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Assume that f : X → Y is a proper map of a connected n-manifold X into a Haus-
dorff, connected, locally path-connected, and semilocally simply connected space Y , and
y0 ∈ Y has a neighborhood homeomorphic to Euclidean n-space. The proper Nielsen
number of f at y0 and the absolute degree of f at y0 are defined in this setting. The
proper Nielsen number is shown to a lower bound on the number of roots at y0 among
all maps properly homotopic to f , and the absolute degree is shown to be a lower bound
among maps properly homotopic to f and transverse to y0. When n > 2, these bounds are
shown to be sharp. An example of a map meeting these conditions is given in which, in
contrast to what is true when Y is a manifold, Nielsen root classes of the map have differ-
ent multiplicities and essentialities, and the root Reidemeister number is strictly greater
than the Nielsen root number, even when the latter is nonzero.

1. Introduction

Let f : X → Y be a map of topological spaces and y0 ∈ Y . A point x ∈ X such that f (x)=
y0 is called a root of f at y0. In Nielsen root theory, by analogy with Nielsen fixed-point
theory, the roots of f are grouped into Nielsen classes, a notion of essentiality is defined,
and the Nielsen root number is defined to be the number of essential root classes. The
Nielsen root number is a homotopically invariant lower bound for the number of roots
of f at y0. When X is noncompact, it is often of more interest to restrict attention to
proper maps and proper homotopies, and define a “proper Nielsen root number.”

We also consider the topological analog of the case where y0 is a “regular value” of f .
In this analog, f is said to be “transverse to y0.” The map f is transverse to y0 if it has
a neighborhood that is evenly covered by f . For this purpose, Hopf [7] introduced the
notion of “absolute degree” (which we redefine in Section 3 below). For maps of com-
pact oriented manifolds, the absolute degree is the same, up to sign, as the Brouwer de-
gree.

The main objective of this paper is to prove the following two theorems in Nielsen root
theory.
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Theorem 1.1. Let f : X → Y be a proper map of a connected n-manifold X into a Haus-
dorff, connected, locally path-connected, and semilocally simply connected space Y . Assume
y0 ∈ Y has a neighborhood homeomorphic to Euclidean n-space Rn. Then every map prop-
erly homotopic to f and transverse to y0 has at least �( f , y0) roots, where �( f , y0) denotes
the absolute degree of f at y0.

Moreover, if n > 2, then there is a map properly homotopic to f and transverse to y0 that
has exactly �( f , y0) roots at y0.

Theorem 1.2. Let f : X → Y be a proper map of a connected n-manifold X into a Haus-
dorff, connected, locally path-connected, and semilocally simply connected space Y . Assume
y0 ∈ Y has a neighborhood homeomorphic to Euclidean n-space Rn. Then every map prop-
erly homotopic to f has at least PNR( f , y0) roots at y0, where PNR( f , y0) denotes the proper
Nielsen root number of f at y0, and every Nielsen root class of f at y0 with nonzero multi-
plicity is properly essential.

Moreover, if n > 2, then here is a map properly homotopic to f that has exactly PNR( f , y0)
roots at y0, and a root class of f is properly essential only if it has nonzero multiplicity.

Each of these theorems is a direct generalization of a theorem that heretofore required
Y , as well as X , to be an n-manifold. Those theorems, in their original forms, are due to
Hopf [7]. Modern statements and proofs (still requiring Y to be a manifold), as well as
a review of the history of the subject are given in Brown and Schirmer [3]. Definitions
of the terms “transverse,” “absolute degree,” “proper Nielsen number,” “multiplicity,” and
“properly essential” are given in Sections 2 and 3 below. Before proceeding to formal
definitions, however, we will use the following example to introduce some of these and
other concepts from Nielsen root theory, as well as to illustrate Theorems 1.1 and 1.2.

