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This paper studies a class of periodic n species cooperative Lotka-Volterra systems with continuous time delays and feedback
controls. Based on the continuation theorem of the coincidence degree theory developed by Gaines and Mawhin, some new
sufficient conditions on the existence of positive periodic solutions are established.

1. Introduction

Mathematical ecological system has become one of the
most important topics in the study of modern applied
mathematics. Its dynamical behavior includes persistence,
permanence and extinction of species, global stability of
systems, the existence of positive periodic solutions, positive
almost periodic solutions, and strictly positive solutions. The
existence of positive periodic solutions has already become
one of the most interesting subjects for scholars. In the recent
years, the application of fixed-point theorems to the existence
of positive periodic solutions in mathematical ecology has
been studied extensively, for example, Brouwer’s fixed point
theorem [1–4], Schauder’s fixed-point theorem [5–8], Kras-
noselskii’s fixed-point theorem [9–14], Horn’s fixed-point
theorem [15, 16], andMawhins continuation theorem [17–36],
and so forth. In particular, Mawhins continuation theorem
is a powerful tool for studying the existence of periodic
solutions of periodic high-dimensional time-delayed prob-
lems. When dealing with a time-delayed problem, it is very
convenient and the result is relatively simple [30]. Recently,
a considerable number of mathematical models with delays
have been proposed in the study of population dynamics.One
of the most celebrated models for population is the Lotka-
Volterra system. Subsequently, a lot of the literature related to
the study of the existence of positive periodic solutions for
various Lotka-Volterra-type population dynamical systems

with delays by using the method of continuation theorem
was published and extensive research results were obtained
[17–21, 24–34].

On the other hand, in some situations, people may wish
to change the position of the existing periodic solution but
to keep its stability. This is of significance in the control of
ecology balance. One of the methods for the realization of
it is to alter the system structurally by introducing some
feedback control variables so as to get a population stabilizing
at another periodic solution. The realization of the feedback
control mechanismmight be implemented by means of some
biological control scheme or by harvesting procedure [21]. In
fact, during the last decade, the existence of positive periodic
solutions for the population dynamics with feedback control
has been studied extensively [8, 14, 17–21, 24, 29]. To the best
of our knowledge, studies on the existence of positive periodic
solutions for cooperative systems with delays and feedback
controls are fairly rare.

In [21], the authors studied the following neutral Lotka-
Volterra system with feedback controls:
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(1)

By using Mawhin’s continuation theorem, the sufficient con-
ditions on the existence of positive periodic solutions are
established. In [24], the authors considered the following
delay differential system with feedback control:

𝑑𝑥

𝑑𝑡
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1 (
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𝑛 (
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𝑑𝑢
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= −𝜂 (𝑡) + 𝑎 (𝑡) 𝑥 (𝑡 − 𝜎 (𝑡)) .

(2)

A set of natural and easily verifiable sufficient conditions of
the existence of positive periodic solutions are established,
by usingMawhin’s continuation theorem. In [29], the authors
considered the following single-species periodic logistic sys-
tems with feedback regulation and infinite distributed delay:
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(3)

The sufficient conditions for the existence of positive periodic
solutions are established, based on Mawhin’s continuation
theorem.

Motivated by the above works, in this paper, we inves-
tigate the following 𝑛 species periodic Lotka-Volterra-type
cooperative systems with continuous time delays and feed-
back controls:
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(4)

By using the technique of coincidence degree developed by
Gaines and Mawhin in [36], we will establish some new
sufficient conditions which guarantee that the system has at
least one positive periodic solution.

2. Preliminaries

In system (4), we have that 𝑥
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the density of 𝑛 cooperative species 𝑥

𝑖
(𝑖 = 1, 2, . . . 𝑛)

at time 𝑡, respectively; 𝑟
𝑖
(𝑡) (𝑖 = 1, 2, . . . 𝑛) represent the

intrinsic growth rate of species 𝑥
𝑖
(𝑖 = 1, 2, . . . 𝑛) at time 𝑡,

respectively; 𝑎
𝑖𝑖𝑙
(𝑡) (𝑖 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚) represent

the intrapatch restriction density of species 𝑥
𝑖
(𝑖 = 1, 2, . . . 𝑛)

at time 𝑡, respectively; 𝑎
𝑖𝑗𝑙
(𝑡) (𝑙 = 1, 2, . . . , 𝑚, 𝑖 ̸= 𝑗, 𝑖, 𝑗 =

1, 2, . . . , 𝑛) represent the cooperative coefficients between 𝑛

species 𝑥
𝑖
(𝑖 = 1, 2, . . . 𝑛) at time 𝑡, respectively. 𝑢

𝑖
(𝑡) (𝑖 =

1, 2, . . . 𝑛) represent the indirect feedback control variables
[21] at time 𝑡, respectively.𝛽

