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The reduced Lefschetz number, that is, L(·)− 1 where L(·) denotes the Lefschetz num-
ber, is proved to be the unique integer-valued function λ on self-maps of compact poly-
hedra which is constant on homotopy classes such that (1) λ( f g)= λ(g f ) for f : X → Y
and g : Y → X ; (2) if ( f1, f2, f3) is a map of a cofiber sequence into itself, then λ( f1) =
λ( f1) + λ( f3); (3) λ( f ) = −(deg(p1 f e1) + ···+ deg(pk f ek)), where f is a self-map of a
wedge of k circles, er is the inclusion of a circle into the rth summand, and pr is the pro-
jection onto the rth summand. If f : X → X is a self-map of a polyhedron and I( f ) is
the fixed-point index of f on all of X , then we show that I(·)− 1 satisfies the above ax-
ioms. This gives a new proof of the normalization theorem: if f : X → X is a self-map of
a polyhedron, then I( f ) equals the Lefschetz number L( f ) of f . This result is equivalent
to the Lefschetz-Hopf theorem: if f : X → X is a self-map of a finite simplicial complex
with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz
number of f is the sum of the indices of all the fixed points of f .

1. Introduction

Let X be a finite polyhedron and denote by H̃∗(X) its reduced homology with rational
coefficients. Then the reduced Euler characteristic of X , denoted by χ̃(X), is defined by

χ̃(X)=
∑
k

(−1)k dimH̃k(X). (1.1)

Clearly, χ̃(X) is just the Euler characteristic minus one. In 1962, Watts [13] characterized
the reduced Euler characteristic as follows. Let ε be a function from the set of finite poly-
hedra with base points to the integers such that (i) ε(S0) = 1, where S0 is the 0-sphere,
and (ii) ε(X)= ε(A) + ε(X/A), where A is a subpolyhedron of X . Then ε(X)= χ̃(X).

Let � be the collection of spaces X of the homotopy type of a finite, connected CW-
complex. If X ∈�, we do not assume that X has a base point except when X is a sphere or
a wedge of spheres. It is not assumed that maps between spaces with base points are based.
A map f : X → X , where X ∈ �, induces trivial homomorphisms f∗k : Hk(X)→ Hk(X)
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2 Lefschetz number

of rational homology vector spaces for all j > dimX . The Lefschetz number L( f ) of f is
defined by

L( f )=
∑
k

(−1)k Tr f∗k, (1.2)

where Tr denotes the trace. The reduced Lefschetz number L̃ is given by L̃( f )= L( f )− 1
or, equivalently, by considering the rational, reduced homology homomorphism induced
by f .

Since L̃(id)= χ̃(X), where id : X → X is the identity map, Watts’s Theorem suggests an
axiomatization for the reduced Lefschetz number which we state below in Theorem 1.1.

For k ≥ 1, denote by
∨k Sn the wedge of k copies of the n-sphere Sn, n≥ 1. If we write∨k Sn as Sn1 ∨ Sn2 ∨ ··· ∨ Snk , where Snj = Sn, then we have inclusions ej : Snj →

∨k Sn into

the jth summand and projections pj :
∨k Sn→ Snj onto the jth summand, for j = 1, . . . ,k.

If f :
∨k Sn→∨k Sn is a map, then f j : Snj → Snj denotes the composition pj f e j . The degree

of a map f : Sn→ Sn is denoted by deg( f ).
We characterize the reduced Lefschetz number as follows.

Theorem 1.1. The reduced Lefschetz number L̃ is the unique function λ from the set of
self-maps of spaces in � to the integers that satisfies the following conditions.

(1) (Homotopy axiom) If f ,g : X → X are homotopic maps, then λ( f )= λ(g).
(2) (Cofibration axiom) IfA is a subpolyhedron ofX ,A→ X → X/A is the resulting cofiber

sequence, and there exists a commutative diagram

A

f ′

X

f

X/A

f̄

A X X/A,

(1.3)

then λ( f )= λ( f ′) + λ( f̄ ).
(3) (Commutativity axiom) If f : X → Y and g : Y → X are maps, then λ(g f )= λ( f g).

