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The reduced Lefschetz number, that is, L(-) — 1 where L(-) denotes the Lefschetz num-
ber, is proved to be the unique integer-valued function A on self-maps of compact poly-
hedra which is constant on homotopy classes such that (1) A(fg) = A(gf) for f: X - Y
and g: Y — X; (2) if (fi, 2, f3) is a map of a cofiber sequence into itself, then A(f;) =
Afi) +A(f3); (3) A(f) = —(deg(p1fer) + - - - +deg(pk fex)), where f is a self-map of a
wedge of k circles, e, is the inclusion of a circle into the rth summand, and p, is the pro-
jection onto the rth summand. If f : X — X is a self-map of a polyhedron and I(f) is
the fixed-point index of f on all of X, then we show that I(-) — 1 satisfies the above ax-
ioms. This gives a new proof of the normalization theorem: if f : X — X is a self-map of
a polyhedron, then I(f) equals the Lefschetz number L(f) of f. This result is equivalent
to the Lefschetz-Hopf theorem: if f : X — X is a self-map of a finite simplicial complex
with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz
number of f is the sum of the indices of all the fixed points of f.

1. Introduction

Let X be a finite polyhedron and denote by H, (X) its reduced homology with rational
coefficients. Then the reduced Euler characteristic of X, denoted by y(X), is defined by

F(X) = > (~1)*dim He(X). (1.1)
k

Clearly, ¥(X) is just the Euler characteristic minus one. In 1962, Watts [13] characterized
the reduced Euler characteristic as follows. Let € be a function from the set of finite poly-
hedra with base points to the integers such that (i) €(S°) = 1, where S° is the 0-sphere,
and (ii) €(X) = €(A) + €(X/A), where A is a subpolyhedron of X. Then €(X) = y(X).

Let 6 be the collection of spaces X of the homotopy type of a finite, connected CW-
complex. If X € ‘6, we do not assume that X has a base point except when X is a sphere or
a wedge of spheres. It is not assumed that maps between spaces with base points are based.
A map f:X — X, where X € 6, induces trivial homomorphisms fi : Hx(X) — Hx(X)
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2 Lefschetz number

of rational homology vector spaces for all j > dimX. The Lefschetz number L(f) of f is
defined by

L(f) = D (=D Tr fus (1.2)

k

where Tr denotes the trace. The reduced Lefschetz number I is given by L f)=L(f)-1
or, equivalently, by considering the rational, reduced homology homomorphism induced
by f. N

Since L(id) = ¥(X), where id : X — X is the identity map, Watts’s Theorem suggests an
axiomatization for the reduced Lefschetz number which we state below in Theorem 1.1.

For k > 1, denote by \/*$" the wedge of k copies of the n-sphere §”, n > 1. If we write
VES as STV ST v Sk» where S} = §", then we have inclusions e; : S — VEs into
the jth summand and projections p; : VEsn - S} onto the jth summand, for j = 1,...,k.
Iff: \/¥ 8" — \/* § is a map, then fj:8j — Sj denotes the composition p; fe;. The degree
of amap f:8" — §" is denoted by deg( f).

We characterize the reduced Lefschetz number as follows.

TueoreM 1.1. The reduced Lefschetz number L is the unique function A from the set of
self-maps of spaces in € to the integers that satisfies the following conditions.

(1) (Homotopy axiom) If f,g : X — X are homotopic maps, then A(f) = A(g).

(2) (Cofibration axiom) If A is a subpolyhedron of X, A — X — X/A is the resulting cofiber
sequence, and there exists a commutative diagram

A X X/A
I f ft (1.3)
A X X/A,

then A(f) = A(f") +A(f).
(3) (Commutativity axiom) If f : X — Y and g:Y — X are maps, then M(gf) = A(fg).
(4) (Wedge of circles axiom) If f : VESt - \ESlisa map, k > 1, then

A(f) = —(deg(fi) +- - - +deg(fi)), (1.4)

where f; = pife;.

In an unpublished dissertation [10], Hoang extended Watts’s axioms to characterize
the reduced Lefschetz number for basepoint-preserving self-maps of finite polyhedra. His
list of axioms is different from, but similar to, those in Theorem 1.1.

One of the classical results of fixed-point theory is the following theorem.

