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We develop a generalized monotone method using coupled lower and upper solutions for Caputo
fractional differential equations with periodic boundary conditions of order q, where 0 < q < 1. We
develop results which provide natural monotone sequences or intertwined monotone sequences
which converge uniformly andmonotonically to coupledminimal andmaximal periodic solutions.
However, these monotone iterates are solutions of linear initial value problems which are easier to
compute.

1. Introduction

The study of fractional differential equations has acquired popularity in the last few decades
due to its multiple applications, see [1–5] for more information. However, it was not until
recently that a study on the existence of solutions by using upper and lower solutions, which
is well established for ordinary differential equations in [6], has been done for fractional
differential equations. See [3, 7–16] for recent work.

In this paper we recall a comparison theorem from [3] for a Caputo fractional
differential equation of order q, 0 < q < 1, with initial condition. We will use coupled
lower and upper solutions combined with a generalized monotone method of initial value
problems to prove the existence of coupled minimal and maximal periodic solutions. The
results developed provide natural sequences and intertwined sequences which converge
uniformly and monotonically to coupled minimal and maximal periodic solutions. Instead of
the usual approach as in [6, 17] where the iterates are solutions of linear periodic boundary
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value problems we have used a generalized monotone method of initial value problems. This
idea was presented in [18] for integrodifferential equations. The advantage of this method,
compared to what was developed in [3, 15], is that it avoids computing the solution of the
linear periodic boundary value problem using the Mittag-Leffler function at every step of
the iterates. We also modify the comparison theorem which does not require the Hölder
continuity condition as in [3].

2. Preliminary Definitions and Comparison Results

In this section we state some definitions and recall some results for a Caputo initial value
problem which we need in our main results. Consider the initial value problem of the form:

cDqu(t) = f(t, u(t)),

u(0) = u0.
(2.1)

Here, cDqu(t) is the Caputo derivative of order n − 1 < q ≤ n for t ∈ [a, b], which is
defined in [1–3, 5] as

cD
q
a+u(t) =

1
Γ
(
n − q

)
∫ t

a

(t − s)n−q−1u(n)(s)ds,

cD
q

b−u(t) =
(−1)n

Γ
(
n − q

)
∫b

t

(s − t)n−q−1u(n)(s)ds.

(2.2)

In this paper we will denote cDqu(t) = cD
q
au(t).

The relation between the Caputo fractional derivative and the Riemann-Liouville
fractional derivative, Dq, is given by

cDqu(t) = Dq

[

u(s) −
n−1∑

k=0

u(k)(a)
k!

(s − a)k
]

(t). (2.3)

Throughout this paper we consider the Caputo derivative of order q, for 0 < q < 1
and t ∈ [0, 1]. We start by showing some comparison results relative to initial value problems
with the Caputo fractional derivative of order q.

Lemma 2.1. Let m(t) ∈ C1([0, T],R). If there exists t1 ∈ [0, T] such that m(t1) = 0 and m(t) ≤ 0
on [0, T], then it follows that

cDqm(t1) ≥ 0. (2.4)

Proof. Let t1 ∈ [0, T], the using the relation (2.3) we have that

cDqm(t1) = Dqm(t1) − m(0)
Γ
(
1 − q

) t−q ≥ Dqm(t1). (2.5)
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Since this lemma was proven in [8] for the Riemann Liouville derivative, we have that
Dqm(t1) ≥ 0 implies cDqm(t1) ≥ 0, and the proof is complete.

Remark 2.2. In [3] they proved the above result by assuming that m(t) is Hölder continuous
of order λ > q. Although the proof is correct, it is not useful in the monotone method or any
iterative method because we will not be able to prove that each of those iterates are Hölder
continuous of order λ > q.

Now we are ready to establish the following comparison theorem.

