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A numerical method for special Cosserat rods based on Antman’s description Antman, 2005 is
developed for hyperelastic materials and potential forces. This method preserves the relevant
properties of the underlying PDE system, namely, the orthonormality of the directors and the
conservation of the energy.

1. Introduction

Elastic rods are considered in many fields of science and technology; see, for example, [1–3].
For the simulation of their dynamics, the correct description of the local and global physical
properties and reasonable computation times are the essential requirements.

Over the past years many different approaches to the numerical simulation of elastic
rods have been developed; see, for example, [4–9] for different approaches involving finite
element methods, finite difference methods and discrete mechanics.

In this paper we use the description of the rod as a special one-dimensional Cosserat
continuum following the formulation in Antman [10]. This is a geometrically correct one-
dimensional description based on partial differential equations. This type of modeling fulfills
the above requirements with respect to simplicity and correctness. Numerical schemes for the
special case of Kirchhoff equations have been developed by Pai [1] (stationary) andWeber et
al. [3] (instationary). Energy conservation and the directors’ orthonormality are not strictly
fulfilled in these schemes. Schemes for structural mechanics problems conserving energy and
further invariants of the equation are developed, investigated, and applied, for example, in
[11–13].
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We formulate the kinematic and dynamic equations of the Cosserat rod theory in
the so-called director-basis. The rod’s curve r and the outer potential force f are the only
fields described in an external Cartesian basis. For technical reasons we use a representation
of the rotational group by unit-quaternions. We note that the first use of quaternions in
geometrically-exact rodmodels was in [14], see also [15]. In Section 2 we present an overview
of the model resulting in the following system:

∂tr = D−1(q) · p,
∂tq = Ω(w) · q,

∂tv = ∂sp + u × p + v × w,

∂tu = ∂sw + u × w,

∂tp =
1

(
ρA
)∂sn +

1
(
ρA
)u × n + p × w +

1
(
ρA
)D(q) · f,

∂tw =
(
ρJ
)−1 · ∂sm +

(
ρJ
)−1 · (u × m + v × n +

((
ρJ
) · w) × w

)
.

(1.1)

Here, t is the time and s the parameter determining a material cross section of the rod. The
unit-quaternions q and the associated orthogonal matrix D(q) describe the transformation
between the fixed external basis and the director-basis. The vector fields v, u, p, and w are the
tangent of the curve, the generalized curvature, the velocity, and the angular velocity, respec-
tively. Moreover, (ρA) is the rod’s line density and the positive definite matrix (ρJ) is defined
by the moments of inertia of its cross sections. In this paper the contact force n and the contact
couple m are specified by a hyperelastic material law. In Section 3 we introduce the concept
of energy as a constant of motion. In Section 4 we develop a straightforward finite difference
scheme for the above equationswith appropriate boundary conditions. The scheme conserves
the energy and the orthonormality of the directors. In Section 5 the method is investi-
gated for several examples using Timoshenko’s material law.

2. Model

Following Antman [10], a special Cosserat rod in the three-dimensional Euclidian space E
3

is geometrically characterized by three vector-valued functions r,d1,d2 : (sa, sb) × R → E
3.

The parameter s ∈ (sa, sb) ⊂ R identifies a material cross section (material point) of the rod,
r(s, t) characterizes the position of this cross section at time t. The derivatives of the curve r
with respect to t and s,

p = ∂tr, v = ∂sr, (2.1)

are the velocity and the tangent field. The orthonormal directors d1,d2 characterize the
orientation of the cross sections. Defining d3 = d1 × d2, we get a local orthonormal basis
at all material points. Due to the orthonormality of the directors there exist vector-valued
functions u and w such that

∂tdk = w × dk, ∂sdk = u × dk (2.2)
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for k ∈ {1, 2, 3}. We call w the angular velocity and u the generalized curvature. The defini-
tions of the vector fields p, v, w, and u imply the compatibility conditions:

∂tv = ∂sp, ∂tu = ∂sw +w × u, (2.3)

that complete the kinematic equations of the the special Cosserat rod theory in an invariant
notation.