(4) (Wedge of circles axiom) If f :
∨k S1 →∨k S1 is a map, k ≥ 1, then

λ( f )=−(deg
(
f1
)

+ ···+ deg
(
fk
))

, (1.4)

where f j = pj f e j .

In an unpublished dissertation [10], Hoang extended Watts’s axioms to characterize
the reduced Lefschetz number for basepoint-preserving self-maps of finite polyhedra. His
list of axioms is different from, but similar to, those in Theorem 1.1.

One of the classical results of fixed-point theory is the following theorem.

Theorem 1.2 (Lefschetz-Hopf). If f : X → X is a map of a finite polyhedron with a finite
set of fixed points, each of which lies in a maximal simplex of X , then L( f ) is the sum of the
indices of all the fixed points of f .
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The history of this result is described in [3], see also [8, page 458]. A proof that depends
on a delicate argument due to Dold [4] can be found in [2] and, in a more condensed
form, in [5]. In an appendix to his dissertation [12], McCord outlined a possibly more
direct argument, but no details were published. The book of Granas and Dugundji [8,
pages 441–450] presents an argument based on classical techniques of Hopf [11]. We
use the characterization of the reduced Lefschetz number in Theorem 1.1 to prove the
Lefschetz-Hopf theorem in a quite natural manner by showing that the fixed-point index
satisfies the axioms of Theorem 1.1. That is, we prove the following theorem.

Theorem 1.3 (normalization property). If f : X → X is any map of a finite polyhedron,
then L( f )= i(X , f ,X), the fixed-point index of f on all of X .

The Lefschetz-Hopf theorem follows from the normalization property by the additiv-
ity property of the fixed-point index. In fact, these two statements are equivalent. The
Hopf construction [2, page 117] implies that a map f from a finite polyhedron to itself
is homotopic to a map that satisfies the hypotheses of the Lefschetz-Hopf theorem. Thus,
the homotopy and additivity properties of the fixed-point index imply that the normal-
ization property follows from the Lefschetz-Hopf theorem.

2. Lefschetz numbers and exact sequences

In this section, all vector spaces are over a fixed field F, which will not be mentioned, and
are finite dimensional. A graded vector space V = {Vn} will always have the following
properties: (1) each Vn is finite dimensional and (2) Vn = 0, for n < 0 and for n > N , for
some nonnegative integer N . A map f : V →W of graded vector spaces V = {Vn} and
W = {Wn} is a sequence of linear transformations fn : Vn →Wn. For a map f : V → V ,
the Lefschetz number is defined by

L( f )=
∑
n

(−1)n Tr fn. (2.1)

The proof of the following lemma is straightforward, and hence omitted.

Lemma 2.1. Given a map of short exact sequences of vector spaces

0 U

f

V

g

W

h

0

0 U V W 0,

(2.2)

then Trg = Tr f + Trh.

Theorem 2.2. Let A, B, and C be graded vector spaces with maps α : A→ B, β : B→ C and
self-maps f : A→ A, g : B→ B, and h : C→ C. If, for every n, there is a linear transformation
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∂n : Cn→ An−1 such that the following diagram is commutative and has exact rows:

0 AN

fN

αN
BN

gN

βN
CN

hN

∂N
AN−1

fN−1

αN−1 ···

0 AN
αN

BN
βN

CN
∂N

AN−1
αN−1 ···

··· ∂1
A0

f0

α0
B0

g0

β0
C0

h0

0

··· ∂1
A0

α0
B0

β0
C0 0,

(2.3)

then

L(g)= L( f ) +L(h). (2.4)

Proof. Let Im denote the image of a linear transformation and consider the commutative
diagram

0 Im

hn|Imβn

Cn

hn

Im∂n

fn−1|Im∂n

0

0 Imβn Cn Im∂n 0.

(2.5)

By Lemma 2.1, Tr(hn) = Tr(hn|Imβn) + Tr( fn−1|Im∂n). Similarly, the commutative dia-
gram