Theorem 2.3. Let J = [0, T], f ∈ C[J × R,R], v,w ∈ C1[J,R], and for t ∈ J the following
inequalities hold true,

cDqv(t) ≤ f(t, v(t)), v(0) ≤ u0,

cDqw(t) ≥ f(t,w(t)), w(0) ≥ u0.
(2.6)

Suppose further that f(t, u) satisfies the following Lipschitz condition,

f(t, x) − f
(
t, y

) ≤ L
(
x − y

)
, for x ≥ y and L > 0, (2.7)

then v(0) ≤ w(0) implies that

v(t) ≤ w(t), for 0 ≤ t ≤ T. (2.8)

Proof. Assume first without loss of generality that one of the inequalities in (2.6) is strict,
say cDqv(t) < f(t, v(t)), and v0 < w0, where v(0) = v0 and w(0) = w0. We will show that
v(t) < w(t) for t ∈ J .

Suppose, to the contrary, that there exists t1 such that 0 < t1 ≤ T for which

v(t1) = w(t1), v(t) ≤ w(t), for t < t1. (2.9)

Setting m(t) = v(t) − w(t) it follows that m(t1) = 0 and m(t) ≤ 0 for t < t1. Then by
hypothesis and Lemma 2.1 we have that cDqm(t1) ≥ 0. Thus

f(t1, v(t1)) > cDv(t1) ≥ cDw(t1) ≥ f(t1, w(t1)), (2.10)

which is a contradiction to the assumption v(t1) = w(t1). Therefore v(t) < w(t).
Now assume that the inequalities (2.6) are nonstrict. We will show that v(t) ≤ w(t).
Setwε(t) = w(t)+ελ(t), where ε > 0 and λ(t) = Eq[2Ltq], where Eq is the one parameter

Mittag-Leffler function. This implies that wε(0) = w0 + ε > w0 and wε(t) > w(t) for t ∈ (0, T].
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Using (2.6) and the Lipschitz condition (2.7), we find that

cDqwε(t) = cDqw(t) + εcDqλ(t)

≥ f(t,w(t)) + 2εLλ(t)

≥ f(t,wε(t)) − εLλ(t) + 2εLλ(t)

= f(t,wε(t)) + εLλ(t)

> f(t,wε(t)) , 0 < t ≤ T.

(2.11)

Here we have utilized the fact that λ(t) is the solution of the initial value problem

cDqλ(t) = 2Lλ(t), λ(0) = 1 > 0. (2.12)

Clearly there is no assumption on the growth of L > 0. Applying now the result
for strict inequalities to v(t), wε(t), we get that v(t) < wε(t) for t ∈ J , for every ε > 0 and
consequently making ε → 0, we get that v(t) ≤ w(t) for t ∈ J .

The following corollary will be useful in our main results.

Corollary 2.4. Letm ∈ C1[J,R] be such that

cDqm(t) ≤ Lm(t),

m(0) = m0.
(2.13)

Then we have from the previous theorem the estimate

m(t) ≤ m0Eq(Ltq), for 0 ≤ t ≤ T and L > 0. (2.14)

The result of the above corollary is still true even if L = 0, which we state separately
and prove it.

Corollary 2.5. Let cDqm(t) ≤ 0 on [0, T]. Then m(t) ≤ 0, ifm(0) ≤ 0.

Proof. By definition of cDqm(t) and by hypothesis,

cDqm(t) =
1

Γ
(
1 − q

)
∫ t

0
(t − s)−qm′(s)ds ≤ 0, (2.15)

which implies that m′(t) ≤ 0 on [0, T]. Therefore, m(t) ≤ m(0) ≤ 0 on [0, T].