𝑖
(𝑡), 𝑒
𝑖
(𝑡), 𝑏
𝑖
(𝑡), 𝑑
𝑖
(𝑡), and 𝛾

𝑖
(𝑡) (𝑖 =

1, 2, . . . 𝑛) represent the feedback control coefficients at time
𝑡, respectively. In this paper, we always assume that

(H1) 𝜏

𝑖𝑗𝑙
(𝑡) (𝑙 = 1, 2, . . . , 𝑚, 𝑖, 𝑗 = 1, 2, . . . , 𝑛), 𝜎

𝑖
(𝑡), 𝜀

𝑖
(𝑡), 𝑟

𝑖

(𝑡) (𝑖 = 1, 2, . . . 𝑛) are continuous 𝜔-periodic func-
tions with 𝜏



𝑖𝑗𝑙
(𝑡) < 1 and ∫

𝜔

0
𝑟

𝑖
(𝑡)𝑑𝑡 > 0. 𝑎

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 =

1, 2, 𝑙 = 1, 2, . . . , 𝑚), 𝛽
𝑖
(𝑡), 𝑒
𝑖
(𝑡), 𝑏
𝑖
(𝑡), 𝑑

𝑖
(𝑡), and

𝛾

𝑖
(𝑡) (𝑖 = 1, 2, . . . 𝑛) are continuous, positive 𝜔-

periodic functions.

From the viewpoint of mathematical biology, in this
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In order to obtain the existence of positive 𝜔-periodic
solutions of system (4), we will use the continuation theorem
developed by Gaines and Mawhin in [36]. For the reader’s
convenience, we will introduce the continuation theorem in
the following.

Let 𝑋 and 𝑍 be two normed vector spaces. Let 𝐿 :

Dom 𝐿 ⊂ 𝑋 → 𝑍 be a linear operator and let𝑁 : 𝑋 → 𝑍

be a continuous operator.The operator 𝐿 is called a Fredholm
operator of index zero, if dimKer 𝐿 = codimIm 𝐿 < ∞ and
Im 𝐿 is a closed set in 𝑍. If 𝐿 is a Fredholm operator of index
zero, then there exist continuous projectors 𝑃 : 𝑋 → 𝑋

and 𝑄 : 𝑍 → 𝑍 such that Im𝑃 = Ker 𝐿 and Im 𝐿 =

Ker𝑄 = Im (𝐼 − 𝑄). It follows that 𝐿 | Dom𝐿 ∩ Ker𝑃 :

Dom 𝐿 ∩ Ker𝑃 → Im 𝐿 is invertible and its inverse is
denoted by𝐾

𝑃
; denote by 𝐽 : Im𝑄 → Ker 𝐿 an isomorphism

of Im𝑄 onto Ker 𝐿. LetΩ be a bounded open subset of𝑋; we
say that the operator𝑁 is 𝐿-compact onΩ, whereΩ denotes



International Journal of Differential Equations 3

the closure ofΩ in𝑋, if𝑄𝑁(Ω) is bounded and𝐾
𝑃
(𝐼−𝑄)𝑁 :

Ω → 𝑋 is compact.

Lemma 1 (see [35]). Suppose 𝜏 ∈ 𝐶

1
(𝑅, 𝑅)with 𝜏(𝑡+𝜔) ≡ 𝜏(𝑡)

and 𝜏


(𝑡) < 1, ∀𝑡 ∈ [0, 𝜔]. Then the function 𝑡 − 𝜏(𝑡) has a

unique inverse function 𝜇(𝑡) satisfying 𝜇 ∈ 𝐶(𝑅, 𝑅), 𝜇(𝑢+𝜔) =
𝜇(𝑢) + 𝜔, ∀𝑢 ∈ 𝑅.

Lemma 2 (see [36]). Let 𝐿 be a Fredholm operator of index
zero and let𝑁 be 𝐿-compact on Ω. If

(a) for each 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿, 𝐿𝑥 ̸= 𝜆𝑁𝑥;

(b) for each 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿, 𝑄𝑁𝑥 ̸= 0;

(c) deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0,

then the operator equation 𝐿𝑥 = 𝑁𝑥 has at least one solution
lying in Dom𝐿 ∩ Ω.