0 Im∂n

fn−1|Im∂n

An−1

fn−1

Imαn−1

gn−1|Imαn−1

0

0 Im∂n An−1 Imαn−1 0

(2.6)

yields Tr( fn−1|Im∂n)= Tr( fn−1)−Tr(gn−1|Imαn−1). Therefore,

Tr
(
hn
)= Tr

(
hn
∣∣Imβn

)
+ Tr

(
fn−1

)−Tr
(
gn−1

∣∣Imαn−1
)
. (2.7)

Now consider

0 Imαn−1

gn−1|Imαn−1

Bn−1

gn−1

Imβn−1

hn−1|Imβn−1

0

0 Imαn−1 Bn−1 Imβn−1 0.

(2.8)
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So Tr(gn−1|Imαn−1)= Tr(gn−1)−Tr(hn−1|Imβn−1). Putting this all together, we obtain

Tr
(
hn
)= Tr

(
hn
∣∣Imβn

)
+ Tr

(
fn−1

)−Tr
(
gn−1

)
+ Tr

(
hn−1

∣∣Imβn−1
)
. (2.9)

We next look at the left end of diagram (2.3) and get

0= Tr
(
hN+1

)= Tr
(
fN
)−Tr

(
gN
)

+ Tr
(
hN
∣∣ImβN

)
, (2.10)

and at the right end which gives

Tr
(
h1
)= Tr

(
h1
∣∣Imβ1

)
+ Tr

(
f0
)−Tr

(
g0
)

+ Tr
(
h0
)
. (2.11)

A simple calculation now yields (where a homomorphism with a negative subscript is the
zero homomorphism)

N∑
n=0

(−1)n Tr
(
hn
)

=
N+1∑
n=0

(−1)n
(

Tr
(
hn
∣∣Imβn

)
+ Tr

(
fn−1

)−Tr
(
gn−1

)
+ Tr

(
hn−1

∣∣Imβn−1
))

=−
N∑
n=0

(−1)n Tr
(
fn
)

+
N∑
n=0

(−1)n Tr
(
gn
)
.

(2.12)

Therefore, L(h)=−L( f ) +L(g). �

A more condensed version of this argument has recently been published, see [8, page
420].

We next give some simple consequences of Theorem 2.2.
If f : (X ,A)→ (X ,A) is a self-map of a pair, where X ,A ∈ �, then f determines fX :

X → X and fA : A→ A. The map f induces homomorphisms f∗k : Hk(X ,A)→Hk(X ,A)
of relative homology with coefficients in F. The relative Lefschetz number L( f ;X ,A) is
defined by

L( f ;X ,A)=
∑
k

(−1)k Tr f∗k. (2.13)

Applying Theorem 2.2 to the homology exact sequence of the pair (X ,A), we obtain
the following corollary.

Corollary 2.3. If f : (X ,A)→ (X ,A) is a map of pairs, where X ,A∈�, then

L( f ;X ,A)= L
(
fX
)−L

(
fA
)
. (2.14)

This result was obtained by Bowszyc [1].
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Corollary 2.4. Suppose X = P∪Q, where X ,P,Q ∈� and (X ;P,Q) is a proper triad [6,
page 34]. If f : X → X is a map such that f (P) ⊆ P and f (Q) ⊆ Q, then, for fP , fQ, and
fP∩Q being the restrictions of f to P, Q, and P∩Q, respectively, there exists

L( f )= L
(
fP
)

+L
(
fQ
)−L

(
fP∩Q

)
. (2.15)

Proof. The map f and its restrictions induce a map of the Mayer-Vietoris homology se-
quence [6, page 39] to itself, so the result follows from Theorem 2.2. �

A similar result was obtained by Ferrario [7, Theorem 3.2.1].
Our final consequence of Theorem 2.2 will be used in the characterization of the re-

duced Lefschetz number.

Corollary 2.5. If A is a subpolyhedron of X , A→ X → X/A is the resulting cofiber sequence
of spaces in � and there exists a commutative diagram

A

f ′

X

f

X/A

f̄

A X X/A,

(2.16)

then

L( f )= L( f ′) +L
(
f̄
)− 1. (2.17)

Proof. We apply Theorem 2.2 to the homology cofiber sequence. The “minus one” on the
right-hand side arises because such sequence ends with

−→H0(A)−→H0(X)−→ H̃0(X/A)−→ 0. (2.18)
�

3. Characterization of the Lefschetz number

Throughout this section, all spaces are assumed to lie in �.
We let λ be a function from the set of self-maps of spaces in � to the integers that

satisfies the homotopy axiom, cofibration axiom, commutativity axiom, and wedge of
circles axiom of Theorem 1.1 as stated in the introduction.