To rewrite these kinematic equations in an appropriate basis, we decompose an
arbitrary vector field x of our rod theory in the director-basis dk as well as in a fixed external
Cartesian basis ek, that is, x =

∑3
k=1 xkdk =

∑3
k=1 xkek ∈ E

3. The corresponding component
triple,

x = (x1, x2, x3) ∈ R
3, x = (x1, x2, x3) ∈ R

3, (2.4)

are strictly to distinguish from the vector field x ∈ E
3. The component triples of its derivatives

with respect to t and s in the director-basis are

(∂tx · dk)k=1,2,3 = ∂tx + w × x, (∂sx · dk)k=1,2,3 = ∂sx + u × x. (2.5)

The transformation between the director-basis and the external basis is given by an ortho-
normal matrix D with components Dij = di · ej . We use a representation of D in unit-quat-
ernions q = (q0, q1, q2, q3) ∈ R

4, cf. [16],

D = D(q) =

⎛

⎜⎜
⎝

q20 + q
2
1 − q22 − q23 2

(
q1q2 − q0q3

)
2
(
q1q3 + q0q2

)

2
(
q1q2 + q0q3

)
q20 − q21 + q22 − q23 2

(
q2q3 − q0q1

)

2
(
q1q3 − q0q2

)
2
(
q2q3 + q0q1

)
q20 − q21 − q22 + q23

⎞

⎟⎟
⎠. (2.6)

Here, the orthonormality of the matrix D(q) is guaranteed by ‖q‖ = 1. For an arbitrary x ∈ E
3

with x =
∑3

k=1 xkdk =
∑3

k=1 xkek we obtain x = D(q) · x. Instead of the kinematic equation for
the directors, we formulate an equivalent equation for the quaternions, cf. [16],

∂tq =
1
2

⎛

⎜⎜
⎝

0 w1 w2 w3

−w1 0 −w3 w2

w2 w3 0 −w1

−w3 w2 w1 0

⎞

⎟⎟
⎠ · q = Ω(w) · q. (2.7)

Initializing (2.7) with the unit-quaternions, the skew symmetry of Ω(w) guarantees the pre-
servation of the norm of the quaternions in time, that is, the orthonormality of D(q) and hence



4 International Journal of Differential Equations

the orthonormality of the director-basis. Using the presented formalism we obtain our final
version of the kinematic equations of the rod:

∂tr = D(q)−1 · p,
∂tq = Ω(w) · q,

∂tv = ∂sp + u × p + v × w,

∂tu = ∂sw + u × w.

(2.8)

The balance laws formomentum and angular momentum yield the dynamic equations
of the Cosserat rod theory, cf. [10],

(
ρA
)
∂tp = ∂sn + f,

∑

α,β=1,2

(
ρJαβ

)
∂t
(
dα × ∂tdβ

)
= ∂sm + v × n + l.

(2.9)

Here, (ρA) is the line-density and (ρJαβ) are the moments of inertia. These quantities are time
independent, since they are defined in the reference configuration as Lagrangian quantities.
We assume that they are constant with respect to s, too. The body force line density f has to
be specified in the applications. We assume l = 0 for the corresponding body couple density.
The contact force n and contact couplem have to be defined by material laws. Usually, this is
done in the director-basis for reasons of objectivity. Thus, we decompose also the dynamical
equations in the director-basis:

∂tp =
1

(
ρA
)∂sn +

1
(
ρA
)u × n + p × w +

1
(
ρA
)D · f,

∂tw =
(
ρJ
)−1 · ∂sm +

(
ρJ
)−1 · (u × m + v × n +

((
ρJ
) · w) × w

)
.

(2.10)

The positive definite matrix (ρJ) is given by the moments of inertia:

(
ρJ
)
=

⎛

⎜⎜
⎝

(
ρJ22

) −(ρJ12) 0

−(ρJ21) (
ρJ11

)
0

0 0
(
ρJ11

)
+
(
ρJ22

)

⎞

⎟⎟
⎠. (2.11)

The body force, for example, gravity, is obviously defined in the external basis. Thus, (2.10)
are coupled to the kinematic equation for the quaternions.