Note that the above result may not be true for the Riemann Liouville derivative.
We recall a comparison result from [3] for periodic boundary conditions. As in

Theorem 2.3, the proof does not require Hölder continuity.
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Theorem 2.6. Let J = [0, T], f ∈ C[J × R,R], v,w ∈ C1[J,R], and for 0 < t ≤ T ,

cDqv(t) ≤ f(t, v(t)), v(0) ≤ v(T),

cDqw(t) ≥ f(t,w(t)), w(0) ≥ w(T).
(2.16)

Suppose further that f(t, u) is strictly decreasing in u for each t, then

v(t) ≤ w(t), for 0 ≤ t ≤ T. (2.17)

Proof. If the conclusion is not true; that is, if there exists t0 ∈ [0, T] such that v(t0) > w(t0),
then there exists an ε > 0 such that

v(t0) = w(t0) + ε, v(t) ≤ w(t) + ε, for 0 ≤ t ≤ t0 ≤ T. (2.18)

Setting m(t) = v(t) −w(t) − ε we find that if t0 ∈ (0, T], then

m(t0) = 0, m(t) ≤ 0, for 0 < t ≤ t0 ≤ T. (2.19)

By Lemma 2.1 we have that cDqm(t0) ≥ 0. Thus, cDqv(t0) ≥ cDqw(t0). We now
obtain by hypothesis and by the strictly decreasing nature of f(t, u) in u,

f(t0, v(t0)) ≥ cDqv(t0) ≥ cDqw(t0) ≥ f(t0, w(t0)) > f(t0, v(t0)), (2.20)

which is a contradiction.
If t0 = 0, then

v(T) ≥ v(0) = w(0) + ε ≥ w(T) + ε, (2.21)

so v(T) > w(T), and by the above argument we also get a contradiction.
Hence v(t) ≤ w(t) for 0 ≤ t ≤ T and the proof is complete.

Two important cases of this theorem are the following which are useful to prove
the uniqueness of the solution of a Caputo fractional differential equation with periodic
boundary conditions.

Corollary 2.7. Letm ∈ C1[J,R] be such that

cDqm(t) ≤ −Mm(t),

m(0) ≤ m(T),
(2.22)

for 0 ≤ t ≤ T and M > 0. Then m(t) ≤ 0 for 0 ≤ t ≤ T .
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Similarly, if

cDqm(t) ≥ −Mm(t),

m(0) ≥ m(T),
(2.23)

for 0 ≤ t ≤ T and M > 0. Then m(t) ≥ 0 for 0 ≤ t ≤ T .

Remark 2.8. It is to be noted that in the proof of these equivalent results from [3] we use
Lemma 2.1 which does not require the Hölder continuity assumption.

A generelized monotone method for periodic boundary value problems was recently
developed in [3, 15]. However it uses the approach established in [6] for ordinary differential
equations where the iterates are solutions of the linear periodic boundary value problem,

cDqu(t) = −Mu(t) + h(t),

u(0) = u(T),
(2.24)

where M > 0 and h ∈ C[J,R].
The explicit solution of this equation is given by

u(t) =
Eq(Mtq)

1 − Eq

(
M(T)q

)
∫T

0
(T − s)q−1Eq,q

[
M(T − s)q

]
h(s)ds

+
∫ t

0
(t − s)q−1Eq,q

[
M(t − s)q

]
h(s)ds,

(2.25)

where Eq and Eq,q are Mittag-Leffler functions with one and two parameters, respectively.
This poses a problem to compute the linear iterates since it involves Mittag-Leffler

functions. The advantage of our method is that it does not require the Mittag-Leffler function
in our computations.

Pandit et al. used the initial value problem to obtain a generalized monotone method
in [18] for nonlinear integrodifferential equations with periodic boundary conditions. In the
next section we develop a monotone method using this idea.

