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Since 1960’s, the blow-up phenomena for the Fujita type parabolic equation have been investigated
by many researchers. In this survey paper, we discuss various results on the life span of positive
solutions for several superlinear parabolic problems. In the last section, we introduce a recent result
by the author.

1. Introduction

1.1. Fujita Type Results

We first recall the result on the Cauchy problem for a semilinear heat equation:

∂u

∂t
= Δu + up, (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(1.1)

where n ∈ N, Δ is the n-dimensional Laplacian, and p > 1. Let φ be a bounded continuous
function on Rn.

In pioneer work [1], Fujita showed that the exponent pF = 1 + 2/n plays the crucial
role for the existence and nonexistence of the solutions of (1.1). Let G denote the Gaussian
heat kernel: Gt(x) = (4πt)−n/2 exp(−|x|2/4t).
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Theorem 1.1 (see [1]). Suppose that φ ∈ C2(Rn) and that its all derivatives are bounded.

(i) Let p < pF . Then there is no global solution of (1.1) satisfying that

u(x, t) ≤M exp
(
|x|β

)
, (1.2)

for M > 0 and 0 < β < 2.

(ii) Let p > pF . Then for any τ > 0 there exists δ > 0 with the following property: if

φ(x) ≤ δGτ(x), (1.3)

then there exists a global solution of (1.1) satisfying

u(x, t) ≤M exp
(
|x|β

)
(1.4)

forM > 0 and 0 < β < 2.

In [2], Hayakawa showed first that there is no global solution of (1.1) in the critical
case p = pF when n = 1 or 2.

Theorem 1.2 (see [2]). In case of n = 2, p = pF = 2 or n = 1, p = pF = 3, (1.1) has no global solu-
tions for any nontrivial initial data.

In genaral space dimensions, Kobayashi et al. [3] consider the following problem:

∂u

∂t
= Δu + f(u), (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(1.5)

where n ∈ N and p > 1. Let φ be a bounded continuous function on Rn.

Theorem 1.3 (see [3]). Suppose that f satisfies the following three conditions:

(a) f is a locally Lipschitz continuous and nondecreasing function in [0,∞)with f(0) = 0 and
f(λ) > 0 for λ > 0,

(b)
∫ε
0+ f(λ)/λ

2+(2+n)dλ for some ε > 0,

(c) there exists a positive constant c ≤ 1 such that

f
(
λμ

) ≥ μ1+(2+n)f(λ)
(
0 < λ ≤ μ, λ < c),

f
(
λμ

) ≥ μ2+(2+n)f(λ)
(
0 < μ ≤ λ < c).

(1.6)

Then each positive solution of (1.5) blows up in finite time.
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Remark 1.4. (i) We remark that the proofs of the theorems in [2, 3] are mainly based on the
iterated estimate from below obtained by the following integral equation:

u(x, t) =
(
Gt ∗ φ

)
(x) +

∫ t

0
(Gt−s ∗ up(s))(x)ds. (1.7)

(ii) The critical nonlinearity of power type f(u) = u1+2/n satisfies the assumptions (a),
(b), and (c) in [3].

Weissler proved the nonexistence of global solution in Lp-framework in [4]. The proof
is quite short and elegant.

Theorem 1.5 (see [4]). Suppose p = pF and that φ ≥ 0 in Lq(Rn) (q ≥ 1) is not identically zero.
Then there is no nonnegative global solution u : [0,∞) → Lq to the integral (1.7) with initial value φ.

The outline of the proof is as follows. First we assume that there is a global solution.
From the fact that the solution u(ε, x) ≥ kGα(x)(k, α > 0) for some ε > 0, we can obtain that
‖u(t)‖L1(Rn) ≥ C(k, p, n)

∫ t
0(s+α)

−1ds. This contradicts the boundedness of ‖u(t)‖L1(Rn) for large
t > 0. Hence the solution is not global.

Existence and nonexistence results for time-global solutions of (1.1) are summarized
as follows.

(i) Let p ∈ (1, pF]. Then every nontrivial solution of (1.1) blows up in finite time.