We draw a few simple consequences of these axioms. From the commutativity and
homotopy axioms, we obtain the following lemma.

Lemma 3.1. If f : X → X is a map and h : X → Y is a homotopy equivalence with homotopy
inverse k : Y → X , then λ( f )= λ(h f k).

Lemma 3.2. If f : X → X is homotopic to a constant map, then λ( f )= 0.
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Proof. Let ∗ be a one-point space and ∗ : ∗ → ∗ the unique map. From the map of
cofiber sequences

∗
∗

∗
∗

∗
∗

∗ ∗ ∗
(3.1)

and the cofibration axiom, we have λ(∗) = λ(∗) + λ(∗), and therefore λ(∗) = 0. Write
any constant map c : X → X as c(x)=∗, for some ∗∈ X , let e :∗→ X be inclusion and
p : X → ∗ projection. Then c = ep and pe = ∗, and so λ(c) = 0 by the commutativity
axiom. The lemma follows from the homotopy axiom. �

If X is a based space with base point ∗, that is, a sphere or wedge of spheres, then the
cone and suspension of X are defined by CX = X × I/(X × 1∪∗× I) and ΣX = CX/(X ×
0), respectively.

Lemma 3.3. If X is a based space, f : X → X is a based map, and Σ f : ΣX → ΣX is the
suspension of f , then λ(Σ f )=−λ( f ).

Proof. Consider the maps of cofiber sequences

X

f

CX

C f

ΣX

Σ f

X CX ΣX.

(3.2)

Since CX is contractible, C f is homotopic to a constant map. Therefore, by Lemma 3.2
and the cofibration axiom,

0= λ(C f )= λ(Σ f ) + λ( f ). (3.3)
�

Lemma 3.4. For any k ≥ 1 and n≥ 1, if f :
∨k Sn→∨k Sn is a map, then

λ( f )= (−1)n
(

deg
(
f1
)

+ ···+ deg
(
fk
))

, (3.4)

where ej : Sn→∨k Sn and pj :
∨k Sn→ Sn, for j = 1, . . . ,k, are the inclusions and projections,

respectively, and f j = pj f e j .

Proof. The proof is by induction on the dimension n of the spheres. The case n = 1 is
the wedge of circles axiom. If n ≥ 2, then the map f :

∨k Sn → ∨k Sn is homotopic to a

based map f ′ :
∨k Sn →∨k Sn. Then f ′ is homotopic to Σg, for some map g :

∨k Sn−1 →∨k Sn−1. Note that if gj : Sn−1
j → Sn−1

j , then Σgj is homotopic to f j : Snj → Snj . Therefore, by
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Lemma 3.3 and the induction hypothesis,

λ( f )= λ( f ′)=−λ(g)=−(−1)n−1(deg
(
g1
)

+ ···+ deg
(
gk
))

= (−1)n
(

deg
(
f1
)

+ ···+ deg
(
fk
))
.

(3.5)
�

Proof of Theorem 1.1. Since L̃( f ) = L( f )− 1, Corollary 2.5 implies that L̃ satisfies the
cofibration axiom. We next show that L̃ satisfies the wedge of circles axiom. There is an
isomorphism θ :

⊕k H1(S1)→H1(
∨k S1) defined by θ(x1, . . . ,xk)=e1∗(x1)+···+ ek∗(xk),

where xi ∈ H1(S1). The inverse θ−1 : H1(
∨k S1) →⊕k H1(S1) is given by θ−1(y) =

(p1∗(y), . . . , pk∗(y)). If u∈H1(S1) is a generator, then a basis for H1(
∨k S1) is e1∗(u), . . . ,

ek∗(u). By calculating the trace of f∗1 : H1(
∨k S1)→ H1(

∨k S1) with respect to this ba-
sis, we obtain L̃( f ) = −(deg( f1) + ··· + deg( fk)). The remaining axioms are obviously
satisfied by L̃. Thus L̃ satisfies the axioms of Theorem 1.1.