3. Generalized Monotone Method for the Nonlinear Periodic
Boundary Value Problem via Initial Value Problem

In this section, we will develop a generalized monotone method for the nonlinear periodic
boundary value problem (3.2), given below, by using coupled upper and lower solutions and
the corresponding initial value problem (2.1), where f does not depend on u,

u(t) = u0 +
1

Γ
(
q
)
∫ t

0
(t − s)q−1f(s)ds. (3.1)
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For that purpose consider the nonlinear periodic boundary value problem of the form:

cDqu(t) = f(t, u(t)) + g(t, u(t)),

u(0) = u(T),
(3.2)

where f, g ∈ C[J × R,R] and u ∈ C1[J × R].
If u ∈ C1[0, T] satisfies the fractional differential equation

cDqu(t) = f(t, u(t)) + g(t, u(t)), (3.3)

and u is such that u(0) = u(T) for t ∈ J , then u is a periodic solution of (3.2).
Furthermore, throughout this paper, we will assume that f is increasing in u and g is

decreasing in u for t ∈ J .
Here below we provide the definition of coupled lower and upper solutions of (3.2).

Definition 3.1. Let v0, w0 ∈ C1[J,R]. Then v0 and w0 are said to be,

(i) natural lower and upper solutions of (3.2) if

cDqv0(t) ≤ f(t, v0(t)) + g(t, v0(t)), v0(0) ≤ v0(T),

cDqw0(t) ≥ f(t,w0(t)) + g(t,w0(t)), w0(0) ≥ w0(T);
(3.4)

(ii) coupled lower and upper solutions of Type I of (3.2) if

cDqv0(t) ≤ f(t, v0(t)) + g(t,w0(t)), v0(0) ≤ v0(T)

cDqw0(t) ≥ f(t,w0(t)) + g(t, v0(t)), w0(0) ≥ w0(T);
(3.5)

(iii) coupled lower and upper solutions of Type II of (3.2) if

cDqv0(t) ≤ f(t,w0(t)) + g(t, v0(t)), v0(0) ≤ v0(T),

cDqw0(t) ≥ f(t, v0(t)) + g(t,w0(t)), w0(0) ≥ w0(T);
(3.6)

(iv) coupled lower and upper solutions of Type III of (3.2) if,

cDqv0(t) ≤ f(t,w0(t)) + g(t,w0(t)), v0(0) ≤ v0(T),

cDqw0(t) ≥ f(t, v0(t)) + g(t, v0(t)), w0(0) ≥ w0(T).
(3.7)

Wewill state the following four theorems related to coupled lower and upper solutions
of Type I and Type II, respectively. We develop the generalized monotone method for
the periodic boundary value problem via the initial value problem approach. We obtain
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natural sequences and intertwined sequences which converge uniformly and monotonically
to coupled minimal and maximal periodic solutions of (3.2).

In the next theorem, we use coupled lower and upper solutions of Type I and obtain
natural sequences which converge uniformly and monotonically to coupled minimal and
maximal periodic solutions of (3.2).

Theorem 3.2. Assume that

(A1) v0, w0 are coupled lower and upper solutions of Type I for (3.2) with v0(t) ≤ u(t) ≤ w0(t)
on J ;

(A2) f, g ∈ C[J × R,R], f(t, u(t)) is increasing in u and g(t, u(t)) is decreasing in u.

Then the sequences defined by

cDqvn+1 = f(t, vn) + g(t,wn),

vn+1(0) = vn(T),
(3.8)

cDqwn+1 = f(t,wn) + g(t, vn),

wn+1(0) = wn(T),
(3.9)

are such that vn(t) → ρ(t) andwn(t) → r(t) in C1[J,R] uniformly and monotonically, such that ρ
and r are coupled minimal and maximal solutions of (3.2), respectively, provided that v0 ≤ u ≤ w0,
where u is any periodic solution of (3.2). That is, ρ and r satisfy the coupled system

cDqρ = f
(
t, ρ

)
+ g(t, r) on J,

ρ(0) = ρ(T),

cDqr = f(t, r) + g
(
t, ρ

)
on J,

r(0) = r(T),

(3.10)

such that ρ ≤ u ≤ r.