(ii) Let p ∈ (pF,∞). Then (1.1) has a time-global classical solution for small initial data
φ and has a blowing-up solution for large initial data φ.

In several papers [5–7], the results for the critical exponent are extended to the more general
equations.

In [6], Qi consider the following Cauchy problem of porous medium equation:

∂u

∂t
= Δum + ts|x|σup, (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(1.8)

wherem > max{(n−2)/n, 0}, σ > max{−n,−2} and p > max{m, 1}. They showed that the crit-
ical exponent is pc1 := m + (m − 1)s + (2 + 2s + σ)/n.

Theorem 1.6 (see [6]). (i) If 1 < p ≤ pc1 , then every nontrivial solution of (1.8) blows up in finite
time.

(ii) If p > pc1 , then (1.8) has global classical solutions for small initial data.

Another extension is the following quasilinear parabolic equation:

∂u

∂t
= div

(
|∇u|m−1∇u

)
+ ts|x|σup, (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(1.9)

where (n − 1)(n + 1) < m < 1, s ≥ 0, p > 1 and σ > n(1 −m) − (1 +m + 2s). In [7], the authors
showed that the critical exponent is pc2 := m + (1 +m + 2s + σ)/n.
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Theorem 1.7 (see [7]). (i) If 1 < p ≤ pc2 , then every nontrivial solution of the (1.9) blows up in finite
time.

(ii) If p > pc2 , then (1.9) has global classical solutions for small initial data.

Remark 1.8. (i) (Sublinear case). In [8], Aguirre and Escobedo proved that if 0 < p < 1, then
every solution of (1.1) is global.

(ii) (System of equations). There are various extensions of Fujita type results to the sys-
tem of equations. See, for example, papers [9–13], survays [14, 15], and references therein. In
[9, 13], the authors investigated the following system:

∂u

∂t
= Δu + |x|σ1up11vp12 , (x, t) ∈ Rn × (0,∞),

∂v

∂t
= Δv + |x|σ1up21vp22 , (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

v(x, 0) = ψ(x) ≥ 0, x ∈ Rn,

(1.10)

where σj > max{−2,−n} and pjk ≥ 0 (j, k = 1, 2).

1.2. Blow-up Results for Slowly Decaying Initial Data

Especially for slowly decaying initial data, it was shown that the solution of (1.1) blows up in
finite time for any p > 1. In [16] Lee and Ni showed that a sufficient condition for finite time
blows up on the decay order of initial data. We note that the slow decay of initial data in all
directions was assumed. Here, let μR be the first Dirichlet eigenvalue of −Δ in the ball BR.

Theorem 1.9 (see [16]). The solution of (1.1) blows up in finite time if

lim inf
x→∞

|x|2/(p−1)φ(x) > μ1/(p−1)
1 . (1.11)

We put Ω = {(r, ω) ∈ (0,∞) × Sn−1; r > R, d(ω,ω0) < cr−μ} for some R > 0, c > 0, ω0

∈ Sn−1, and 0 ≤ μ < 1, where d(·, ·) denotes the usual distance on the unit sphere Sn−1. Miz-
oguchi and Yanagida [17] showed that a sufficient condition for finite time blows up on the
decay order of initial data in Ω. The authors consider the following problem:

∂u

∂t
= Δu + |u|p−1u, (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x), x ∈ Rn,

(1.12)

where n ∈ N and p > 1. The following results indicate that the slow decay of initial data in all
directions is not necessary for finite time blow-up.
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Theorem 1.10 (see [17]). (i) Assume that initial data φ may change sign. Suppose that φ ∈
W1,∞(Rn) satisfies the following:

φ ≥ K1r
−α in Ω for some α > 0, K1 > 0,

∣∣∇φ∣∣ ≥ K2r
−α−1+μ in Ω for some α > 0, K2 > 0,

(1.13)

with 0 < α < 2(1 − μ)/(p − 1). Then the solution of (1.12) blows up in finite time.
(ii) (Positive solutions). Assume that initial data φ is nonnegative. Suppose that φ ∈ L∞(Rn)

satisfies that

φ ≥ K1r
−α in Ω for some α > 0 K1 > 0, (1.14)

with 0 < α < 2(1 − μ)/(p − 1). Then the solution of (1.1) blows up in finite time.