Remark 2.1. The special Cosserat rod theory describes the angular momentum as a linear
function of the angular velocity. The choice of the representation of the vector fields in the
director-basis leads to the time independent matrix (ρJ) characterizing this linear depend-
ence. Besides the proper formulation of the material laws, this time independence is one of
the major advantages of the choice of the director-basis.
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In this paper we restrict ourselves to hyperelastic materials. That means there exists a
potential R

6 � (v, u) �→ ψ(v, u) ∈ R, such that

n = ∂vψ, m = ∂uψ. (2.12)

Moreover, we assume that only potential forces act on the rod. Thus there exists a function
R

3 � r �→ V (r) ∈ R, such that

f = −∂rV. (2.13)

Remark 2.2. The more general class of elastic materials are materials where n and m are
functions of the so-called strain variables v and u. These functions may also depend explicitly
on s.

The kinematic equations (2.8) and the dynamic equations (2.10) together with the
restriction to hyperelastic materials and potential forces constitute our rod theory, see also
(1.1). We consider system (1.1) with two types of boundary conditions defining a fixed or a
free end. For simplicity we restrict our description to a fixed end at s = sa

p(sa, t) = 0, w(sa, t) = 0, (2.14)

and a free end at s = sb

n(sb, t) = 0, m(sb, t) = 0. (2.15)

The presentation of the energy conserving numerical algorithm in Section 4 deals with
the above general class of rods. For the numerical examples in Section 5 we specify the rod’s
geometry, a hyperelastic material law, and the potential forces. We consider a homogeneous
cylinder with diameter d > 0, cross section area A = π/4d2, and moment of inertia I =
π/64d4. In this case, the matrix of inertia is

(
ρJ
)
=
(
ρI
)
diag(1, 1, 2). (2.16)

We use the material law of Timoshenko [17] for Poisson number μ = 1/2:

ψ =
1
2
(EA)

(
1
3
v2
1 +

1
3
v2
2 + (v3 − 1)2

)
+
1
2
(EI)

(
u21 + u

2
2 +

2
3
u23

)
, (2.17)

where E is Young’s modulus. Additionally, we restrict to gravitational forces, that is,

V = −(ρA)geg · r, (2.18)

where g is the gravitational constant and eg is the direction of gravity in the external Cartesian
basis.
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Remark 2.3. For hyperelastic materials (1.1) is an inhomogeneous hyperbolic system. In the
special case of Timoshenko for a homogeneous cylinder the hyperbolic part is linear with
eigenvalues 0 (sevenfold), ± c (threefold), and ± c/3 (threefold), where c =

√
E/ρ is the

speed of sound. Computing the eigenvectors one can easily show that the fixed and free end
boundary condition correctly handle the characteristic variables r and q corresponding to the
eigenvalue 0. With respect to the remaining variables we do not prescribe characteristic vari-
ables, but the correct number of variables on both sides of the rod.

3. Energy as a Constant of Motion

The system (1.1) for the state vector φ = (r, q, v, u, p,w) ∈ R
19 can be written in the general

form of a conservation law as

∂tφ = ∂sf(φ) + h(φ) (3.1)

with flux-function f(φ) = (0, 0, p,w, (1/(ρA))n, (ρJ)−1 · m) and source term h(φ) that is easy
to identify from (1.1). We introduce the energy density:

ε(φ) =
1
2
(
ρA
)
p2 +

1
2
w · (ρJ) · w + ψ(v, u) + V (r). (3.2)

and the symmetric function:

a
(
φ1,φ2

)
=

1
2
(n1 · p2 + m1 · w2 + p1 · n2 + w1 · m2) (3.3)

for arbitrary statesφ1, φ2. The derivative of the energy density with respect to the state vector
φ is given by

∂φε =
(
−f, 0, n,m,

(
ρA
)
p,
(
ρJ
) · w

)
, (3.4)

that leads to the properties:

∂φε · h = 0,
1
2
∂φε

(
φ1

) · f(φ2

)
= a
(
φ1,φ2

)
, ∂φε · ∂sf = ∂sa(φ,φ). (3.5)

We conclude the local energy balance:

∂tε = ∂sa(φ,φ), (3.6)

that is, a(φ,φ) is the energy flux and there is no energy source term. For the presented fixed
and free end boundary conditions (2.14), (2.15)we have a vanishing energy flux at the bound-
aries. Therefore, the total energy is a constant of motion:

d
dt

E =
d
dt

∫sb

sa

εds′ = 0. (3.7)
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4. Discretization

For the spatial discretization we use a simple finite difference scheme. We note that similar
finite difference schemes have been developed and their properties, in particular, the con-
servation of invariants, have been investigated in [8, 12, 18].