Proof. By hypothesis, v0 ≤ u ≤ w0. We will show that v0 ≤ v1 ≤ u ≤ w1 ≤ w0.
It follows from (3.5) that

cDqv0(t) ≤ f(t, v0(t)) + g(t,w0(t)), v0(0) ≤ v0(T),

cDqw0(t) ≥ f(t,w0(t)) + g(t, v0(t)), w0(0) ≥ w0(T),
(3.11)

and by (3.8), we get that

cDqv1 = f(t, v0) + g(t,w0),

v1(0) = v0(T).
(3.12)
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Therefore, v0(0) ≤ v0(T) = v1(0). If we let p = v0 − v1, then p(0) ≤ 0 and,

cDqp = cDqv0 − cDqv1

≤ f(t, v0) + g(t,w0) − f(t, v0) − g(t,w0)

= 0.

(3.13)

Since cDqp ≤ 0 and p(0) ≤ 0, by Corollary 2.5 we have that p(t) ≤ 0 and, consequently,
v0(t) ≤ v1(t) on J . By a similar argument we can show that v1(t) ≤ u, u ≤ w1(t), and w1(t) ≤
w0(t). Thus, v0 ≤ v1 ≤ u ≤ w1 ≤ w0.

Now we will show that vk ≤ vk+1 for k ≥ 1.
Assume that

vk−1 ≤ vk ≤ u ≤ wk ≤ wk−1, (3.14)

for k > 1.
Let p = vk − vk+1. Then

vk(0) = vk−1(T) ≤ vk(T) = vk+1(0), (3.15)

so p(0) ≤ 0. By the increasing nature of f and the decreasing nature of g it follows that

cDqp = cDqvk − cDqvk+1

= f(t, vk−1) + g(t,wk−1) − f(t, vk) − g(t,wk)

≤ 0.

(3.16)

Similarly, by Corollary 2.5 we have that p(t) ≤ 0 and consequently vk(t) ≤ vk+1(t).
By a similar argument we can show that wk+1 ≤ wk. Using the hypothesis that v0(t) ≤

u(t) ≤ w0(t) on J , the above argument and induction we can show that vk+1 ≤ u ≤ wk+1.
Therefore for n > 1,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ u ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.17)

Now we have to show that the sequences converge uniformly. We will use Arzela-
Ascoli theorem by showing that the sequences are uniformly bounded and equicontinuous.

First we show uniform boundedness. By hypothesis both v0(t) andw0(t) are bounded
on [0, T], then there exists M > 0 such that for any t ∈ [0, T], |v0(t)| ≤ M, and |w0(t)| ≤ M.
Since v0(t) ≤ vn(t) ≤ w0(t) for each n > 0, it follows that

0 ≤ vn(t) − v0(t) ≤ w0(t) − v0(t), (3.18)

and consequently {vn(t)} is uniformly bounded. By a similar argument {wn(t)} is also
uniformly bounded.
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To prove that {vn(t)} is equicontinuous, let 0 ≤ t1 ≤ t2 ≤ T . Then for n > 0,

|vn(t1) − vn(t2)| =
∣
∣
∣
∣
∣
vn(T) +

1
Γ
(
q
)
∫ t1

0
(t1 − s)q−1

[
f(s, vn−1(s)) + g(s,wn−1(s))

]
ds

−vn(T) − 1
Γ
(
q
)
∫ t2

0
(t2 − s)q−1

[
f(s, vn−1(s)) + g(s,wn−1(s))

]
ds

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1
Γ
(
q
)
∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

][
f(s, vn−1(s)) + g(s,wn−1(s))

]
ds

− 1
Γ
(
q
)
∫ t2

t1

(t2 − s)q−1
[
f(s, vn−1(s)) + g(t,wn−1(t))

]
ds

∣
∣
∣
∣
∣

≤ 1
Γ
(
q
)
∫ t1

0

∣∣∣
[
(t1 − s)q−1 − (t2 − s)q−1

][
f(s, vn−1(s)) + g(s,wn−1(s))

]∣∣∣ds

+
1

Γ
(
q
)
∫ t2

t1

(t2 − s)q−1
∣∣[f(s, vn−1(s)) + g(t,wn−1(t))

]∣∣ds.

