∥Zα∂k1

(
u

x1

)∥∥∥∥
2

L2(Rn
+)
≤ 4

∥∥∥Zα∂k+11 u
∥∥∥
2

L2(Rn
+)
. (1.25)

It follows that

∥∥∥∥Zα∂k1

(
u

x1

)∥∥∥∥
L2(Rn

+)
≤ C‖u‖Hm+1∗ (Rn

+) (1.26)

for every multi-index α = (α1, . . . , αn) ∈ N
n, with α1 = 0, and k ∈ N such that |α| + 2k ≤ m − 1.
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In order to treat the case α1 ≥ 1, we use an induction argument. We first invert the
position of conormal and normal derivatives in the norm (1.5) to get

∥∥∥∥
u

x1

∥∥∥∥
2

Hm−1∗ (Rn
+)
≤ C

∑
|α|+2k≤m−1

∥∥∥∥∂k1Zα

(
u

x1

)∥∥∥∥
2

L2(Rn
+)
+ C

∥∥∥∥
u

x1

∥∥∥∥
Hm−2∗ (Rn

+)
, (1.27)

where the last term comes from the control of the commutator. Then, from the inductive as-
sumption

∥∥∥∥
u

x1

∥∥∥∥
2

Hm−1∗ (Rn
+)
≤ C

∑
|α|+2k≤m−1

∥∥∥∥∂k1Zα

(
u

x1

)∥∥∥∥
2

L2(Rn
+)
+ C‖u‖Hm∗ (Rn

+). (1.28)

Let us consider the estimate

∑
|α|+2k≤m−1

∥∥∥∥∂k1Zα

(
u

x1

)∥∥∥∥
L2(Rn

+)
≤ C‖u‖Hm+1∗ (Rn

+). (1.29)

Notice that (1.29) holds true if α1 = 0, because of (1.26). Assume that (1.29) is true for every
multi-index α = (α1, . . . , αn) ∈ N

n and k ∈ N such that |α| + 2k ≤ m − 1 and 0 ≤ α1 ≤ β1 − 1, for
some 1 ≤ β1 ≤ m − 1. We have

∑
|α|+2k≤m−1,1≤α1≤β1

∥∥∥∥∂k1Zα

(
u

x1

)∥∥∥∥
2

L2(Rn
+)

=
∑

|α|+2k≤m−1,1≤α1≤β1

∥∥∥∥∂k1Zα′
Zα1−1x1∂1

(
u

x1

)∥∥∥∥
2

L2(Rn
+)

=
∑

|α|+2k≤m−1,1≤α1≤β1

∥∥∥∥∂k1Zα′
Zα1−1

(
∂1u − u

x1

)∥∥∥∥
2

L2(Rn
+)

≤ C
∑

|α|+2k≤m−1,1≤α1≤β1

(∥∥∥∂k+11 Zα′
Zα1−1u

∥∥∥
2

L2(Rn
+)
+
∥∥∥∥∂k1Zα′

Zα1−1
(
u

x1

)∥∥∥∥
2

L2(Rn
+)

)

≤ C‖u‖2Hm∗ (Rn
+)

(1.30)

because for the first term we have |α| − 1+ 2(k + 1) ≤ m, and for the second term we can apply
estimate (1.13), true for m by inductive assumption. Hence (1.29) is true also for α1 = β1. We
deduce that (1.29) holds for every multi-index α = (α1, . . . , αn) ∈ N

n, and k ∈ N such that
|α| + 2k ≤ m − 1.

Therefore, from (1.28) and (1.29) we get
∥∥∥∥
u

x1

∥∥∥∥
Hm−1∗ (Rn

+)
≤ C‖u‖Hm+1∗ (Rn

+). (1.31)

The proof of Theorem 1.1 is complete.

In the second anisotropic space Hm
∗∗(Ω)we have the following results.
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Theorem 1.2. Let u ∈ Hm
∗∗(R

n
+) ∩H1

0(R
n
+), for m ≥ 1, and letH be the function defined in (1.12).

(1) Ifm = 1, then

‖H‖L2(Rn
+) ≤ C‖u‖H1(Rn

+) ≤ C‖u‖H1∗∗(Rn
+). (1.32)

(2) Ifm = 2, then

‖H‖H1∗ (Rn
+) ≤ C‖u‖H2∗∗(Rn

+). (1.33)

(3) Ifm ≥ 3, then

‖H‖Hm−2∗∗ (Rn
+) ≤ C‖u‖Hm∗∗(Rn

+). (1.34)

Proof. The proof of (1.32) follows by direct application of Hardy’s inequality; then (1.33)
follows by applying (1.32) to Zu. In case of m ≥ 3 the proof is similar to that of Theorem 1.1,
hence we omit the details.
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