Remark 1.11. (i) From the theorem, in particular, for nondecaying initial data the solution of
(1.1) blows up in finite time.

(ii) For sign changing solutions, Fujita type results are discussed in [18–22], for in-
stance.

(iii) Many blow-up results, for instance [1, 5–7, 12, 13], are based on Kaplan’s method
(the eigenfunction method). See [23].

In the remainder of this paper, we discuss various studies for the lifespan of the posi-
tive solutions of the parabolic problems. In Sections 2 and 3, we introduce the results of
asymptotics of life span with respect to the size of initial data and to the size of diffusion
constant, and the results of minimal time blow up, respectively. In Section 4, we shall show an
upper bound of the life span of the solution for (1.1).

2. Asymptotics of Life Span

2.1. Life Span for the Equation with Large or Small Initial Data

Recently, several studies have beenmade on the life span of solutions for (1.1). See [16, 19, 24–
38], and references therein. In this section, we mainly consider the following Cauchy prob-
lems:

∂u

∂t
= Δu + up, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λψ(x) ≥ 0, x ∈ Rn,

(2.1)

∂u

∂t
= Δu + |u|p−1u, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λψ(x), x ∈ Rn,

(2.2)

where n ∈ N, p > 1. Let ψ be a bounded continuous function on Rn and λ be a positive para-
meter.
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In this paper, we define the lifespan (or blow-up time) Tmax as

Tmax := sup
{
T > 0 | . The problem possesses a unique classical solution in Rn × [0, T)

}
.

(2.3)

We first introduce the result about asymptotic behavior of the life span Tmax(λ) for
(2.1) as large or small λ by Lee and Ni [16]. The authors showed the order of the asymptotics
of the life span.

Theorem 2.1 (see [16]). Assume that ψ is nonnegative.

(i) There exist constants C1 > 0 and C2 > 0 such that C1λ
1−p ≤ Tmax(λ) ≤ C2λ

1−p for large λ.

(ii) If lim inf|x|→∞ψ(x) > 0, then there exists constants C1 > 0 and C2 > 0 such that C1λ
1−p ≤

Tmax(λ) ≤ C2λ
1−p for small λ.

In [29], Gui andWang obtainedmore detailed information of the asymptotics for (2.1).
They showed that for large λ the supremum of initial data φ is dominant in the asymptotics,
and that for small λ the limiting value of φ at space infinity is dominant.

Theorem 2.2 (see [29]). Assume that ψ is nonnegative.

(i) We have

lim
λ→∞

Tmax(λ) · λp−1 = 1
p − 1

∥∥ψ∥∥1−p
L∞(Rn). (2.4)

(ii) If lim|x|→∞ψ(x) = ψ∞ > 0, then

lim
λ→ 0

Tmax(λ) · λp−1 = 1
p − 1

ψ
1−p
∞ . (2.5)

It is noteworthy that the limiting values as λ → 0 and λ → ∞ in the theorem are dif-
ferent. The proof of the theorem is also based on Kaplan’s method, and the assumption
lim|x|→∞ψ(x) = ψ∞ plays an important role in the proof.

Thereafter, the results in [16, 29] are extended by several authors. Pinsky considered
the following problem:

∂u

∂t
= Δu + a(x)up, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λψ(x) ≥ 0, x ∈ Rn,

(2.6)
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where a(x) ≥ 0 is Hölder continuous, 0 ≤ ψ ∈ BC(Rn), ψ /≡ 0, p > 1 and λ > 0 is a parameter.
The author treated the initial data in the following two classes:

Class S 0 ≤ ψ(x) ≤ δ exp
(
−γ |x|2

)
, where δ, γ > 0.

Class L c1 ≤ ψ(x) ≤ c2, where c1, c2 > 0.
(2.7)

Here, we introduce the results in [34]with a(x) ∼ |x|m (|x| � 1) form > max{−2,−n}.
Theorem 2.3 (see [34] Class S for small λ). Assume that ψ belongs to Class S.