(3.19)

Since {vn(t)} and {wn(t)} are uniformly bounded and f(t, u(t)) and g(t, u(t)) are
continuous on [0, T], there exists M independent of n such that

1
Γ
(
q
)
∫ t1

0

∣∣∣
[
(t1 − s)q−1 − (t2 − s)q−1

][
f(s, vn−1(s)) + g(s,wn−1(s))

]∣∣∣ds

+
1

Γ
(
q
)
∫ t2

t1

(t2 − s)q−1
∣∣[f(s, vn−1(s)) + g(t,wn−1(t))

]∣∣ds

≤ M

Γ
(
q
)
∫ t1

0

[
(t1 − s)q−1 − (t2 − s)q−1

]
ds +

M

Γ
(
q
)
∫ t2

t1

(t2 − s)q−1ds

= − M

qΓ
(
q
)(t1 − s)q

∣∣∣∣∣

t1

0

+
M

qΓ
(
q
)(t2 − s)q

∣∣∣∣∣

t1

0

− M

qΓ
(
q
)(t2 − s)q

∣∣∣∣∣

t2

t1

=
M

Γ
(
q + 1

) t
q

1 +
M

Γ
(
q + 1

) (t2 − t1)q − M

Γ
(
q + 1

) t
q

2 +
M

Γ
(
q + 1

) (t2 − t1)q

≤ 2M
Γ
(
q + 1

) (t2 − t1)q =
2M

Γ
(
q + 1

) |t1 − t2|q.

(3.20)

Thus, for any ε > 0 there exists δ > 0 independent of n such that for each n,

|vn(t1) − vn(t2)| < ε, (3.21)

provided that |t1 − t2| < δ.
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Similarly we can prove that {wn(t)} is equicontinuous and uniformly bounded.
This proves that {vn(t)} and {wn(t)} are uniformly bounded and equicontinuous

on [0, T]. Hence by Arzela-Ascoli’s theorem there exist subsequences {vnk(t)} and {wnk(t)}
which converge uniformly to ρ(t) and r(t), respectively. Since the sequences are monotone,
the entire sequences converge uniformly.

We have shown that the sequences converge in C[0, T]. In order to show that they
converge in C1[0, T], observe that since each vn is constructed as follows

cDqvn = f(t, vn−1) + g(t,wn−1),

vn(0) = vn−1(T),
(3.22)

we get that

vn(t) = vn−1(T) +
1

Γ
(
q
)
∫ t

0
(t − s)q−1

[
f(s, vn−1(s)) + g(s,wn−1(s))

]
ds. (3.23)

Taking limits when n → ∞, we obtain by the Lebesgue dominated convergence
theorem that

ρ(t) = ρ(T) +
1

Γ
(
q
)
∫ t

0
(t − s)q−1

[
f
(
s, ρ(s)

)
+ g(s, r(s))

]
ds. (3.24)

Hence vn(t) → ρ(t) in C1[0, T]. Furthermore, the above expression is equivalent to

cDqρ = f
(
t, ρ

)
+ g(t, r) on J,

ρ(0) = ρ(T).
(3.25)

By a similar argument wn(t) → r(t) in C1[0, T] and it can be shown that

cDqr = f(t, r) + g
(
t, ρ

)
on J,

r(0) = r(T).
(3.26)

Since vn ≤ u ≤ wn on [0, T] for all n, we get that ρ ≤ u ≤ r on [0, T] which shows that
ρ and r are minimal and maximal periodic solutions of (3.2), respectively. This completes the
proof.

Remark 3.3. In [3] the uniqueness is shown bymaking additional assumptions to Theorem 3.2
and using Corollary 2.7. However the iterates are solutions of the form (2.25). In our result,
we have proved the existence of coupled minimal and maximal periodic solutions of (3.2), in
particular if g ≡ 0 we get minimal and maximal periodic solutions of (3.2).