3. Main Results

In order to obtain the existence of positive periodic solutions
of system (4), firstly, we introduce the following lemma.
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𝑖 (
0))

= ∫

𝑡

0

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠 + 𝜓

𝑖 (
0)
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+ ∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛,

(12)

which implies

(∫

𝑡

0

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠 + 𝜓

𝑖 (
0)) (𝑒

𝑏𝜔
− 1)

= ∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(13)

That is,

∫

𝑡

0

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑖) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠 + 𝜓

𝑖 (
0)

= 𝑢

∗

𝑖
(𝑡) exp{∫

𝑡

0

𝑏

𝑖 (
𝜃) 𝑑𝜃}

=

1

𝑒

𝑏𝜔
− 1

∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

× exp{∫
𝑠

0

𝑏

𝑖 (
𝜃) 𝑑𝜃} 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(14)

Hence

𝑢

∗

𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

×

exp {∫𝑠
𝑡
𝑏

𝑖 (
𝜃) 𝑑𝜃}

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(15)

On the other hand, assume that (𝑥∗
1
(𝑡), 𝑥

∗

2
(𝑡), . . . , 𝑥∗

𝑛
(𝑡), 𝑢∗
1
(𝑡),

𝑢

∗

2
(𝑡),. . . , 𝑢∗

𝑛
(𝑡)) is an 𝜔-periodic solution of system (7), then

𝑢

∗

𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

×

exp {∫𝑠
𝑡
𝑏

𝑖 (
𝜃) 𝑑𝜃}

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(16)

By a direct calculation, we have

𝑑𝑢

∗
(𝑡)

𝑑𝑡

= −𝑏

𝑖 (
𝑡) ∫

𝑡+𝜔

𝑡

(𝛽

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠) + 𝛾

𝑖 (
𝑠) 𝑥

∗

𝑖
(𝑠 − 𝜎

𝑖 (
𝑠)))

×

exp {∫𝑠
𝑡
𝑏

𝑖 (
𝜃) 𝑑𝜃}

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

𝑑𝑠

+ (𝛽

𝑖 (
𝑡 + 𝜔) 𝑥

∗

𝑖
(𝑡 + 𝜔)

+𝛾

𝑖 (
𝑡 + 𝜔) 𝑥

∗

𝑖
(𝑡 + 𝜔 − 𝜎

𝑖 (
𝑡 + 𝜔)))

×

exp {∫𝑡+𝜔
𝑡

𝑏

𝑖 (
𝜃) 𝑑𝜃}

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

− (𝛽

𝑖 (
𝑡) 𝑥

∗

𝑖
(𝑡) + 𝛾

𝑖 (
𝑡) 𝑥

∗

𝑖
(𝑡 − 𝜎

𝑖 (
𝑡)))

×

1

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

= −𝑏

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) + 𝛽

𝑖 (
𝑡) 𝑥

∗

𝑖
(𝑡) + 𝛾

𝑖 (
𝑡) 𝑥

∗

𝑖
(𝑡 − 𝜎

𝑖 (
𝑡)) ,

𝑖 = 1, 2, . . . , 𝑛.

(17)

This completes the proof.

It is easy to see that system (7) is equivalent to the fol-
lowing system:

�̇�

𝑖 (
𝑡) = 𝑥

𝑖 (
𝑡)(𝑟

𝑖 (
𝑡) −

2

∑

𝑗=1

(−1)

𝑖+𝑗

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) 𝑥𝑗

(𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡)))

− 𝑑

𝑖 (
𝑡) 𝑢𝑖 (

𝑡) − 𝑒

𝑖 (
𝑡) 𝑢𝑖

(𝑡 − 𝜀

𝑖 (
𝑡)) ,

𝑢

𝑖 (
𝑡) = ∫

𝑡+𝜔

𝑡

𝐾(𝑥

𝑖
) 𝐺

𝑖 (
𝑡, 𝑠) 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛,

(18)

where

𝐺

𝑖 (
𝑡, 𝑠) =

exp {∫𝑠
𝑡
𝑏

𝑖 (
𝜃) 𝑑𝜃}

exp {∫𝜔
0
𝑏

𝑖 (
𝜃) 𝑑𝜃} − 1

,

𝐾 (𝑥

𝑖
) = 𝛽

𝑖 (
𝑠) 𝑥𝑖 (

𝑠) + 𝛾

𝑖 (
𝑠) 𝑥𝑖

(𝑠 − 𝜎

𝑖 (
𝑠)) ,

𝑖 = 1, 2, . . . , 𝑛.

(19)

It is clear that in order to prove that systems (4) and (5) have
at least one 𝜔-periodic solution, we only need to prove that
system (18) has at least one 𝜔-periodic solution.