Now suppose λ is a function from the self-maps of spaces in � to the integers that
satisfies the axioms. We regard X as a connected, finite CW-complex and proceed by
induction on the dimension of X . If X is 1-dimensional, then it is the homotopy type of a
wedge of circles. By Lemma 3.1, we can regard f as a self-map of

∨k S1, and so the wedge
of circles axiom gives

λ( f )=−(deg
(
f1
)

+ ···+ deg
(
fk
))= L̃( f ). (3.6)

Now suppose that X is n-dimensional and let Xn−1 denote the (n− 1)-skeleton of X . Then
f is homotopic to a cellular map g : X → X by the cellular approximation theorem [9,
Theorem 4.8, page 349]. Thus g(Xn−1)⊆ Xn−1, and so we have a commutative diagram

Xn−1

g′

X

g

X/Xn−1 =∨k Sn

ḡ

Xn−1 X X/Xn−1 =∨k Sn.

(3.7)

Then, by the cofibration axiom, λ(g)= λ(g′) + λ(ḡ). Lemma 3.4 implies that λ(ḡ)= L̃(ḡ).
So, applying the induction hypothesis to g′, we have λ(g) = L̃(g′) + L̃(ḡ). Since we have
seen that the reduced Lefschetz number satisfies the cofibration axiom, we conclude that
λ(g)= L̃(g). By the homotopy axiom, λ( f )= L̃( f ). �

4. The normalization property

Let X be a finite polyhedron and f : X → X a map. Denote by I( f ) the fixed-point index
of f on all of X , that is, I( f )= i(X , f ,X) in the notation of [2] and let Ĩ( f )= I( f )− 1.

In this section, we prove Theorem 1.3 by showing that, with rational coefficients,
I( f )= L( f ).

Proof of Theorem 1.3. We will prove that Ĩ satisfies the axioms, and therefore, by Theorem
1.1, Ĩ( f ) = L̃( f ). The homotopy and commutativity axioms are well-known properties
of the fixed-point index (see [2, pages 59–62]).
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To show that Ĩ satisfies the cofibration axiom, it suffices to consider A a subpolyhedron
of X and f (A)⊆A. Let f ′ : A→ A denote the restriction of f and f̄ : X/A→ X/A the map
induced on quotient spaces. Let r : U → A be a deformation retraction of a neighborhood
of A in X onto A and let L be a subpolyhedron of a barycentric subdivision of X such that
A⊆ intL⊆ L⊆U . By the homotopy extension theorem, there is a homotopy H : X × I →
X such that H(x,0)= f (x) for all x ∈ X , H(a, t)= f (a) for all a∈A, and H(x,1)= f r(x)
for all x ∈ L. If we set g(x)=H(x,1), then, since there are no fixed points of g on L−A,
the additivity property implies that

I(g)= i(X ,g, intL) + i(X ,g,X −L). (4.1)

We discuss each summand of (4.1) separately. We begin with i(X ,g, intL). Since g(L)⊆
A ⊆ L, it follows from the definition of the index (see [2, page 56]) that i(X ,g, intL) =
i(L,g, intL). Moreover, i(L,g, intL)= i(L,g,L) since there are no fixed points on L− intL
(the excision property of the index). Let e : A→ L be inclusion, then, by the commutativ-
ity property [2, page 62], we have

i(L,g,L)= i(L,eg,L)= i(A,ge,A)= I( f ′) (4.2)

because f (a)= g(a) for all a∈A.
Next we consider the summand i(X ,g,X −L) of (4.1). Let π : X → X/A be the quotient

map, set π(A) = ∗, and note that π−1(∗) = A. If ḡ : X/A→ X/A is induced by g, the re-
striction of ḡ to the neighborhood π(intL) of∗ in X/A is constant, so i(X/A, ḡ,π(intL))=
1. If we denote the set of fixed points of ḡ with ∗ deleted by Fix∗ ḡ, then Fix∗ ḡ is in the
open subset X/A−π(L) of X/A. Let W be an open subset of X/A such that Fix∗ ḡ ⊆W ⊆
X/A−π(L) with the property ḡ(W)∩π(L)=∅. By the additivity property, we have