The next result also uses coupled upper and lower solutions of Type I. However, we
obtain intertwined sequences which converge to coupled minimal and maximal periodic
solutions of (3.2). The proof is similar to Theorem 3.2, hence we do not provide the proof.
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Theorem 3.4. Assume that conditions (A1) and (A2) of Theorem 3.2 are true. Then the iterative
scheme given by

cDqvn+1 = f(t,wn) + g(t, vn),

vn+1(0) = wn(T),

cDqwn+1 = f(t, vn) + g(t,wn),

wn+1(0) = vn(T),

(3.27)

give alternating monotone sequences {v2n,w2n+1} and {v2n+1, w2n} satisfying

v0(t) ≤ w1(t) ≤ · · · ≤ v2n(t) ≤ w2n+1(t) ≤ u(t) ≤ v2n+1(t) ≤ w2n(t) · · ·v1(t) ≤ w0(t), (3.28)

for each n ≥ 1 on J , provided that v0 ≤ u ≤ w0.
Furthermore {v2n,w2n+1} → ρ and {v2n+1, w2n} → r in C1[J,R], where ρ and r are coupled

minimal and maximal periodic solutions of (3.2), respectively; that is, if v0 ≤ u ≤ w0 then ρ ≤ u ≤ r,
and ρ and r satisfy the coupled system

cDqρ = f
(
t, ρ

)
+ g(t, r) on J,

ρ(0) = ρ(T),

cDqr = f(t, r) + g
(
t, ρ

)
on J,

r(0) = r(T).

(3.29)

In the previous two theorems we assumed the existence of coupled lower and upper
solutions of type I. We can state two more results involving coupled lower and upper
solutions of Type II, however they require an additional assumption in order to obtain natural
or intertwined sequences converging to coupled minimal and maximal periodic solutions of
problem (3.2).

Theorem 3.5. Assume that

(B1) v0 andw0 are coupled lower and upper solutions of Type II for (3.2) with v0(t) ≤ w0(t) on
J ,

(B2) f, g ∈ C[J × R,R], f(t, u(t)) is increasing in u, and g(t, u(t)) is decreasing in u.

If u(t) is a solution of (3.2) such that v0(t) ≤ u(t) ≤ w0(t). Then the sequences defined by
(3.27) give alternating monotone sequences {v2n,w2n+1} and {v2n+1, w2n} satisfying

v0(t) ≤ w1(t) ≤ · · · ≤ v2n(t) ≤ w2n+1(t) ≤ u(t) ≤ v2n+1(t) ≤ w2n(t) · · ·v1(t) ≤ w0(t), (3.30)

for each n ≥ 1 on J , provided that v0 ≤ w1 ≤ u ≤ v1 ≤ w0.
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Furthermore {v2n,w2n+1} → ρ and {v2n+1, w2n} → r in C1[J,R], where ρ and r are coupled
minimal and maximal solutions of (3.2), respectively; that is, if v0 ≤ u ≤ w0 then ρ ≤ u ≤ r, and ρ
and r satisfy the coupled system

cDqρ = f
(
t, ρ

)
+ g(t, r) on J,

ρ(0) = ρ(T),

cDqr = f(t, r) + g
(
t, ρ

)
on J,

r(0) = r(T).

(3.31)

Theorem 3.6. Assume that conditions (B1) and (B2) of Theorem 3.5 are true. Then the sequences
defined by (3.8) and (3.9) are such that vn(t) → ρ(t) and wn(t) → r(t) in C1[J,R] uniformly
and monotonically, provided that v0 ≤ v1 ≤ u ≤ w1 ≤ w0, where ρ and r are coupled minimal and
maximal solutions of (3.2), respectively; that is, ρ ≤ u ≤ r and ρ and r satisfy the coupled system

cDqρ = f
(
t, ρ

)
+ g(t, r) on J,

ρ(0) = ρ(T),

cDqr = f(t, r) + g
(
t, ρ

)
on J,

r(0) = r(T).