We discretize (sa, sb) with (N + 1) equidistant mesh points sj and denote the cor-
responding length of the cells by Δs. The boundary points are s1 = sa and sN+1 = sb. As
usual, the numerical fluxes are denoted by Fj+1/2 for all j ∈ {1, . . . ,N}. The state vector and
the source terms are discretely given at the mesh points j ∈ {1, . . . ,N+1}, that is, φj 	 φ(sj , t)
and Hj 	 h(φ(sj , t)). For the inner points j ∈ {2, . . . ,N} the spatial discretization results in

d
dt

φj =
1
Δs
[
Fj+1/2 − Fj−1/2

]
+Hj , Fj+1/2 	 1

2

[
f
(
φj

)
+ f
(
φj+1

)]
. (4.1)

Thereby, the numerical flux function is approximated by the arithmetic average of the flux
at neighboring mesh points. For the flux calculation at the boundaries we have to fulfill the
Dirichlet boundary conditions at the fixed end sa = s1:

p1 = 0, w1 = 0, (4.2)

and at the free end sb = sN+1:

nN+1 = 0, mN+1 = 0. (4.3)

Thus, for the remaining components our finite difference scheme reads at the fixed end sa =
s1:

d
dt

r1 = 0,
d
dt

q1 = 0,
d
dt

v1 =
1
Δs

p2,
d
dt

u1 =
1
Δs

w2, (4.4)

and at the free end sb = sN+1:

d
dt

rN+1 = D−1(qN+1) · pN+1,
d
dt

qN+1 = Ω(wN+1) · qN+1,

d
dt

pN+1 = − 1
Δs

1
ρA

nN + pN+1 × wN+1 +
1

(
ρA
)D(qN+1) · fN+1,

d
dt

wN+1 = − 1
Δs
(
ρJ
)−1 · mN +

(
ρJ
)−1 · (((ρJ) · wN+1

) × wN+1
)
.

(4.5)
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Now, we come up with our main point, the (semi)discrete energy conservation of this
scheme. The energy density is approximated locally at the mesh points j ∈ {1, . . . ,N+1}, that
is, εj 	 ε(φj). We obtain for the inner points j ∈ {2, . . . ,N}:

d
dt
εj = ∂φε

(
φj

)
· d
dt

φj

(19)
= ∂φε

(
φj

)
·
[

1
Δs
(
Fj+1/2 − Fj−1/2

)
+Hj

]

(17)
=

1
Δs

[
a
(
φj ,φj+1

)
− a
(
φj−1,φj

)]
.

(4.6)

For the boundaries we have to take into account the Dirichlet conditions:

d
dt
ε1 = ∂φε

(
φ1

) · d
dt

φ1
(16,20,22)

=
1
Δs

(n1 · p2 + m1 · w2)

(15,20)
=

2
Δs

a
(
φ1,φ2

)
,

d
dt
εN+1 = ∂φε

(
φN+1

) · d
dt

φN+1
(16,20,23)

= − 1
Δs

(nN · pN+1 + mN · wN+1)

(15,21)
= − 2

Δs
a
(
φN,φN+1

)
.

(4.7)

Applying the trapezoidal quadrature rule for the discrete energy,

E 	 EDisc =
Δs
2
ε1 + Δs

N∑

j=2

εj +
Δs
2
εN+1, (4.8)

guarantees its conservation:

d
dt

Edisc =
Δs
2

d
dt
ε1 + Δs

N∑

j=2

d
dt
εj +

Δs
2

d
dt
εN+1 = 0. (4.9)

This means, the chosen semidiscretization in space ensures that the discrete energy (4.8) is a
first integral of the ODE-system (4.1)–(4.5).

For the time discretization any energy conserving method can be used. We choose a
Gauss method, that also guarantees the preservation of the norm of the quaternions. In the
numerical realization, we make use of the second order Gauss method, that is, the midpoint
rule, to obtain a temporal order that is consistent with the spatial one, at least at the inner
points. For the discretization of space and time, and the use of the midpoint rule for the con-
servation of certain properties we refer also to the above mentioned papers [12, 18].