TareoreM 1.2 (Lefschetz-Hopf). If f : X — X is a map of a finite polyhedron with a finite
set of fixed points, each of which lies in a maximal simplex of X, then L( f) is the sum of the
indices of all the fixed points of f.
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The history of this result is described in [3], see also [8, page 458]. A proof that depends
on a delicate argument due to Dold [4] can be found in [2] and, in a more condensed
form, in [5]. In an appendix to his dissertation [12], McCord outlined a possibly more
direct argument, but no details were published. The book of Granas and Dugundji [8,
pages 441-450] presents an argument based on classical techniques of Hopf [11]. We
use the characterization of the reduced Lefschetz number in Theorem 1.1 to prove the
Lefschetz-Hopf theorem in a quite natural manner by showing that the fixed-point index
satisfies the axioms of Theorem 1.1. That is, we prove the following theorem.

THEOREM 1.3 (normalization property). If f : X — X is any map of a finite polyhedron,
then L(f) = i(X, f,X), the fixed-point index of f on all of X.

The Lefschetz-Hopf theorem follows from the normalization property by the additiv-
ity property of the fixed-point index. In fact, these two statements are equivalent. The
Hopf construction [2, page 117] implies that a map f from a finite polyhedron to itself
is homotopic to a map that satisfies the hypotheses of the Lefschetz-Hopf theorem. Thus,
the homotopy and additivity properties of the fixed-point index imply that the normal-
ization property follows from the Lefschetz-Hopf theorem.

2. Lefschetz numbers and exact sequences

In this section, all vector spaces are over a fixed field F, which will not be mentioned, and
are finite dimensional. A graded vector space V = {V,,} will always have the following
properties: (1) each V,, is finite dimensional and (2) V,, = 0, for n < 0 and for n > N, for
some nonnegative integer N. A map f : V — W of graded vector spaces V = {V,} and
W = {W,} is a sequence of linear transformations f,:V, — W,. Foramap f:V -V,
the Lefschetz number is defined by

L(f) =D (-D)"Tr f,. (2.1)

The proof of the following lemma is straightforward, and hence omitted.

LemMa 2.1. Given a map of short exact sequences of vector spaces

0 U \% W 0
ft gl hl (2.2)
0 U \%4 w 0,

then Trg = Tr f + Trh.

THEOREM 2.2. Let A, B, and C be graded vector spaces with maps «: A — B, f: B — C and
self-maps f :A - A,g:B — B,and h: C — C. If, for every n, there is a linear transformation
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On : Cy — Ay—1 such that the following diagram is commutative and has exact rows:

0 Ay —= By & Oy — 2 Ay —2s e
0 Ay —> > By a Cn o Ay —
(2.3)
h Ay By 0
R
NNy WL SRS 0,
then
L(g) = L(f) + L(h). (2.4)

Proof. Let Im denote the image of a linear transformation and consider the commutative
diagram

0 Im C, Imo, 0
hnlmﬁnl hnj/ fnllmanl (25)
0——Imp, C, Imo, 0.

By Lemma 2.1, Tr(h,) = Tr(h,| Imf,) + Tr(f,-11Imd,). Similarly, the commutative dia-
gram

0 Imo, A, ——Ima,. 1 —>0
fn1|1manl fnll gnllmanll (26)
0 Imo, A, ——Ima, 1 —=0

yields Tr( f,—11Ima,) = Tr(fy-1) — Tr(gy—1 | Ima,_1). Therefore,
Tr () = Tr (| T B) +Tr (fo 1) = Tr (go 1 | Tmaty ). (2.7)
Now consider
0—— Ima,_; B,y ImpB, 1 —0

gnl ImaﬂJ gn-1 l hnllmﬁnll (2.8)

0 ——Ima,; B, 1 ImpB,-1 —0.
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So Tr(gu-11Imay—1) = Tr(gy—1) — Tr(hy—1 [ ImB,—1). Putting this all together, we obtain
Tr (hy) = Tr (s | T B,) + T (fot) = Tr (guot) +Tr (ot | ImBocy). (29)
We next look at the left end of diagram (2.3) and get
0="Tr(hys1) = Tr(f) = Tr(gn) +Tr (hy | ImBy), (2.10)
and at the right end which gives
Tr (h) = Tr (| ImBy) + Tr (fo) — Tr (go) + Tr (ko). (2.11)

A simple calculation now yields (where a homomorphism with a negative subscript is the
zero homomorphism)

N
Z -1)"Tr (h
n=0
Z "(Tr (hy | ImBy) + Tr (fu=1) — Tr (gn—1) + Tt (hy—r | ImB,y))  (2.12)
" N N
Z " Tr (fu) + > (=1)"Tr (g).
n=0 n=0
Therefore, L(h) = —L(f) +L(g). O

A more condensed version of this argument has recently been published, see [8, page
420].