(3.32)

Remark 3.7. The proof of Theorems 3.5 and 3.6 follow on the same lines as Theorem 3.2.
However, it is easy to compute coupled lower and upper solutions of Type II.

4. Numerical Examples

In this section we present some numerical examples which are application of Theorem 3.5.

Example 4.1. Consider the problem

cD1/2u(t) =
u

3
− u2

3
,

u(0) = u(1).

(4.1)

Clearly u ≡ 0 and u ≡ 1 are solutions of the equation.
Since H(u) = u − u2 is increasing in u for u ≤ 0.5 and decreasing for u ≥ 0.5, we let

g(t, u) =
u

3
− u2

3
, (4.2)
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Figure 1: Dashed: {v2n,w2n+1}. Solid: {w2n, v2n+1}.

and v0 = 1/2 and w0 = 3/2 be lower and upper solutions of type II, respectively, because

0 = cD1/2v0 ≤ g(t, v0) =
v0

3
− v2

0

3
=

1
12

,

0 = cD1/2w0 ≥ g(t,w0) =
w0

3
− w2

0

3
= −1

4
.

(4.3)

We construct our sequences according to Theorem 3.5 and show graphically in
Figure 1 that {w2n, v2n+1} → 1.

Example 4.2. Consider the problem

cD1/2u(t) =
u

8
− u2

2
+

t

2
,

u(0) = u(0.5).

(4.4)

Since H(t, u) = (u/8) − (u2/2) + (t/2) is increasing in u for u ≤ 0.125 and decreasing
for u ≥ 0.125, we let

g(t, u) =
u

8
− u2

2
+

t

2
, (4.5)

and v0 = 1/8 and w0 = 1 be lower and upper solutions of type II, respectively, because

0 = cD1/2v0 ≤ g(t, v0) =
v0

8
− v2

0

2
+

t

2
≤ 1

128
+

t

2
,

0 = cD1/2w0 ≥ g(t,w0) =
w0

8
− w2

0

2
+

t

2
= −3

8
+

t

2
,

(4.6)

where 0 ≤ t ≤ 1/2.



International Journal of Differential Equations 15

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Figure 2: w4(0) ≈ 0.75 and w4(0.5) ≈ 0.7435.

Using Theorem 3.5 we show in Figure 2 four steps of {v2n,w2n+1} and four steps of
{w2n, v2n+1}. Observe that {w2n, v2n+1} converges more quickly to the periodic solution.

Example 4.3. Consider

cD1/2u(t) = −u
2

2
+ t(1 − t),

u(0) = u(1).

(4.7)

Since f(t, u) = −(u2/2) + t(1 − t) is increasing in u for u ≤ 0 and decreasing for u ≥ 0,

g(t, u) = −u
2

2
+ t(1 − t), (4.8)

and v0 = 0 and w0 = 1 are lower and upper solutions of type II, respectively, because

0 = cD1/2v0 ≤ g(t, v0) = −v
2
0

2
+ t(1 − t) = t(1 − t),

0 = cD1/2w0 ≥ g(t,w0) = −w
2
0

2
+ t(1 − t) = −1

2
+ t(1 − t),

(4.9)

where 0 ≤ t ≤ 1/2, which implies that 0 ≤ t(1 − t) ≤ 0.25
Once again using Theorem 3.5 we computed in Figure 3 four steps of {v2n,w2n+1} and

4 steps of {w2n, v2n+1}. As in the previous examples {w2n, v2n+1} converges more quickly to
the periodic solution.

5. Concluding Remarks

In our main results as well as in our numerical results we have not used the assumption
needed to obtain unique solution of (3.2). If we make appropriate uniqueness assumption on
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Figure 3: w4(0) ≈ 0.619877 and w4(1) ≈ 0.610418.

the nonlinear terms f(t, u) and g(t, u) then our linear iterates will require the computation of
the Mittag-Leffler function. We plan to take up this work in the near future.
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