Now, for convenience of statements we denote the func-
tions

𝑎

𝑖𝑗 (
𝑡) =

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) , 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (20)

The following theorem is about the existence of positive
periodic solutions of system (4).
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Theorem 4. Suppose that assumption (H1) holds and there
exists a constant 𝜃

𝑖
> 0, 𝜁
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, such that

min
𝑡∈[0,𝜔]

{

{

{

𝑚

∑

𝑙=1

[

[

𝛿

𝑖𝑖𝑙 (
𝑡) 𝜃𝑖

−

𝑛

∑

𝑗 ̸= 𝑖

𝛿

𝑗𝑖𝑙 (
𝑡) 𝜃𝑗

]

]

}

}

}

=: 𝜁

𝑖
> 0,

𝑖 = 1, 2, . . . , 𝑛,

(21)

where

𝛿

𝑖𝑗𝑙 (
𝑡) =

𝑎

𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

1 − 𝜏



𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

,

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚,

(22)

and the algebraic equation

𝑟

𝑖
− 𝐻

𝑖
− 𝑎

𝑖𝑖
V
𝑖
+

𝑛

∑

𝑗 ̸= 𝑖

𝑎

𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛, (23)

where

𝐻

𝑖
= ∫

𝜔

0

(𝛽

𝑖 (
𝑠) + 𝛾

𝑖 (
𝑠))

× (𝑑

𝑖 (
𝑡) 𝐺𝑖 (

𝑡, 𝑠) + 𝑒

𝑖 (
𝑡) 𝐺𝑖

(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛,

(24)

has a unique positive solution. Then system (4) has at least one
positive 𝜔-periodic solution.

Proof. For system (18) we introduce new variables 𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) such that

𝑥

𝑖 (
𝑡) = exp {𝑦

𝑖 (
𝑡)} , 𝑖 = 1, 2, . . . , 𝑛. (25)

Then system (18) is rewritten in the following form:

̇𝑦

𝑖 (
𝑡) = 𝑟

𝑖 (
𝑡) −

2

∑

𝑗=1

(−1)

𝑖+𝑗

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))}

− exp {−𝑦
𝑖 (
𝑡)} 𝑑𝑖 (

𝑡) 𝑈𝑖 (
𝑡) ,

− exp {−𝑦
𝑖 (
𝑡)} 𝑒𝑖 (

𝑡) 𝑈𝑖
(𝑡 − 𝜀

𝑖 (
𝑡))

𝑈

𝑖 (
𝑡) = ∫

𝑡+𝜔

𝑡

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖 (
𝑡, 𝑠) 𝑑𝑠, 𝑖 = 1, 2,

(26)

where

𝐾(𝑒

𝑦𝑖
) = 𝛽

𝑖 (
𝑠) exp {𝑦𝑖 (𝑠)} + 𝛾

𝑖 (
𝑠) exp {𝑦𝑖 (𝑠 − 𝜎

𝑖 (
𝑠))} ,

𝑖 = 1, 2.

(27)

In order to apply Lemma 2 to system (26), we intro-
duce the normed vector spaces 𝑋 and 𝑍 as follows. Let

𝐶(𝑅, 𝑅

𝑛
) denote the space of all continuous functions 𝑦(𝑡) =

(𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡)) : 𝑅 → 𝑅

𝑛. We take

𝑋 = 𝑍

= {𝑦 (𝑡) ∈ 𝐶 (𝑅, 𝑅

𝑛
) : 𝑦 (𝑡) is an 𝜔-periodic function} ,

(28)

with norm









𝑦









=

𝑛

∑

𝑖=1

max
𝑡∈[0,𝜔]









𝑦

𝑖 (
𝑡)









. (29)

It is obvious that 𝑋 and 𝑍 are the Banach spaces. We define
a linear operator 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑍 and a continuous
operator𝑁 : 𝑋 → 𝑍 as follows:

𝐿𝑦 (𝑡) = ̇𝑦 (𝑡) ,

𝑁𝑦 (𝑡) = (𝑁𝑦

1 (
𝑡) ,𝑁𝑦2 (

𝑡) , . . . , 𝑁𝑦𝑛 (
𝑡)) ,

(30)

where

𝑁𝑦

𝑖 (
𝑡) = 𝑟

𝑖 (
𝑡) −

𝑚

∑

𝑙=1

𝑎

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑖𝑙 (
𝑡))}

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))}

− exp {−𝑦
𝑖 (
𝑡)} 𝑑𝑖 (

𝑡) 𝑢𝑖 (
𝑡) − exp {−𝑦

𝑖 (
𝑡)}

× 𝑒

𝑖 (
𝑡) 𝑢𝑖

(𝑡 − 𝜀

𝑖 (
𝑡)) .