(i) Let p ∈ (1, 1 + (2 +m)/n). Then

Tmax(λ) ∼ λ2(1−p)/(2+m−n(1−p)), as λ −→ 0. (2.8)

(ii) Let p = 1 + (2 +m)/n. Then there exists a constant c1 > 0 and for every ε > 0, a constant
c2 > 0 such that

c1λ
−(2+m)/n ≤ log Tmax(λ) ≤ c2λ−ε−(2+m)/n, for small λ. (2.9)

Theorem 2.4 (see [34] Class L for small λ). Assume that ψ belongs to Class L. Then

Tmax(λ) ∼ λ2(1−p)/(2+m), as λ −→ 0. (2.10)

Theorem 2.5 (see [34], for large λ). Assume that a is bounded and let ψ be arbitrary initial data.

(i) If there exists an x0 ∈ Rn such that a(x0), ψ(x0) > 0, then

Tmax(λ) ∼ λ1−p, as λ −→ ∞. (2.11)

(ii) If dist(supp(a), supp(ψ)) > 0, then

Tmax(λ) ∼
(
logλ

)−1
, as λ −→ ∞. (2.12)

Kobayashi extended the results to the following system of equations:

∂u

∂t
= Δu + a(x)vp, (x, t) ∈ Rn × (0,∞),

∂v

∂t
= Δv + b(x)uq, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λμφ(x), x ∈ Rn,

v(x, 0) = λνψ(x), x ∈ Rn,

(2.13)

where p, q > 1, μ, ν > 0, and λ > 0 are parameters. See [30].
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On the other hand,Mukai et al. showed the results for the following equation of porous
medium type in [31]:

∂u

∂t
= Δum + up, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λψ(x), x ∈ Rn,

(2.14)

where 1 < m < p, and ψ is a nonnegative and bounded function.

Theorem 2.6 (see [31]). (i) Let p > m. Suppose that ‖ψ‖L∞(Rn) = ψ(0) > 0. Then

lim
λ→∞

λp−1Tmax(λ) =
1

p − 1
ψ(0)1−p. (2.15)

(ii) Let p > m. Suppose that ‖ψ‖L∞(Rn) = lim|x|→∞ψ(x) > 0. Then

lim
λ→ 0

λp−1Tmax(λ) =
1

p − 1
∥∥ψ∥∥1−p

L∞(Rn). (2.16)

(iii) Assume that a ≥ 0. Let m < p < m + 2/n or a < 2/(p −m). Suppose that ψ(x) ∼ |x|−a
for large |x|. Then

Tmax(λ) ∼ λ(1−p)/(1−min{a,n}(p−m)/2) as λ −→ 0. (2.17)

Now we turn to the problems (2.1) and (2.2). In [39], Mizoguchi and Yanagida de-
termined the higher-order term of the life span Tmax(λ) for (2.2) as λ → ∞. The authors
introduced the following function space:

D =
{
ψ ∈ BC(Rn) : exp

(
−c|x|2

)
∇ψ ∈ L2(Rn) for some c > 0

}
. (2.18)

Theorem 2.7 (see [39]). Suppose that ψ ∈ D satisfies the following assumptions.

(A1) |ψ| attains its maximum at some point x = a, and ψ satisfies that

∣∣ψ(x) − ψ(a)∣∣ = |x − a|kψ̃(x) + o
(
|x − a|k+2

)
, (2.19)

at x = a with some k > −2, where ψ̃ is twice continuously differentiable at x = a and
satisfies ψ̃(a) = 0, ∇ψ̃(a) = 0 and Δψ̃(a) ≥ 0.

(A2) There exist R > 0 and δ > 0 such that

∣∣ψ(x)∣∣ < ∥∥ψ∥∥L∞(Rn) − δ ∀|x| > R. (2.20)
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If |ψ| attains its maximum at only one point x = a, then

Tmax(λ) =
1

p − 1
∥∥ψ∥∥1−p

L∞(Rn)λ
1−p

+K
∥∥ψ∥∥(2+ k/2)(1−p)−1

L∞(Rn) Δψ̃(a)λ(2+ k/2)(1−p) + o
(
λ(2+k/2)(1−p)

)
,

(2.21)

as λ → ∞ with

K =
2k+1Γ((k + n + 2)/2)

(
p − 1

)1+ k/2Γ((n + 2)/2)
. (2.22)

In particular, if ψ is smooth at x = a, then

Tmax(λ) =
1

p − 1
∥∥ψ∥∥1−p

L∞(Rn)λ
1−p

+
2

p − 1
∥∥ψ∥∥2(1−p)−1

L∞(Rn) Δψ̃(a)λ2(1−p) + o
(
λ2(1−p)

)
,

(2.23)

as λ → ∞.