Example 1.3. Let Sn = {x ∈ Rn+1 | ‖x‖ = 1} denote the unit sphere in Rn+1, and let S =
(0, . . . ,0,−1) and N = (0, . . . ,0,1) denote its south and north poles. Assume n ≥ 2. For
each positive integer k, let kSn denote the space formed by taking k copies of Sn and
identifying the north pole of each to the south pole of the next. More formally, define an
equivalence relation ≈ on {1, . . . ,k}× Sn by (z,N) ≈ (z + 1,S) for z = 1, . . . ,k− 1 and let
kSn = {1, . . . ,k}× Sn/ ≈. Thus, in particular, 2Sn is the wedge product of two spheres.

There is a natural map of Sn onto 2Sn obtained by squeezing the equator of Sn to a
point. We generalize this to a map g : Sn→ kSn. First, for each z = 1, . . . ,k, let

Xz =
{(
x1, . . . ,xn+1

)∈ Sn
∣∣∣∣ 2(z− 1)

k
− 1≤ xn+1 ≤ 2z

k
− 1

}
. (1.1)

Define gz : Xz → Sn by

gz
(
x1, . . . ,xn+1

)=


(0, . . . ,0,−1) if z = 1, xn+1 =−1,

(0, . . . ,0,1) if z = k, xn+1 = 1,(√
1−α2

z

(
xn+1

)
1− x2

n+1

(
x1, . . . ,xn

)
,αz
(
xn+1

))
otherwise,

(1.2)
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Figure 1.1. Example 1.3 with k = 3.

where αz(x)= k(x+ 1)− 2z+ 1. So gz takes Xz onto Sn by squeezing the latitudes xn+1 =
2(z− 1)/k− 1 and xn+1 = 2z/k− 1 to the south and north poles, respectively, and map-
ping the rest of Xz homeomorphically onto the rest of Sn. Now define g : Sn→ kSn by

g(x)= [(z,gz(x)
)]

for x ∈ Xz, z = 1, . . . ,k, (1.3)

where the square brackets denote the equivalence class of (z,gz(x)) in kSn = {1, . . . ,k}×
Sn/ ≈.

For every integer d ∈ Z, let hd : Sn → Sn be a map with Brouwer degree d that leaves
north and south poles fixed. Then, for any sequence (d1, . . . ,dk) of integers, the map
(z,x) �→ (z,hdz(x)) of {1, . . . ,k}× Sn to itself induces a self-map of kSn, which we denote
hd1,...,dk : kSn→ kSn.

Now let ZSn = Z× Sn/ ≈, where (z,N) ≈ (z + 1,S) for all z ∈ Z. The inclusion {1, . . . ,
k}× Sn ⊂ Z× Sn induces an injection i : kSn↩ZSn.

Let Sn/{S,N} denote the space formed from Sn by identifying the north and south
poles. Then the projection (z,x) �→ x of Z× Sn onto Sn induces a map q̂ : ZSn→ Sn/{S,N},
which is easily seen to be a covering; in fact, q̂ is the universal covering of Sn/{S,N}.

Let f̂ : Sn → ZSn be the composition f̂ = i ◦ hd1,...,dk ◦ g, and let f = q̂ ◦ f̂ . So f̂ is a lift
of f through q̂. Choose a point y0 ∈ Z/{S,N}−{S,N} and denote the points in q̂−1(y0)
by ŷz, where ŷz ∈ {z}× Sn for each z ∈ Z. The picture for k = 3 is shown in Figure 1.1.
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Since both Sn and ZSn are simply connected, then the images of their fundamental

groups under f and q̂, respectively, are (trivially) equal, so q̂ is a Hopf covering and f̂
is a Hopf lift for f . (Terms in italics are from Nielsen root theory, and are reviewed or

defined in Section 3 below.) Thus, each of the sets f̂ −1( ŷz) is either empty or a Nielsen
root class of f at y0. Assume dz 
= 0 for z = 1, . . . ,� ≤ k, and dz = 0 for z = � + 1, . . . ,k. The

integer root index λ( f , f̂ −1( ŷz)) for the Nielsen class f −1( ŷz) is dz, so each of the classes

f̂ −1( ŷz) for 1 ≤ z ≤ � is essential. For other values of z, either f̂ −1( ŷz) =∅ or � < z ≤ k
and dz = 0. In this last case there is a homotopy, constant on the north and south poles,
of hdz : Sn→ Sn to a map h′ such that h′−1( ŷ0)=∅. This homotopy can be used to define

a homotopy of f̂ to a map f̂ ′ such that f̂ ′−1( ŷz) =∅. Thus f̂ −1( ŷz) is inessential (or
empty). It follows that the Nielsen root number of f is NR( f , y0)= �. Since Sn is compact,
this is also the proper Nielsen root number of f , PNR( f , y0).