(31)

Further, we define continuous projectors 𝑃 : 𝑋 → 𝑋 and
𝑄 : 𝑍 → 𝑍 as follows:

𝑃𝑦 (𝑡) =

1

𝜔

∫

𝜔

0

𝑦 (𝑡) 𝑑𝑡, 𝑄V (𝑡) =
1

𝜔

∫

𝜔

0

V (𝑡) 𝑑𝑡. (32)

We easily see Im 𝐿 = {V ∈ 𝑍 : ∫

𝜔

0
V(𝑡)𝑑𝑡 = 0} and Ker 𝐿 = 𝑅

𝑛.
It is obvious that Im 𝐿 is closed in 𝑍 and dimKer 𝐿 = 𝑛. Since
for any V ∈ 𝑍 there are unique V

1
∈ 𝑅

𝑛 and V
2
∈ Im 𝐿 with

V
1
=

1

𝜔

∫

𝜔

0

V (𝑡) 𝑑𝑡, V
2 (
𝑡) = V (𝑡) − V

1
, (33)

such that V(𝑡) = V
1
+ V
2
(𝑡), we have codimIm 𝐿 = 𝑛.Therefore,

𝐿 is a Fredholm mapping of index zero. Furthermore, the
generalized inverse (to 𝐿) 𝐾

𝑝
: Im 𝐿 → Ker𝑃 ∩ Dom𝐿 is

given in the following form:

𝐾

𝑝
V (𝑡) = ∫

𝑡

0

V (𝑠) 𝑑𝑠 −
1

𝜔

∫

𝜔

0

∫

𝑡

0

V (𝑠) 𝑑𝑠 𝑑𝑡. (34)

For convenience, we denote 𝐹(𝑡) = (𝐹

1
(𝑡), 𝐹

2
(𝑡), . . . , 𝐹

𝑛
(𝑡)) as

follows:

𝐹

𝑖 (
𝑡) = 𝑟

𝑖 (
𝑡) −

𝑚

∑

𝑙=1

𝑎

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑖𝑙 (
𝑡))}

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))}

− exp {−𝑦
𝑖 (
𝑡)} 𝑑𝑖 (

𝑡) 𝑢𝑖 (
𝑡) − exp {−𝑦

𝑖 (
𝑡)}

× 𝑒

𝑖 (
𝑡) 𝑢𝑖

(𝑡 − 𝜀

𝑖 (
𝑡)) .

(35)
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Thus, we have

𝑄𝑁𝑦 (𝑡) =

1

𝜔

∫

𝜔

0

𝐹 (𝑡) 𝑑𝑡,

𝐾

𝑝 (
𝐼 − 𝑄)𝑁𝑢 (𝑡) = 𝐾

𝑝
𝐼𝑁𝑢 (𝑡) − 𝐾

𝑝
𝑄𝑁𝑢 (𝑡)

= ∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 −

1

𝜔

∫

𝜔

0

∫

𝑡

0

𝐹 (𝑠) 𝑑𝑠 𝑑𝑡

+ (

1

2

−

𝑡

𝜔

)∫

𝜔

0

𝐹 (𝑠) 𝑑𝑠.

(36)

From formulas (36), we easily see that 𝑄𝑁 and 𝐾

𝑝
(𝐼 − 𝑄)𝑁

are continuous operators. Furthermore, it can be verified that
𝐾

𝑝
(𝐼 − 𝑄)𝑁(Ω) is compact for any open bounded setΩ ⊂ 𝑋

by using the Arzela-Ascoli theorem and 𝑄𝑁(Ω) is bounded.
Therefore,𝑁 is 𝐿-compact onΩ for any open bounded subset
Ω ⊂ 𝑋.

Now, we reach the position to search for an appropriate
open bounded subset Ω for the application of the continua-
tion theorem (Lemma 2) to system (26).

Corresponding to the operator equation 𝐿𝑦(𝑡) = 𝜆𝑁𝑦(𝑡)

with parameter 𝜆 ∈ (0, 1), we have

̇𝑦

𝑖 (
𝑡) = 𝜆𝐹

𝑖 (
𝑡) , 𝑖 = 1, 2, . . . , 𝑛, (37)

where 𝐹
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are given in (35).

Assume that 𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ 𝑋 is a

solution of system (37) for some parameter 𝜆 ∈ (0, 1). By
integrating system (37) over the interval [0, 𝜔], we obtain

∫

𝜔

0

[𝑟

𝑖 (
𝑡) −

𝑚

∑

𝑙=1

𝑎

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑖𝑙 (
𝑡))}

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))}

− 𝑒

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)} ∫

𝑡−𝜀𝑖(𝑡)+𝜔

𝑡−𝜀𝑖(𝑡)

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖
(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠) 𝑑𝑠

−𝑑

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)} ∫

𝑡+𝜔

𝑡

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖 (
𝑡, 𝑠) 𝑑𝑠] 𝑑𝑡 = 0,

𝑖 = 1, 2, . . . , 𝑛.