2.2. Life Span for the Equation with Large Diffusion

We shall consider the following Cauchy problem:

∂u

∂t
= DΔu + |u|p−1u, (x, t) ∈ Rn × (0,∞),

u(x, 0) = λ + φ(x), x ∈ Rn,

(2.24)

where D > 0, p > 1, n ≥ 3, λ > 0, and φ ∈ L∞(Rn) ∩ L1(Rn, (1 + |x|)2dx).
In [24, 25] Fujishima and Ishige obtained the asymptotics of the life span Tmax(D) of

the solution of (2.24) as D → ∞. The situation is divided into three cases:

∫

Rn

φ(x)dx > 0,
∫

Rn

φ(x)dx = 0,
∫

Rn

φ(x)dx < 0. (2.25)

We prepare some notation. Put the following:

M
(
φ
)
:=

∫

Rn

φ(x)dx, Ξ
(
φ
)
:=

∫

Rn

xφ(x)dx, Sλ :=
λ1−p

p − 1
. (2.26)
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Theorem 2.8 (see [24, 25]). (i) Assume thatM(φ) > 0. Then Tmax(D) ≤ Sλ for any D > 0, and

Sλ − Tmax(D) = (4πSλ)−n/2λ−pD−n/2
[
M

(
φ
)
+O

(
D−1

)]
(2.27)

as D → ∞.
(ii) Assume thatM(φ) = 0. Then Tmax(D) ≤ Sλ for any D > 0, and

Sλ − Tmax(D) =
(4πSλ)−n/2

λp
√
2eSλ

D(−n−1)/2
[
Ξ
(
φ
)
+O

(
D−1/2

)]
, (2.28)

as D → ∞.
(iii) Assume thatM(φ) < 0. Then Tmax(D) ≤ Sλ for any D > 0, and

Sλ − Tmax(D) = O
(
D−n/2−1

)
, (2.29)

as D → ∞.

Remark 2.9. (i) Changing variable, we can easily see that the problem with large diffusion is
equivalent to the equation with small initial data (cf. [29]. Theorem 1.1(ii)).

(ii) In [24, 25], the behavior of the blow-up set of the solution as D → ∞ was also
studied.

3. Minimal Time Blow-up Results

3.1. Minimal Time Blow-up Results

In this section, we discuss the life span for the following parabolic equations (cf. [26–28, 35]):

∂u

∂t
= Δu + f(u), (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(3.1)

where φ is a bounded continuous function on Rn. Suppose that

f is locally Lipschitz function in [0,∞),

f(ξ) > 0 (ξ > 0),
∫∞

1

dξ

f(ξ)
<∞.

(3.2)

Applying the comparison principle to (3.1), we always have

Tmax ≥
∫∞

‖φ‖L∞(Rn)

dξ

f(ξ)
. (3.3)
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When f(u) = up, we always have

Tmax ≥ 1
p − 1

∥∥φ∥∥1−p
L∞(Rn). (3.4)

A solution u to (3.1)with initial data φ is said to blow up at minimal blow-up time provided that

Tmax =
∫∞

‖φ‖L∞(Rn)

dξ

f(ξ)
. (3.5)

We put ρ(x) := e−|x|/(
∫
Rn e

−|y|dy) and Aρ(x;φ) :=
∫
Rn ρ(y − x)φ(y)dy. The necessary and suf-

ficient conditions of initial data φ for blowing up at minimal blow-up time are following.