The index for all of Sn is λ( f ,Sn) = d1 + ··· + dk. The multiplicity of f̂ −1( ŷz) is

mult( f , f̂ −1( ŷz), y0)= |dz|, and the absolute degree of f at y0 is the sum of the multiplic-
ities: �( f , y0) = |d1|+ ···+ |dk|. Every map homotopic to f has at least NR( f , y0) = �
roots at y0. On the other hand, from what we know of maps of spheres, for every d 
= 0,
there is a map homotopic to hd : Sn → Sn by a homotopy constant at S and N that has
only one root at ŷ0. These maps may be used to define a map homotopic to f that has
exactly � = NR( f , y0) = PNR( f , y0) roots. We will see that every map homotopic to f
and transverse to y0 has at least �( f , y0) = |d1|+ ··· + |dk| roots. On the other hand,
each map hd : Sn → Sn is homotopic to a map, by a homotopy constant on S and N , that
is transverse to ŷ0 and has exactly |d| roots. These maps may be used to define a map

homotopic to f and transverse to y0 that has exactly
∑k

z=1 |dz| =�( f , y0) roots.
The root Reidemeister number RR( f ) of f is the index in the fundamental group of

Sn/{S,N} of the image of the fundamental group of Sn under f . In this example Sn is
simply connected and Sn/{S,N} has infinite cyclic fundamental group, so RR( f )=∞.

This example is of particular interest because, like maps of closed n-manifolds with
n > 2, NR( f , y0) is a sharp lower bound on the number of roots of f ′ at y0 over all maps
f ′ homotopic to f , and �( f , y0) is a sharp lower bound on the number of roots of f ′ at
y0 over all maps f ′ homotopic to f and transverse to y0. But, unlike maps of manifolds,
the root classes may have different multiplicities and some may be inessential while others
are essential. Also, in this example, RR( f ) > NR( f , y0), whereas for maps of manifolds,
RR( f )=NR( f , y0) whenever NR( f , y0) > 0 (see, e.g., [1, Corollary 3.21]).

The rest of this paper is organized as follows. The next section establishes some nota-
tion and conventions, reviews proper maps and homotopies, transversality of a map to a
point, and concepts related to the orientation of a manifold. In Section 3, we review basic
definitions and results from Nielsen root theory and modify them for the case of proper
maps. By the end of Section 3 we will have completed the proof of the first paragraphs in
Theorems 1.1 and 1.2: we will have shown that �( f , y0) is a lower bound on the num-
ber of roots of f for proper maps transverse to y0, and that PNR( f , y0) is a lower bound
on the number of roots for proper maps f—and they are both invariant under proper
homotopy. Section 4 is devoted to the problem of isolating roots. In particular, we show
that if f : X → Y is a proper map of a connected n-manifold X into a Hausdorff space Y
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and y0 ∈ Y has a neighborhood homeomorphic to Euclidean n-space Rn, then there is a
map properly homotopic to f and transverse to y0. The last section completes the proofs
of Theorems 1.1 and 1.2.

2. Preliminaries

2.1. Miscellaneous conventions and notation. All spaces are assumed Hausdorff. We say
a space is well connected if it is connected, locally path-connected, and semilocally simply
connected.

Euclidean n-space is denoted by Rn, the closed unit ball in Rn by Bn, the unit interval
by I , the integers by Z, and the integers modulo 2 by Z/2Z. For a class ξ ∈ Z/2Z, we write
|ξ| = 1 if 1 ∈ ξ, and |ξ| = 0 otherwise. Notice that as is the case for ordinary absolute
value, |ξ + ξ′| ≤ |ξ|+ |ξ′|.