(38)

Consequently,

𝑟

𝑖
𝜔 + ∫

𝜔

0

[

[

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))}

]

]

𝑑𝑡

= ∫

𝜔

0

[

𝑚

∑

𝑙=1

𝑎

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑖𝑙 (
𝑡))}] 𝑑𝑡

+ ∫

𝜔

0

𝑒

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)}

× ∫

𝑡−𝜀𝑖(𝑡)+𝜔

𝑡−𝜀𝑖(𝑡)

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖
(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠) 𝑑𝑠 𝑑𝑡

+ ∫

𝜔

0

𝑑

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)} ∫

𝑡+𝜔

𝑡

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖 (
𝑡, 𝑠) 𝑑𝑠 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(39)

From the continuity of 𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡)), there

exist constants 𝜉
𝑖
, 𝜂

𝑖
∈ [0, 𝜔] (𝑖 = 1, 2, . . . , 𝑛) such that

𝑦

𝑖
(𝜉

𝑖
) = max
𝑡∈[0,𝜔]

𝑦

𝑖 (
𝑡) , 𝑦

𝑖
(𝜂

𝑖
) = min
𝑡∈[0,𝜔]

𝑦

𝑖 (
𝑡)

𝑖 = 1, 2, . . . , 𝑛.

(40)

By (39) and (40) we obtain

𝑟

𝑖
𝜔 ≤ ∫

𝜔

0

𝑎

𝑖𝑖 (
𝑡) exp {𝑦𝑖 (𝜉𝑖)} 𝑑𝑡

+ ∫

𝜔

0

𝐴

𝑖 (
𝑡) exp {𝑦𝑖 (𝜉𝑖)} 𝑑𝑡, 𝑖 = 1, 2, . . . , 𝑛,

(41)

where

𝐴

𝑖 (
𝑡) = 𝑒

𝑖 (
𝑡) ∫

𝑡−𝜀𝑖(𝑡)+𝜔

𝑡−𝜀𝑖(𝑡)

𝐺

𝑖
(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠) (𝛽𝑖 (

𝑠) + 𝛾

𝑖 (
𝑠)) 𝑑𝑠

+ 𝑑

𝑖 (
𝑡) ∫

𝑡+𝜔

𝑡

𝐺

𝑖 (
𝑡, 𝑠) (𝛽𝑖 (

𝑠) + 𝛾

𝑖 (
𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(42)

Therefore, we further have

𝑦

𝑖
(𝜉

𝑖
) ≥ ln(

𝑟

𝑖

𝑎

𝑖𝑖
+ 𝐴

𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (43)

Let 𝑠
𝑖𝑗𝑙
(𝑡) = 𝑡 − 𝜏

𝑖𝑗𝑙
(𝑡) (𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚);

then from Lemma 1 and (H1) we get that function 𝑠

𝑖𝑗𝑙
(𝑡) has

a unique 𝜔 periodic inverse function 𝜑

𝑖𝑗𝑙
(𝑡); then, for every

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚, we have

∫

𝜔

0

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))} 𝑑𝑡

= ∫

𝜔−𝜏𝑖𝑗𝑙(𝜔)

−𝜏𝑖𝑗𝑙(0)

𝑎

𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

1 − 𝜏



𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡.

(44)

One can see that

𝑎

𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

1 − 𝜏



𝑖𝑗𝑙
(𝜑

𝑖𝑗𝑙 (
𝑡))

=: 𝛿

𝑖𝑗𝑙 (
𝑡) ,

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 = 1, 2, . . . , 𝑚,

(45)

are 𝜔 periodic functions.Then, for every 𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑙 =

1, 2, . . . , 𝑚, we have

∫

𝜔

0

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))} 𝑑𝑡 = ∫

𝜔

0

𝛿

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑖 (𝑡)} 𝑑𝑡.

(46)
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From (39) and (46) we further obtain

𝑛

∑

𝑖=1

(∫

𝜔

0

(

𝑚

∑

𝑙=1

𝛿

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡)}

+ 𝑑

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)} ∫

𝑡+𝜔

𝑡

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖 (
𝑡, 𝑠) 𝑑𝑠

+ 𝑒

𝑖 (
𝑡) exp {−𝑦𝑖 (𝑡)}

× ∫

𝑡−𝜀𝑖(𝑡)+𝜔

𝑡−𝜀𝑖(𝑡)

𝐾(𝑒

𝑦𝑖
) 𝐺

𝑖
(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠) 𝑑𝑠) 𝑑𝑡)

=

𝑛

∑

𝑖=1

(𝑟

𝑖
𝜔 + ∫

𝜔

0

[

[

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝛿

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡)}]

]

𝑑𝑡) .