Theorem 3.1 (see [26]). Let u be a solution of (3.1). Assume that there exist constants ξ0 > 0 and
p > 1 such that f(ξ)/ξp is nondecreasing for ξ ≥ ξ0. Then u blows up at minimal blow-up time if and
only if one of the following two conditions for initial data φ holds

There exists a sequence {xn} ⊂ Rn such that

|xn| −→ ∞ and φ(x + xn) −→
∥∥φ∥∥L∞(Rn) a.e. in Rn as n −→ ∞;

(3.6)

sup
x∈Rn

Aρ

(
x;φ

)
=
∥∥φ∥∥L∞(Rn). (3.7)

In [36], Seki et al. consider the following quasilinear equations:

∂u

∂t
= ΔΦ(u) + f(u), (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(3.8)

where φ is a bounded continuous function on Rn. Suppose that

Φ(ξ), f(ξ) ∈ C1[0,∞) ∩ C∞(0,∞),

Φ(ξ) > 0, Φ′(ξ) > 0, Φ′′(ξ) ≥ 0 (ξ > 0),

f(ξ) > 0 (ξ > 0),

Φ(0) = 0.

(3.9)
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The authors proved that if there exist a function Ψ(η) and constants c > 0 and η1 > 0 such
that

Ψ
(
η
)
> 0, Ψ′(η) ≥ 0, Ψ′′(η) ≥ 0

(
η > η1

)
,

∫∞

η1+1

dη

Ψ
(
η
) <∞,

{
f
(
Φ−1(η)

)}′
Ψ
(
η
) − f

(
Φ−1(η)

)
Ψ′(η) ≥ cΨ(

η
)
Ψ′(η) (

η > η1
)
,

(3.10)

where ξ = Φ−1(η) is the inverse function of η = Φ(ξ), then the same result as the previous
theorem holds. For example, the result can be applied to the equation ut = Δum + up(p > m).

4. Estimates of Lifespan

4.1. Upper Bound of the Iife Span

In this section, we shall show an upper bound of the life span of positive solutions of the
Cauchy problem for a semilinear heat equation:

∂u

∂t
= Δu + f(u), (x, t) ∈ Rn × (0,∞),

u(x, 0) = φ(x) ≥ 0, x ∈ Rn,

(4.1)

where n ∈ N, and φ is a bounded continuous function on Rn. We assume that F(u) satisfies

f(u) ≥ up for u ≥ 0, (4.2)

with p > 1.
In order to state the results, we prepare several notations. For ξ′ ∈ Sn−1, and δ ∈ (0,

√
2),

we set neighborhood Sξ′(δ):

Sξ′(δ) :=
{
η′ ∈ Sn−1;

∣∣η′ − ξ′∣∣ < δ
}
. (4.3)

Define

M∞ := sup
ξ′∈Sn−1,δ>0

{
ess. inf
x′∈Sξ′ (δ)

(
lim inf
r→+∞

φ
(
rx′)

)}
. (4.4)
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Theorem 4.1 (cf. [33, 37, 38]). Let n ≥ 2. Assume thatM∞ > 0. Then the classical solution for (1.1)
blows up in finite time, and the blow-up time is estimated as follows:

Tmax ≤ 1
p − 1

M
1−p
∞ . (4.5)

This result allows us to remove the assumption of Gui andWang [29] on uniformity of
initial data at space infinity; lim|x|→∞ψ(x) = ψ∞, and to give information of the life span for
initial data of intermediate size.

Here, we show some examples of the valuesM∞ and the initial data φ in space dimen-
sions n = 2. For simplicity, we employ polar coordinates.

(1) φ(r, θ) = 1 − exp(−r2).
Since lim infr→+∞φ(rx′) = 1, we haveM∞ = 1.

(2) φ(r, θ) = {1 − exp(−r2)}(1 + cos θ).
Since lim infr→+∞φ(rx′) = 1 + cos θ, we haveM∞ = 2.

(3) φ(r, θ) = {1 − exp(−r2)}(1 + cos θ)(2 − cos r).
Since lim infr→+∞φ(rx′) = 1 + cos θ, we haveM∞ = 2.

Once we admit the theorem, we can prove the following corollary immediately.

Corollary 4.2. Let n ≥ 2. Suppose thatM∞ = ‖φ‖L∞(Rn). Then the solution u blows up at minimal
blow-up time.