If S is a set, then cardS denotes its cardinality. If φ : G→ H is an isomorphism, we
sometimes write φ :G≈�H .

A path A in a space X is a map A : I → X . If x is a point in the space X , then we also use
x to denote the constant path t �→ x. We use [A] to denote the fixed-endpoint homotopy
class of A.

A subspace B ⊂ X of a space X is an n-ball if there is a homeomorphism φ : Bn→ B. A
subspace E ⊂ X is n-Euclidean if there is a homeomorphism ψ :Rn→ E.

A homotopy {ht : X → Y | t ∈ I} is a family of maps ht : X → Y indexed by I such
that the function (x, t) �→ ht(x) is continuous from X × I to Y . We usually denote it more
simply by {ht : X → Y} or even more simply by {ht}. The homotopy {ht : X → Y} is
constant on A ⊂ X if ht(x) = h0(x) for all x ∈ A and t ∈ I . It is constant off of A if it is
constant on X −A.

We say that a map f : (X ,A)→ (Y ,B) defines a map f ′ : (X ′,A′)→ (Y ′,B′) if the two
maps are the same except for modifications of domain and codomain—more precisely, if
X ′ ⊂ X , f (X ′)⊂ Y ′, f (A′)⊂ B′, and f ′(x)= f (x) for all x ∈ X ′.

If f : X → Y , q̄ : Ȳ → Y , and f̄ : X → Ȳ are maps and f = q̄ ◦ f̄ , then f̄ is a lift of f
through p.

An inclusion e : (X −U ,B−U) ⊂ (X ,B) is an excision in the sense of Eilenberg and
Steenrod’s axiomatics [5, page 12] if U is open in X and ClU ⊂ intB. Letting N = X −U
and A= X −B, this is equivalent to saying that e : (N ,N −A)⊂ (X ,X −A) is an excision
if N is a closed neighborhood of ClA. The excision axiom states that e induces homology
isomorphisms in all dimensions. Note, however, that if X is normal, as it will be in all
our applications, and N is any neighborhood of ClA, then we may find a closed neigh-
borhood C of ClA such that C ⊂ intN . Then the inclusions e′ : (C,C−A)⊂ (N ,N −A)
and e ◦ e′ : (C,C −A) ⊂ (X ,X −A) are both excisions in the above sense and therefore
induce homology isomorphisms. It follows that e : (N ,N −A)⊂ (X ,X −A) also induces
homology isomorphisms. Therefore, we adopt a somewhat weaker (and more usual) def-
inition of excision: an inclusion e : (N ,N −A)⊂ (X ,X −A) is an excision if N is a neigh-
borhood of ClA. What we call an excision is what Eilenberg and Steenrod call an “excision
of type (E2).” Using singular homology, such inclusions induce homology isomorphisms
regardless of normality [5, pages 267-268].
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2.2. Proper maps. A map f : X → Y is proper if f −1(C) is compact whenever C is com-
pact. A homotopy { ft : X → Y} is proper if the map X × I → Y given by (x, t) �→ ft(x) is
proper. Here are a few elementary results about proper maps and homotopies that we will
need.

Theorem 2.1. In order that a homotopy { ft : X → Y} be proper it is necessary and sufficient
that

⋃
t∈I f −1

t (C) be compact whenever C ⊂ Y is compact.

Proof. Suppose first that { ft} is proper and that C ⊂ Y is compact. Then {(x, t)∈ X × I |
ft(x) ∈ C} is a compact subset of X × I , and therefore its image under the projection
X × I → X is compact. But that image is precisely

⋃
t∈I f −1

t (C).
Now suppose that

⋃
t∈I f −1

t (C) is compact whenever C ⊂ Y is compact. Let C ⊂ Y
be compact. Then

⋃
t∈I f −1

t (C), and therefore (
⋃
t∈I f −1

t (C))× I , is compact. Now C is
compact and therefore closed in Y . Since ft(x) is continuous in (x, t), it follows that
{(x, t)∈ X × I | ft(x)∈ C} is closed. But {(x, t)∈ X × I | ft(x)∈ C} is easily seen to be a
subset of (

⋃
t∈I f −1

t (C))× I , so as a closed subset of a compact set it is also compact. This
shows that { ft} is proper. �
Theorem 2.2. Suppose { ft : X → Y} is a homotopy, f : X → Y is proper, K ⊂ X is compact,
and that { ft} is constant at f off of K . Then { ft} is proper.