To solve the resulting nonlinear equations a Newton method is used. The strict con-
servation of energy and orthogonality are the main advantages of the straightforward finite
difference scheme presented here.
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Remark 4.1. The scheme described above concentrates on preserving the energy of the rod and
the orthonormality of the directors. In the sense of numerical methods for hyperbolic systems
the scheme is not able to handle shocks properly. It does not have the usual properties like
being a TVD scheme or satisfying the entropy condition.

Remark 4.2. Higher order discretizations are also possible. For example, we could consider
the following fourth order numerical flux function:

Fj+1/2 	 1
2

[
f
(
φj

)
+ f
(
φj+1

)]
+

1
16

[
−f
(
φj+2

)
+ f
(
φj+1

)
+ f
(
φj

)
− f
(
φj−1

)]
. (4.10)

Then, the time derivative of the discrete energy density at the inner mesh point j is given by

d
dt
εj =

1
Δs

⎡

⎢⎢
⎣a
(
φj ,φj+1

)

︸ ︷︷ ︸
=O1

−a
(
φj−1,φj

)

︸ ︷︷ ︸
=U1

−1
8
a
(
φj ,φj+2

)

︸ ︷︷ ︸
=O3

+
1
4
a
(
φj ,φj+1

)

︸ ︷︷ ︸
=O2

−1
4
a
(
φj−1,φj

)

︸ ︷︷ ︸
=U2

+
1
8
a
(
φj−2,φj

)

︸ ︷︷ ︸
=U3

⎤

⎥⎥⎥
⎦
.

(4.11)

The termsO1,O2,O3,U1,U2, andU3 are eliminated at themesh points j+1, j+1, j+2, j−1, j−1,
and j−2, respectively. Neglecting the boundary points this yields again the conservation of the
discrete energy. The discretization near the boundary points has to be considered separately.

5. Numerical Examples

In this section we present three numerical examples, restricting ourselves to Timoshenko’s
material law for a homogeneous cylinder as discussed at the end of Section 2. Introducing a
typical length, a typical time, and a typical mass:

styp = sb − sa, ttyp =
styp
√
E/ρ

, mtyp = ρ
π

4
d2styp, (5.1)

the dimensionless parameters of the model are the slenderness ratio and the gravity number:

δ =
d

styp
, γ =

ρgstyp

E
. (5.2)

In more details, we have (EA) = (ρA) = 1, (EI) = (ρI) = π/16δ2, and for the speed of sound
c = 1. In the dimensionless form Timoshenko’s material law reads

n =
(
1
3
v1,

1
3
v2, v3 − 1

)
, m =

π

16
δ2
(
u1, u2,

2
3
u3

)
. (5.3)
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To simplify the formulation of the equations we define for x ∈ R
3 and λ ∈ R:

[x]λ = (x1, x2, λx3), x̂ = (−x2, x1, 0). (5.4)

Then, the system (1.1) reads

∂tr = D−1(q) · p,
∂tq = Ω(w) · q,

∂tv = ∂sp + u × p + v × w,

∂tu = ∂sw + u × w,

∂tp =
1
3
∂s[v]3 +

1
3
u × [v]3 + û + p × w − γD(q) · (0, 1, 0),

∂tw = ∂s[u]1/3 +
1
3
u3û +

16
π

1
δ2

(
1 − 2

3
v3

)
v̂ +w3ŵ.

(5.5)

As mentioned, the rod is fixed at one side,

p(0, t) = (0, 0, 0), w(0, t) = (0, 0, 0), (5.6)

and the other side is free, that is, for Timoshenkos’s material law:

v(1, t) = (0, 0, 1), u(1, t) = (0, 0, 0). (5.7)

The chosen initial configuration of a straight rod and direction of gravity eg = (0,−1, 0)
can be seen in Figure 1. In the following examples different initial torsions will be considered.
More precisely,

r(s, 0) = sd3,

d1(s, 0) = e2 cos
(
μ(s)

)
+ e3 sin

(
μ(s)

)
,

d2(s, 0) = −e2 sin
(
μ(s)

)
+ e3 cos

(
μ(s)

)
,

(5.8)

where μ : (0, 1) → R is a field of torsion angles that has to be defined. These conditions are
equivalent to initial conditions for r(s, 0) and q(s, 0). Moreover, due to the definitions of v and
uwe have

v(s, 0) = (0, 0, 1), u(s, 0) =
(
0, 0, ∂sμ

)
. (5.9)

Finally we prescribe

p(s, 0) = (0, 0, 0), w(s, 0) = (0, 0, 0), (5.10)
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e2

e1

e3

g

Figure 1: Initial situation.

that is, the rod is initially at rest. Our initial conditions are compatible to the boundary con-
ditions if μ(0) = 0 and ∂sμ(1) = 0.