(47)

From the above equality we have

𝑛

∑

𝑖=1

(∫

𝜔

0

[

[

𝑚

∑

𝑙=1

𝛿

𝑖𝑖𝑙 (
𝑡) −

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝛿

𝑗𝑖𝑙 (
𝑡)

]

]

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡)

≤

𝑛

∑

𝑖=1

𝑟

𝑖
𝜔,

∫

𝜔

0

[

[

𝑚

∑

𝑙=1

𝛿

𝑖𝑖𝑙 (
𝑡) −

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝛿

𝑗𝑖𝑙 (
𝑡)

]

]

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡

≤

𝑛

∑

𝑖=1

𝑟

𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛.

(48)

From the assumptions of Theorem 4 and (48) we can obtain

𝜁

𝑖
∫

𝜔

0

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡 ≤

𝑛

∑

𝑖=1

𝑟

𝑖
𝜔, 𝑖 = 1, 2, . . . , 𝑛. (49)

Consequently,

∫

𝜔

0

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡 ≤

∑

𝑛

𝑖=1
𝑟

𝑖
𝜔

𝜁

𝑖

, 𝑖 = 1, 2, . . . , 𝑛. (50)

From (40) and (50), we further obtain

𝑦

𝑖
(𝜂

𝑖
) ≤ ln(

∑

𝑛

𝑖=1
𝑟

𝑖

𝜁

𝑖

) , 𝑖 = 1, 2, . . . , 𝑛. (51)

On the other hand, directly from system (26) we have

∫

𝜔

0









̇𝑦

𝑖 (
𝑡)









𝑑𝑡

≤ ∫

𝜔

0









𝑟

𝑖 (
𝑡)









𝑑𝑡

+ ∫

𝜔

0

(

𝑚

∑

𝑙=1

𝑎

𝑖𝑖𝑙 (
𝑡) exp {𝑦𝑖 (𝑡 − 𝜏

𝑖𝑖𝑙 (
𝑡))}

+

𝑛

∑

𝑗 ̸= 𝑖

𝑚

∑

𝑙=1

𝑎

𝑖𝑗𝑙 (
𝑡) exp {𝑦𝑗 (𝑡 − 𝜏

𝑖𝑗𝑙 (
𝑡))})𝑑𝑡

≤ ∫

𝜔

0









𝑟

𝑖 (
𝑡)









𝑑𝑡

+ ∫

𝜔

0

𝑚

∑

𝑙=1

(𝛿

𝑖𝑖𝑙 (
𝑡) +

𝑛

∑

𝑗 ̸= 𝑖

𝛿

𝑗𝑖𝑙 (
𝑡)) exp {𝑦

𝑖 (
𝑡)} 𝑑𝑡

≤ ∫

𝜔

0









𝑟

𝑖 (
𝑡)









𝑑𝑡 + 𝐷

𝑀

𝑖
∫

𝜔

0

exp {𝑦
𝑖 (
𝑡)} 𝑑𝑡

≤









𝑟

𝑖









𝜔 +

𝐷

𝑀

𝑖
∑

𝑛

𝑖=1
𝑟

𝑖
𝜔

𝜁

𝑖

, 𝑖 = 1, 2, . . . , 𝑛,

(52)

where

𝐷

𝑖 (
𝑡) =

𝑚

∑

𝑙=1

(𝛿

𝑖𝑖𝑙 (
𝑡) +

𝑛

∑

𝑗 ̸= 𝑖

𝛿

𝑗𝑖𝑙 (
𝑡)) , 𝑖 = 1, 2, . . . , 𝑛. (53)

From (43), (51), and (52), we have for any 𝑡 ∈ [0, 𝜔]

𝑦

𝑖 (
𝑡) ≤ 𝑦

𝑖
(𝜂

𝑖
) + ∫

𝜔

0









̇𝑦

𝑖 (
𝑡)









𝑑𝑡

≤ ln(
∑

𝑛

𝑖=1
𝑟

𝑖

𝜁

𝑖

) +









𝑟

𝑖









𝜔 +

𝐷

𝑀

𝑖
∑

𝑛

𝑖=1
𝑟

𝑖
𝜔

𝜁

𝑖

=: 𝑀

𝑖
,

𝑖 = 1, 2, . . . , 𝑛,

(54)

𝑦

𝑖 (
𝑡) ≥ 𝑦

𝑖
(𝜉

𝑖
) − ∫

𝜔

0









̇𝑦

𝑖 (
𝑡)









𝑑𝑡

≥ ln(
𝑟

𝑖

𝑎

𝑖𝑖
+ 𝐴

𝑖

) −









𝑟

𝑖









𝜔 −

𝐷

𝑀

𝑖
∑

𝑛

𝑖=1
𝑟

𝑖
𝜔

𝜁

𝑖

=: 𝑁

𝑖
,

𝑖 = 1, 2, . . . , 𝑛.