Proof. Let C ⊂ Y be compact. Since { ft} is constant at f off of K it is easy to see that⋃
t∈I f −1

t (C) = (
⋃
t∈I( ft|K)−1(C))∪ f −1(C). Since K is compact, then { ft|K} is proper,

so by Theorem 2.1
⋃
t∈I( ft|K)−1(C) is compact. Since f is proper, f −1(C) is compact.

Thus their union
⋃
t∈I f −1

t (C) is compact, so by Theorem 2.1 { ft} is proper. �
Theorem 2.3. Suppose that f̄ : X → Ȳ is a lift of a map f : X → Y through a covering
q̄ : Ȳ → Y . Then f is proper if and only if f̄ is proper.

Note we do not require q̄ to be proper.

Proof. Suppose first that f is proper, and let C̄ ⊂ Ȳ be compact. Then q̄(C̄) is also com-
pact, so since f is proper, then f −1(q̄(C̄)) is compact. But it is easily seen that f̄ −1(C̄)⊂
f −1(q̄(C̄)), so, as a closed subset of a compact space, it is compact. Thus f̄ is proper.

Now suppose f̄ is proper. Let C ⊂ Y be compact. Then C has a finite covering � by
compact sets each of which is evenly covered by q̄. For each K ∈�, let K̄ be a set mapped
homeomorphically onto K by q̄. Then each such K̄ is compact, so, since f̄ is proper,
f̄ −1(K̄) is also compact. Thus

⋃
K∈� f̄ −1(K̄) is a finite union of compact sets and is there-

fore compact. It follows that f −1(C), as a closed subset of the compact set
⋃
K∈� f̄ −1(K̄),

is compact. Thus f is proper. �
Since a proper homotopy from a space X is a proper map from the space X × I , we

have the following corollary.

Corollary 2.4. Suppose that { f̄t : X → Ȳ} is a lift of a homotopy { ft : X → Y} through a
covering q̄ : Ȳ → Y . Then { ft} is proper if and only if { f̄t} is proper.

We leave the proof of the following to the reader.

Theorem 2.5. A covering map is proper if and only if it is finite sheeted. The composition of
proper maps is proper.
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2.3. Transversality, local homeomorphisms, and isolated roots. Let f : X → Y be a map
and y0 ∈ Y . A root of f at y0 is a point x ∈ X such that f (x)= y0. The root x is isolated
if it has a neighborhood N that contains no other root of f at y0. If all the roots of f
are isolated, then f −1(y0) is discrete, so if f is also proper, then f −1(y0) is compact and
therefore finite.

The map f is a local homeomorphism at x if x0 has a neighborhood that is mapped
homeomorphically onto a neighborhood of f (x). Clearly, if f is a local homeomorphism
at a root x, then x is isolated.

A map f : X → Y is transverse to y0 ∈ Y if y0 has a neighborhood N for which there
is a family {Nx | x ∈ f −1(y0)} of mutually disjoint subsets of X indexed by f −1(y0) such
that f −1(N)=⊔x∈ f −1(y0)Nx, eachNx is a neighborhood of x ∈ f −1(y0), and f maps each
Nx homeomorphically onto N .

The case where f −1(y0)=∅ requires some clarification. If y0 /∈ Cl f (X), then y0 has
a neighborhood N such that f −1(N) is empty and therefore the union of the empty fam-
ily of sets. Since members of the empty family have (vacuously) any property we want,
including being homeomorphic to N , it will be convenient to agree that in this case f
is (vacuously) transverse to y0. On the other hand, if y0 /∈ f (X), but y0 ∈ Bd f (X), then
f −1(N) is nonempty for every neighborhoodN of y0, but no subset of f −1(N) is mapped
onto N by f , so f cannot be transverse to y0.