In all simulations we choose the CFL-number equal to 1. This implies Δt = Δs as for
the speed of sound c = 1 in the dimensionless form.

We remark that in all simulations energy is strictly conserved according to the above
analysis.

Example 5.1 (Torsional Oscillation without Gravity). We choose γ = 0, δ = 10−3, and a field of
torsion angles fulfilling the compatibility condition:

μ(s) =
2
π

sin
(π
2
s
)
. (5.11)

In this example, only the torsion u3 and the angular velocity w3 are involved, because of the
vanishing gravity. The equations reduce to the homogenous wave-equation:

∂tu3 − ∂sw3 = 0,

∂tw3 − 1
3
∂su3 = 0.

(5.12)

Due to the chosen torsion angle we exactly initialize the fundamental mode of the wave equa-
tion with a frequency

ωtheo =
π√
12
. (5.13)

We use this example as a benchmark for the convergence properties of our scheme comparing
the computed frequencies with the analytical one for different grid sizes, see Figure 2. Com-
paring the identified simulation frequency with the fundamental frequency of the analytical
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Figure 2: Torsional oscillation-Frequency ω versus number of grid cellsN.

solution ωtheo = 0.9069 we note that, for example, forN = 25 the relative error is of the order
10−3.

Example 5.2 (Transversal Oscillation). We choose γ = 10−7, μ = 0, and vary δ from 10−3

to 10−1. This example describes the classical case of transversal oscillation of an one-sided
fixed rod without twist. Since the rod is strainless in the initial configuration and—as men-
tioned—at rest initially, gravity is used to excite the oscillation. The transversal oscillation
frequency for the rod can be compared to the well-known result for vanishing gravitation
given for example in Peterson [19] or Timoshenko [20]. It reads in the chosen dimensionless
form

ω =
λ2

4
δ, (5.14)

where the constant λ is given by λ = 1, 875. Defining the temporal difference between two
maxima of the potential energy as a period of oscillation, we identify the frequency ωsim.
Figure 3 shows for N = 10 the expected linearity of the frequency ω with respect to the
slenderness ratio δ. Determining λ from a best fit line, we obtain λsim = 1.870. Thus, the
relative error is very small1—of the order 10−3—even for the very coarse discretization with
N = 10.

We note that the solution is very accurate although we have chosen a linear material
law for the contact force n instead of a Kirchhoff constraint v = (0, 0, 1) normally used.
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Figure 3: Transversal oscillation-frequency ω versus slenderness δ.

Example 5.3 (Three-dimensional Problem Including all Strain Variables). We choose γ = 10−4,
δ = 10−2, and a field of torsion angles:

μ = 6πs(2 − s). (5.15)

In this case, see Figure 4, the rod is initially twisted three times and the gravitational number
is comparatively high. That means all strain variables of the rod are excited during the
evolution. The algorithm is able to deal with such a situation, in particular, from the point
of view of conservation of energy. The results are reasonable as long as the linear material
law is valid. One has to take into account that for large strain values Timoshenko’s material
law does not guarantee that the deformation of the rod preserves the orientation. See Antman
[10] for a precise definition of the preservation of orientation.

6. Conclusion

In this paper we use the description of a hyperelastic rod in the formulation of Antman [10].
For the resulting hyperbolic system we developed a numerical method, which conserves the
energy of the rod as well as the orthonormality of the directors. However, the scheme is not
able to handle shocks properly. It is neither a TVD scheme nor does it satisfy the entropy
condition.

For the material law of Timoshenko [17] we illustrated the method using some
numerical examples. For these examples, the conservation properties are strictly fulfilled
and very good agreement of the numerical and analytical results can be observed. Finally,
we mention that for realistic three-dimensional problems a nonlinear material law has to be
used, which can be easily incorporated in the scheme.
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Figure 4: Rod’s curve at t = 0 (a), t = 40 (b), t = 80 (c), and t = 120 (d).
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