I(ḡ)= i
(
X/A, ḡ ,π(intL)

)
+ i(X/A, ḡ ,W)= 1 + i(X/A, ḡ,W). (4.3)

Now, identifying X − L with the corresponding subset π(X − L) of X/A and identifying
the restrictions of ḡ and g to those subsets, we have i(X/A, ḡ ,W) = i(X ,g,π−1(W)). The
excision property of the index implies that i(X ,g,π−1(W))= i(X ,g,X −L). Thus we have
determined the second summand of (4.1): i(X ,g,X −L)= I(ḡ)− 1.

Therefore, from (4.1) we obtain I(g)= I( f ′) + I(ḡ)− 1. The homotopy property then
tells us that

I( f )= I( f ′) + I
(
f̄
)− 1 (4.4)

since f is homotopic to g and f̄ is homotopic to ḡ. We conclude that Ĩ satisfies the cofi-
bration axiom.

It remains to verify the wedge of circles axiom. Let X = ∨k S1 = S1
1 ∨ ··· ∨ S1

k be a
wedge of circles with basepoint ∗ and f : X → X a map. We first verify the axiom in
the case k = 1. We have f : S1 → S1 and we denote its degree by deg( f ) = d. We regard
S1 ⊆ C, the complex numbers. Then f is homotopic to gd, where gd(z) = zd has |d− 1|
fixed points for d �= 1. The fixed-point index of gd in a neighborhood of a fixed point that
contains no other fixed point of gd is−1 if d ≥ 2 and is 1 if d ≤ 0. Since g1 is homotopic to
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a map without fixed points, we see that I(gd)=−d + 1 for all integers d. We have shown
that I( f )=−deg( f ) + 1.

Now suppose k ≥ 2. If f (∗)=∗, then, by the homotopy extension theorem, f is ho-
motopic to a map which does not fix ∗. Thus we may assume, without loss of generality,
that f (∗)∈ S1

1−{∗}. Let V be a neighborhood of f (∗) in S1
1−{∗} such that there exists

a neighborhood U of ∗ in X , disjoint from V , with f (Ū)⊆V . Since Ū contains no fixed
point of f and the open subsets S1

j − Ū of X are disjoint, the additivity property implies

I( f )= i
(
X , f ,S1

1− Ū
)

+
k∑
j=2

i
(
X , f ,S1

j − Ū
)
. (4.5)

The additivity property also implies that

I
(
f j
)= i

(
S1
j , f j ,S

1
j − Ū

)
+ i
(
S1
j , f j ,S

1
j ∩U

)
. (4.6)

There is a neighborhoodWj of (Fix f )∩ S1
j in S1

j such that f (W j)⊆ S1
j . Thus f j(x)= f (x)

for x ∈Wj , and therefore, by the excision property,

i
(
S1
j , f j ,S

1
j −U

)= i
(
S1
j , f j ,Wj

)= i
(
X , f ,Wj

)= i
(
X , f ,S1

j −U
)
. (4.7)

Since f (U) ⊆ S1
1, then f1(x)= f (x) for all x ∈ U ∩ S1

1. There are no fixed points of f
in U , so i(S1

1, f1,S1
1∩U)= 0, and thus, I( f1)= i(X , f ,S1

1−U) by (4.6) and (4.7).
For j ≥ 2, the fact that f j(U) = ∗ gives us i(S1

j , f j ,S
1
j ∩U) = 1, so I( f j) = i(X , f ,S1

j −
U) + 1 by (4.6) and (4.7). Since f j : S1

j → S1
j , the k = 1 case of the argument tells us

that I( f j)=−deg( f j) + 1 for j = 1,2, . . . ,k. In particular, i(X , f ,S1
1−U)=−deg( f1) + 1,

whereas, for j ≥ 2, we have i(X , f ,S1
j −U)=−deg( f j). Therefore, by (4.5),

I( f )= i
(
X , f ,S1

1−U
)

+
k∑
j=2

i
(
X , f ,S1

j −U
)=−

k∑
j=1

deg
(
f j
)

+ 1. (4.8)

This completes the proof of Theorem 1.3. �
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