If f is transverse to y0, then f is a local homeomorphism at each x ∈ f −1(y0). The
converse is not true. For example, let f : (−2π,2π)→ S1 be the exponential map f (t) =
exp(it) from the open interval (−2π,2π) to the unit circle in the complex plane. Then f is
not transverse to 1∈ S1. However, the converse is true under quite general circumstances
provided that f is proper.

Theorem 2.6. Suppose f : X → Y is a proper map of (Hausdorff) spaces, y0 ∈ Y has a
compact neighborhood K ⊂ Y , and f is a local homeomorphism at each x ∈ f −1(y0). Then
f is transverse to y0.

This theorem with the stronger hypothesis that X and Y are manifolds of the same
dimension appears as [2, Lemma 7.5]. However, we will need it now for nonmanifold Y .

Proof. Since f is proper, then f −1(K) is compact and f −1(y0) is finite. It is not hard to
find an open neighborhood U ⊂ K of y0, and a family {Ux | x ∈ f −1(y0)} of mutually
disjoint open sets Ux such that for each x ∈ f −1(y0), x ∈Ux and f takes Ux homeomor-
phically onto U . The difficulty is that even though

⊔
x Ux ⊂ f −1(U), in general,

⊔
x Ux 
=

f −1(U). To remedy this, let � be the family of all closed neighborhoods C ⊂ U of y0.
Since K is compact Hausdorff, it is not hard to show that � 
= ∅ and

⋂
C∈�C = y0. Thus,

since f −1(y0) ⊂ ⊔x Ux, we have
⋂
C∈�( f −1(C)−⊔x Ux)= f −1(

⋂
C∈�C)−⊔x Ux =∅.

Since f −1(K) is compact, this shows that the family {( f −1(C)−⊔x Ux) | C ∈ �} can-
not have the finite intersection property, so there is a finite subfamily �′ ⊂ � such that⋂
C∈�′( f −1(C) − ⊔x Ux) = ∅, and therefore f −1(

⋂
C∈�′ C) ⊂ ⊔

x Ux. It follows that⋂
C∈�′ C is a neighborhood of y0 such that f −1(

⋂
C∈�′ C)=⊔x(Ux ∩ f −1(

⋂
C∈�′ C)) and

for each x ∈ f −1(y0), f maps the neighborhood Ux ∩ f −1(
⋂
C∈�′ C) of x homeomorphi-

cally onto the neighborhood
⋂
C∈�′ C of y0. Hence, f is transverse to y0. �
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2.4. Orientation

Definition 2.7. A topological space Y is locally n-Euclidean at y0 ∈ Y if y0 has a neighbor-
hood E homeomorphic to Euclidean n-space Rn. If Y is n-Euclidean at y0, then by exci-
sion Hp(Y ,Y − y0;Z)≈Hp(E,E− y0;Z) is trivial for p 
= n and infinite cyclic for p = n. A
generator of Hn(Y ,Y − y0;Z) is called a local orientation of Y at y0.

Throughout the rest of this subsection, let X be an n-manifold, that is, a paracompact
(and Hausdorff) space that is n-Euclidean at each of its points. Then an orientation of X
is, roughly speaking, a continuous choice of local orientation at each point x ∈ X . In order
to make this definition precise, we follow Dold [4, pages 251–259] and use the orientation
bundle p�� : ��(X) → X , the orientation manifold X̃ , and the orientation covering p̃ :
X̃ → X of X . The following description also draws on [2, pages 5–8]. (However, in both
of these references, X̃ is used to denote what we are now calling ��(X), and X̃(1) is used
to denote the orientation manifold, which we will now denote more simply by X̃ .)