Remark 4.3. For the examples of the initial data 1 and 2, ‖φ‖L∞(Rn) = M∞ holds. Hence, the
solutions blow up at minimal blow-up time. However, for the example 3, we cannot specify
the life span Tmax.

Outline of the Proof of the Theorem

The proof is based on a slight modification of Kaplan’s method. We first prepare the sequence
{wj(t)}. For ξ′ ∈ Sn−1 and δ > 0, we first determine the sequences {aj} ⊂ Rn and {Rj} ⊂ (0,∞).
Let {aj} ⊂ Rn be a sequence satisfying that |aj | → ∞ as j → ∞, and that aj/|aj | = ξ′ for any
j ∈ N. Put Rj = (δ

√
4 − δ2/2)|aj |. For Rj > 0, let ρRj be the first eigenfunction of −Δ on

BRj (0) = {x ∈ Rn; |x| < Rj} with zero Dirichlet boundary condition under the normalization∫
BRj (0)

ρRj (x)dx = 1. Moreover, let μRj be the corresponding first eigenvalue. For the solutions

for (1.1), define

wj(t) :=
∫

BRj (0)
u
(
x + aj , t

)
ρRj (x)dx. (4.6)

Now we introduce the following two lemmas.

Lemma 4.4 (see [13]). The blow-up time of wj is estimated from above as follows:

T ∗
wj

≤
log

(
1 − μRjw1−p

j (0)
)

−(p − 1
)
μRj

(4.7)

for large j.
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Lemma 4.5 (cf. [13]). (i)We have

lim inf
j→+∞

wj(0) ≥ ess.inf
x′∈Sξ′ (δ)

φ∞
(
x′). (4.8)

(ii)We have

lim
j→+∞

log
(
1 − μRjw1−p

j (0)
)

−μRjw1−p
j (0)

= 1. (4.9)

From the definition ofwj(t), Tmax ≤ T ∗
wj

holds for large j. Using the lemmas, we obtain
that

Tmax ≤ lim sup
j+→∞

T∗
wj

≤ lim sup
j+→∞

log
(
1 − μRjw1−p

j (0)
)

−(p − 1
)
μRj

=
1

p − 1
lim
j→+∞

log
(
1 − μRjw1−p

j (0)
)

−μRjw1−p
j (0)

·
(
lim inf
j→+∞

wj(0)
)1−p

≤ 1
p − 1

(
ess.inf
x′∈Sξ′ (δ)

φ∞
(
x′)

)1−p

≤ 1
p − 1

M
1−p
∞ .

(4.10)

This completes the proof.

Remark 4.6. For the problem (1.1), it is well known that

u(x, t) =
(
etΔφ

)
(x)

[
1 − (

p − 1
) ∫ t

0

∥∥esΔφ∥∥p−1L∞(Rn)ds
]−1/(p−1)

,

u(x, t) =
((
etΔφ

)
(x)1−p − (

p − 1
)
t
)−1/(p−1)

(4.11)

are a supersolution and a subsolution, respectively, where etΔφ =
∫
Rn Gt(x−y)φ(y)dx. Hence,

we note that if there exist constants T1, T2 > 0 satisfying

1 =
(
p − 1

) ∫T1

0

∥∥∥esΔφ
∥∥∥
p−1

L∞(Rn)
ds,

∥∥∥eT2Δφ
∥∥∥
1−p

L∞(Rn)
=
(
p − 1

)
T2,

(4.12)

then we have T1 ≤ Tmax ≤ T2.
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At last, we introduce the result in n = 1. The proof does work in the same way as in
n ≥ 2.

Theorem 4.7 (see [13]). Let n = 1. Assume that

max
{
lim inf
x→−∞

φ(x), lim inf
x→+∞

φ(x)
}
> 0. (4.13)

Then the classical solution for (1.1) blows up in finite time, and the blow-up time is estimated as fol-
lows:

Tmax ≤ 1
p − 1

(
max

{
lim inf
x→−∞

φ(x), lim inf
x→+∞

φ(x)
})1−p

. (4.14)
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