We next give some simple consequences of Theorem 2.2.

If f:(X,A) — (X,A) is a self-map of a pair, where X,A € ¢, then f determines fx :
X — X and fy: A — A. The map f induces homomorphisms fix : Hi(X,A) — Hi(X,A)
of relative homology with coefficients in F. The relative Lefschetz number L(f;X,A) is
defined by

L(f;X,A) = > (- DFTr fux. (2.13)

k

Applying Theorem 2.2 to the homology exact sequence of the pair (X,A), we obtain
the following corollary.

CoroLLARY 2.3. If f : (X,A) — (X, A) is a map of pairs, where X,A € €, then

L(f;X,A) = L(fx) - L(fA) (2.14)

This result was obtained by Bowszyc [1].
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CoOROLLARY 2.4. Suppose X = P U Q, where X,P,Q € € and (X;P,Q) is a proper triad |6,
page 34]. If f : X — X is a map such that f(P) < P and f(Q) < Q, then, for fp, fq, and
frnq being the restrictions of f to P, Q, and P N Q, respectively, there exists

L(f) = L(fr) + L(fq) — L(fpnq) (2.15)

Proof. The map f and its restrictions induce a map of the Mayer-Vietoris homology se-
quence [6, page 39] to itself, so the result follows from Theorem 2.2. O

A similar result was obtained by Ferrario [7, Theorem 3.2.1].
Our final consequence of Theorem 2.2 will be used in the characterization of the re-
duced Lefschetz number.

COROLLARY 2.5. If A is a subpolyhedron of X, A — X — X/A is the resulting cofiber sequence
of spaces in ‘€ and there exists a commutative diagram

A X X/A
r f f-t (2.16)
A X X/A,
then
L(f)=L(f)+L(f) -1 (2.17)

Proof. We apply Theorem 2.2 to the homology cofiber sequence. The “minus one” on the
right-hand side arises because such sequence ends with

— Hy(A) — Hy(X) — Hy(X/A) — 0. (2.18)
O

3. Characterization of the Lefschetz number

Throughout this section, all spaces are assumed to lie in 6.

We let A be a function from the set of self-maps of spaces in € to the integers that
satisfies the homotopy axiom, cofibration axiom, commutativity axiom, and wedge of
circles axiom of Theorem 1.1 as stated in the introduction.

We draw a few simple consequences of these axioms. From the commutativity and
homotopy axioms, we obtain the following lemma.

LemMma 3.1. If f: X — X isamap and h: X — Y is a homotopy equivalence with homotopy
inversek:Y — X, then A(f) = A(hfk).

Lemma 3.2. If f : X — X is homotopic to a constant map, then A(f) = 0.
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Proof. Let * be a one-point space and * : * — * the unique map. From the map of
cofiber sequences

* * *
IR o)
* * *

and the cofibration axiom, we have A(x) = A(*) + A(x), and therefore A(x) = 0. Write
any constant map ¢ : X — X as c¢(x) = *, for some x € X, let e: % — X be inclusion and
p:X — * projection. Then ¢ = ep and pe = *, and so A(c) = 0 by the commutativity
axiom. The lemma follows from the homotopy axiom. g

If X is a based space with base point *, that is, a sphere or wedge of spheres, then the
cone and suspension of X are defined by CX = X X I/(X X 1 U % X I) and 2X = CX/(X X
0), respectively.

Lemma 3.3. If X is a based space, f : X — X is a based map, and X f : 2X — EX is the
suspension of f, then M(Xf) = =A(f).

Proof. Consider the maps of cofiber sequences

X CX X
e 52)
X CX >X.

Since CX is contractible, Cf is homotopic to a constant map. Therefore, by Lemma 3.2
and the cofibration axiom,

0=MCf) = MZf) +A(f). (33)
O

LEMMA 3.4. Foranyk=1andn=1,if f : \/*S" — \/* $" is a map, then
A(f) = (=1)"(deg(fi) +- - - +deg (f))> (3.4)

wheree; : S" — VS and pj: VEsn - S", for j = 1,...,k, are the inclusions and projections,
respectively, and f; = p; fe;.