As a set, ��(X) = ⋃x∈X Hn(X ,X − x;Z), and as a function, p��(ξ) = x for all ξ ∈
Hn(X ,X − x;Z) and x ∈ X . To describe the topology on X��, let U ⊂ X be the inte-
rior of an n-ball in X . Then, for any x ∈ U , X −U is a deformation retract of X − x,
so the inclusion iUx : (X ,X −U) ⊂ (X ,X − x) induces an isomorphism iUxn : Hn(X ,X −
U ;Z)≈�Hn(X ,X − x;Z). Therefore, we may define a bijection φU :U ×Hn(X ,X−U ;Z)→
(p��)−1(U) by φ(x,ξ)= iUxn(ξ). Give U the subspace topology, Hn(X ,X −U ;Z) the dis-
crete topology, and U ×Hn(X ,X −U ;Z) the product topology. Then the topology on
��(X) is characterized by the property that φU is a homeomorphism for every such
U ⊂ X . With this topology, p�� : ��(X)→ X is a covering.

For each x ∈ X , the group Hn(X ,X − x;Z) has two possible generators; let X̃ denote
the subspace of ��(X) consisting of all these generators, two for each x ∈ X , and let
p̃ : X̃ → X be the restriction of p�� to X̃ . Then p̃ : X̃ → X is a two-sheeted covering called
the orientation covering ofX . The space X̃ is an n-manifold called the orientation manifold
of X . An orientation of X is a section sX : X → X̃ of p̃. The manifold X is orientable if it has
an orientation, otherwise it is nonorientable. A manifold X , together with an orientation
sX : X → X̃ , is an oriented manifold.

The orientation manifold of X̃ is ˜̃X . It has a canonical orientation sX̃ : X̃ → ˜̃X defined
as follows: let x̃ ∈ X̃ , x = p̃(x̃), let U be an evenly covered connected open neighborhood
of x, and Ũ the component of p̃−1(U) containing x̃. Construct the diagram

(
X̃ , X̃ − x̃) ẽ⊃ (Ũ ,Ũ − x̃) p̃U−−→ (U ,U − x)

e⊂ (X ,X − x), (2.1)

where p̃U is defined by p̃. The inclusions are excisions and p̃U is a homeomorphism, so we
may define sX̃(x̃)= ẽn ◦ p̃−1

Un ◦ e−1
n (x̃), where ẽn, p̃Un, and en are the induced n-dimensional

homology isomorphisms. Thus, the orientation manifold is always orientable.
If sX : X → X̃ is an orientation, then so is −sX , and both sX and −sX are homeomor-

phisms onto their images. Thus, if X is connected, then X is nonorientable if and only if
X̃ is connected.
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SupposeU ⊂ X an open subset of the n-manifoldX . ThenU is also an n-manifold. For
each x ∈U , the excision ex : (U ,U − x)⊂ (X ,X − x) induces an isomorphism exn :Hn(U ,
U − x;Z)≈�Hn(X ,X − x;Z). If sX : X → X̃ is an orientation of X , then we may define an
orientation sU : U → Ũ by sU(x) = e−1

xn (sX(x)). The orientation sU is called, with only a
slight abuse of terminology, the restriction of sX to U .

Let h : X → X be a homeomorphism. Then h induces a homeomorphism h̃ : X̃ → X̃ ,
given by h̃(x̃) = hxn(x̃), where for each x ∈ X , hx : (X ,X − x)→ (X ,X − h(x)) is defined
by h and hxn is the induced homology isomorphism. Now suppose X has an orientation

sX : X → X̃ . If h̃ ◦ sX(x) = sX ◦ h(x), for all x ∈ X , then h is orientation-preserving. If h̃ ◦
sX(x) = −sX ◦ h(x) for all x ∈ X , then h is orientation-reversing. If X is connected, then
these are the only possibilities. As an important example, it is easy to show (using the
canonical orientation sX̃ defined above) that the map x̃ �→ −x̃ is always an orientation-
reversing homeomorphism of X̃ .

Let A be a loop in an n-manifold X , and let Ã be a lift of A to a path in X̃ . Then
either Ã(1) = Ã(0) ∈ Hn(X ,X −A(0)), so Ã is a loop, or Ã(1) = −Ã(0), so Ã is not a
loop. In the first case we say that A is orientation-preserving, and in the second case, A is
orientation-reversing. It is easy to show that X is orientable if and only if all of its loops
are orientation-preserving.