(55)

Therefore, from (54) and (55), we have

max
𝑡∈[0,𝜔]









𝑦

𝑖 (
𝑡)









≤ max {


𝑀

𝑖









,









𝑁

𝑖









} =: 𝐵

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

(56)
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It can be seen that the constants 𝐵

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are

independent of parameter 𝜆 ∈ (0, 1). For any 𝑦 =

(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
) ∈ 𝑅

𝑛, from (31) we can obtain

𝑄𝑁𝑦 = (𝑄𝑁𝑦

1
, 𝑄𝑁𝑦

2
, . . . , 𝑄𝑁𝑦

𝑛
)

𝑄𝑁𝑦

𝑖
= 𝑟

𝑖
− 𝐻

𝑖
− 𝑎

𝑖𝑖
exp {𝑦

𝑖
} +

𝑛

∑

𝑗 ̸= 𝑖

𝑎

𝑖𝑗
exp {𝑦

𝑗
} ,

𝑖 = 1, 2, . . . , 𝑛,

𝐻

𝑖 (
𝑡) = ∫

𝜔

0

(𝛽

𝑖 (
𝑠) + 𝛾

𝑖 (
𝑠)) (𝑑𝑖 (

𝑡) 𝐺𝑖 (
𝑡, 𝑠))

+ 𝑒

𝑖 (
𝑡) 𝐺𝑖

(𝑡 − 𝜀

𝑖 (
𝑡) , 𝑠) 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(57)

We consider the following algebraic equation:

𝑟

𝑖
− 𝐻

𝑖
− 𝑎

𝑖𝑖
V
𝑖
+

𝑛

∑

𝑗 ̸= 𝑖

𝑎

𝑖𝑗
V
𝑗
= 0, 𝑖 = 1, 2, . . . , 𝑛. (58)

From the assumption of Theorem 4, the equation has
a unique positive solution V∗ = (V∗

1
, V∗
2
, . . . , V∗

𝑛
). Hence,

the equation 𝑄𝑁𝑦 = 0 has a unique solution 𝑦

∗
=

(𝑦

∗

1
, 𝑦

∗

2
, . . . , 𝑦

∗

𝑛
) = (ln V∗

1
, ln V∗
2
, . . . , ln V∗

𝑛
) ∈ 𝑅

𝑛.
Choosing constant 𝐵 > 0 large enough such that |𝑦∗

1
| +

|𝑦

∗

2
| + ⋅ ⋅ ⋅ + |𝑦

∗

𝑛
| < 𝐵 and 𝐵 > 𝐵

1
+ 𝐵

2
+ ⋅ ⋅ ⋅ + 𝐵

𝑛
, we define a

bounded open set Ω ⊂ 𝑋 as follows:
Ω = {𝑦 ∈ 𝑋 :









𝑦









< 𝐵} . (59)

It is clear that Ω satisfies conditions (𝑎) and (𝑏) of Lemma 2.
On the other hand, by directly calculating we can obtain

deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, (0, 0, . . . , 0)}

= sgn









































𝑓

1

𝑦1
𝑓

1

𝑦2
⋅ ⋅ ⋅ 𝑓

1

𝑦𝑛

𝑓

2

𝑦1
𝑓

2

𝑦2
⋅ ⋅ ⋅ 𝑓

2

𝑦𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓

𝑛

𝑦1
𝑓

𝑛

𝑦2
⋅ ⋅ ⋅ 𝑓

𝑛

𝑦𝑛









































,

(60)

where
𝑓

𝑖

𝑦𝑗
= −𝑎

𝑖𝑗
exp {𝑦∗

𝑗
} , 𝑖 = 𝑗

𝑓

𝑖

𝑦𝑗
= 𝑎

𝑖𝑗
exp {𝑦∗

𝑗
} , 𝑖 ̸= 𝑗 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(61)

From the assumption of Theorem 4, we have








































𝑓

1

𝑦1
𝑓

1

𝑦2
⋅ ⋅ ⋅ 𝑓

1

𝑦𝑛

𝑓

2

𝑦1
𝑓

2

𝑦2
⋅ ⋅ ⋅ 𝑓

2

𝑦𝑛

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝑓

𝑛

𝑦1
𝑓

𝑛

𝑦2
⋅ ⋅ ⋅ 𝑓

𝑛

𝑦𝑛









































̸= 0. (62)

From this, we finally have
deg {𝐽𝑄𝑁,Ω ∩ Ker 𝐿, (0, 0, . . . , 0)} ̸= 0. (63)

This shows that Ω satisfies condition (𝑐) of Lemma 2.
Therefore, system (26) has an 𝜔-periodic solution 𝑦

∗
(𝑡) =

(𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡), . . . , 𝑦

∗

𝑛
(𝑡)) ∈ Ω. Finally, we have system that

(4) has a positive 𝜔-periodic solution. This completes the
proof.
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