Proof. The proof is by induction on the dimension # of the spheres. The case n =1 is
the wedge of circles axiom. If n > 2, then the map f : \/* 8" — /¥ §" is homotopic to a
based map f': \/¥$" — \/*$". Then f’ is homotopic to %g, for some map g : VEgnt
V¥ $71. Note that if g; : §171 — 8171, then %g; is homotopic to f; : S} — S7. Therefore, by
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Lemma 3.3 and the induction hypothesis,

M) =Mf") =—-Ag) = —(=1)""'(deg(g1) + - - - +deg(gx)) (3.5)
= (=1)"(deg (fi) + - - - +deg (fi)). 0

Proof of Theorem 1.1. Since L(f) = L(f) — 1, Corollary 2.5 implies that L satisfies the
cofibration axiom. We next show that L satisfies the wedge of circles axiom. There is an
isomorphism 6 : PFH,(SY) — H (VFSY) defined by 0(x1,...,xx) = €14 (x1)+ * + + e (xk),
where x; € Hi(S'). The inverse 61 : H;(\V*S!) — @ H(S!) is given by 67'(y) =
(P1x(P)s..r prx(3)). If u € Hy(S') is a generator, then a basis for H; (\/* 81) is ey« (u),...,
ek« (u). By calculating the trace of fy; cHy(VESY) — Hy(\VES!) with respect to this ba-
sis, we obtain L(f) = —(deg(f1) + - - - + deg(fx)). The remaining axioms are obviously
satisfied by L. Thus L satisfies the axioms of Theorem 1.1.

Now suppose A is a function from the self-maps of spaces in € to the integers that
satisfies the axioms. We regard X as a connected, finite CW-complex and proceed by
induction on the dimension of X. If X is 1-dimensional, then it is the homotopy type of a
wedge of circles. By Lemma 3.1, we can regard f as a self-map of \/* 81, and so the wedge
of circles axiom gives

A(f)=—(deg(fi) +- - +deg(fk)) =L(f). (3.6)

Now suppose that X is n-dimensional and let X"~ ! denote the (n — 1)-skeleton of X. Then
f is homotopic to a cellular map g : X — X by the cellular approximation theorem [9,
Theorem 4.8, page 349]. Thus g(X""!) = X"!, and so we have a commutative diagram

anl X X/xn—l — \/k N
g’l gl EL (3.7)
X1 X xX/xr1 = \/ksm,

Then, by the cofibration axiom, A(g) = A(g") + A(¢). Lemma 3.4 implies that A(g) = L(g).
So, applying the induction hypothesis to g, we have A(g) = L(g") + L(g). Since we have
seen that the reduced Lefschetz number satisfies the cofibration axiom, we conclude that
A(g) = L(g). By the homotopy axiom, A(f) = L(f). O

4. The normalization property

Let X be a finite polyhedron and f : X — X a map. Denote by I(f) the fixed-point index
of f onall of X, thatis, I(f) = i(X, f,X) in the notation of [2] and let I(f) = I(f) — 1.
In this section, we prove Theorem 1.3 by showing that, with rational coefficients,

I(f) = L(f).

Proof of Theorem 1.3. We will prove that I satisfies the axioms, and therefore, by Theorem
1.1, I(f) = L(f). The homotopy and commutativity axioms are well-known properties
of the fixed-point index (see [2, pages 59-62]).
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To show that I satisfies the cofibration axiom, it suffices to consider A a subpolyhedron
of X and f(A) < A.Let f' : A — A denote the restriction of f and f : X/A — X/A the map
induced on quotient spaces. Let 7 : U — A be a deformation retraction of a neighborhood
of A in X onto A and let L be a subpolyhedron of a barycentric subdivision of X such that
A cintL ¢ L ¢ U. By the homotopy extension theorem, there is a homotopy H : X X I —
X such that H(x,0) = f(x) forallx € X, H(a,t) = f(a) foralla € A,and H(x,1) = fr(x)
for all x € L. If we set g(x) = H(x, 1), then, since there are no fixed points of g on L — A,
the additivity property implies that

I(g) =i(X,g,intL) +i(X,g, X — L). (4.1)

We discuss each summand of (4.1) separately. We begin with i(X,g,intL). Since g(L) <
A c L, it follows from the definition of the index (see [2, page 56]) that i(X,g,intL) =
i(L,g,intL). Moreover, i(L,g,intL) = i(L,g,L) since there are no fixed points on L —intL
(the excision property of the index). Let e : A — L be inclusion, then, by the commutativ-
ity property [2, page 62], we have

i(L,g,L) =i(L,eg,L) = i(A,ge,A) =I(f") (4.2)

because f(a) = g(a) foralla € A.

Next we consider the summand i(X,g,X — L) of (4.1). Let w : X — X/A be the quotient
map, set 7(A) = %, and note that 77! () = A. If g : X/A — X/A is induced by g, the re-
striction of ¢ to the neighborhood 7 (intL) of * in X/A is constant, so i(X/A,g, m(intL)) =
1. If we denote the set of fixed points of ¢ with * deleted by Fixy g, then Fixy g is in the
open subset X/A — (L) of X/A. Let W be an open subset of X/A such that Fix, § < W <
X/A — (L) with the property (W) n (L) = @. By the additivity property, we have

1(g) =i(X/A,g,n(intL)) + i(X/A,§, W) = 1 +i(X/A, g, W). (4.3)

Now, identifying X — L with the corresponding subset 7(X — L) of X/A and identifying
the restrictions of ¢ and g to those subsets, we have i(X/A,g, W) = i(X,g,7~*(W)). The
excision property of the index implies that i(X,g,7"'(W)) = i(X,g,X — L). Thus we have
determined the second summand of (4.1): i(X,g,X — L) = I(g) — 1.

Therefore, from (4.1) we obtain I(g) = I(f’) +1(g) — 1. The homotopy property then
tells us that

I(f)=1(f)+I(f) -1 (4.4)

since f is homotopic to g and f is homotopic to g. We conclude that I satisfies the cofi-
bration axiom.

It remains to verify the wedge of circles axiom. Let X = \/*S! = S} v --- v S} be a
wedge of circles with basepoint * and f: X — X a map. We first verify the axiom in
the case k = 1. We have f : S' — S! and we denote its degree by deg(f) = d. We regard
S' < C, the complex numbers. Then f is homotopic to g4, where g4(z) = z% has |d — 1|
fixed points for d # 1. The fixed-point index of g; in a neighborhood of a fixed point that
contains no other fixed point of g;is —1if d = 2 and is 1 if d < 0. Since g; is homotopic to
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a map without fixed points, we see that I(g4) = —d +1 for all integers d. We have shown
that I(f) = —deg(f)+ 1.

Now suppose k = 2. If f(*) = *, then, by the homotopy extension theorem, f is ho-
motopic to a map which does not fix *. Thus we may assume, without loss of generality,
that f(*) € S} — {*}. Let V be a neighborhood of f(x)in S} — {*} such that there exists
a neighborhood U of * in X, disjoint from V, with f (U) < V. Since U contains no fixed
point of f and the open subsets S} — U of X are disjoint, the additivity property implies

k
I(f) =i(X, f,S1 - U) + > i(X, f,S] - U (4.5)

j=2
The additivity property also implies that
I(f;) = i(S}, f;>S} = U) +i(S}, f;, S} n U). (4.6)

There is a neighborhood W; of (Fix f) N S} in S} such thatf(Wj) c S}. Thus f;(x) = f(x)
for x € Wj, and therefore, by the excision property,

i(SL 5,85 = ) = (S}, f, Wy) = i(X, £, W)) = i(X, f,8} = 7). (4.7)

Since f(U) < S}, then fi(x) = f(x) for all x € U N S}. There are no fixed points of f
in U, s0 (S, f1,S] N U) = 0, and thus, I(f;) = i(X, f,S{ — U) by (4.6) and (4.7).

For j > 2, the fact that f;(U) = * gives us i(S},fj,S} nU) =1,s0I(f;) = i(X, f,S] -
U) +1 by (4.6) and (4.7). Since fj: S} — S}, the k = 1 case of the argument tells us
that I(f;) = —deg(f;) +1 for j = 1,2,..., k. In particular, i(X,f,81 —U) = —deg(fi) +1,
whereas, for j > 2, we have i(X,f,S} -U) = —deg(f;). Therefore, by (4.5),

k k
I(f) =i(X, f,81 = U) + X i(X, £,8] = U) = = > deg (f;) +1. (4.8)
j=2 j=1
This completes the proof of Theorem 1.3. O
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