Definition 2.8. Suppose f : X → Y is a map. Then f is called orientable if there is no
orientation-reversing loop A in X such that f ◦A is contractible. It is called nonorientable
if f ◦A is contractible for some orientation-reversing loop A in X .

Note that this definition agrees with the usual definition of map orientability [3, Defi-
nition 2.1] in the case where Y is also an n-manifold, but requires only X to be a
manifold—Y can be arbitrary.

Let K ⊂ X be a compact subset of an oriented n-manifold X with orientation sX : X →
X̃ . Then there is an unique element oK ∈ Hn(X ,X −K) such that for every x ∈ K the
homomorphism Hn(X ,X −K ;Z)→Hn(X ,X − x;Z) induced by the inclusion takes oK to
sX(x). The element oK is called the fundamental class around K .

Let f : X → Y be a map from an oriented n-manifold X to an oriented n-manifold
Y with orientation sY : Y → Ỹ , and suppose that f −1(y0) is compact for some y0 ∈ Y .
Then f defines a map f ′ : (X ,X − f −1(y0)) → (Y ,Y − y0) that induces a homomor-
phism f ′n :Hn(X ,X − f −1(y0);Z)→Hn(Y ,Y − y0;Z). The degree of f over y0 is the integer
degy0

( f ) defined by the equation f ′n (o f −1(y0)) = degy0
( f )sY (y0). If Y is connected and f

proper, then degy0
f is independent of the choice of y0 and is called the degree of f and

denoted by deg f . This is a direct generalization of the notion of Brouwer degree for maps
of connected compact oriented n-manifolds.

3. Elementary Nielsen root theory for proper maps

This section has three purposes. First, it serves as a summary of the elementary Nielsen
root theory that we will need in the sequel. A more leisurely treatment of that theory,
together with proofs of the assertions made here without proof, may be found in [1].
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The second purpose is to modify that theory for the case of proper maps; in particu-
lar, to define “proper essentiality,” the “proper Nielsen root number,” and an “integer
proper root index” for proper maps f : X → Y of an n-manifold into a space Y that is
n-Euclidean at a point y0 ∈ Y . The third is to extend the definitions of “multiplicity” of a
root class and “absolute degree” of a proper map f : X → Y of n-manifolds to situations
in which Y is n-Euclidean at y0 but not necessarily a manifold.

3.1. Nielsen root classes and the (proper) Nielsen root number. Let f : X → Y be a map
and y0 ∈ Y . Two roots x and x′ are Nielsen root equivalent if there is a path A in X from x
to x′ such that [ f ◦A]= [y0]. This is indeed an equivalence relation, and an equivalence
class is called a Nielsen root class of f at y0, although this will frequently be shortened to
Nielsen class or Nielsen class of f , and so forth. The set of Nielsen root classes of f at y0 is
denoted by f −1(y0)/N .

Now let { ft : X → Y} be a homotopy and y0 ∈ Y . A root x0 of f0 at y0 is { ft}-related
to a root x1 of f1 at y0 if there is a path A in X from x0 to x1 such that the path { ft(A(t))}
is fixed-endpoint-homotopic to y0. If one root in a Nielsen class α0 of f0 is { ft}-related
to a root in a Nielsen class α1 of f1, then every root in α0 is { ft}-related to every root in
α1. In this case we say that α0 is { ft}-related to α1. The { ft} relation among root classes is
one-to-one in the sense that each root class of f0 is { ft}-related to at most one root class
of f1 and each root class of f1 has at most one root class of f0 related to it.

A root class α0 of f : X → Y at y0 ∈ Y is called essential if given any homotopy {ht :
X → Y} with h0 = f , there is a root class α1 of h1 at y0 to which α0 is related. The number
of essential root classes of a map f : X → Y at y0 is the Nielsen root number of f at y0 and
is denoted by NR( f , y0). We modify these definitions for proper maps as follows.

Definition 3.1. A root class α0 of a proper map f : X → Y at y0 ∈ Y is called properly
essential if given any proper homotopy {ht : X → Y} with h0 = f , there is a root class
α1 of h1 at y0 to which α0 is related. The number of properly essential root classes of a
proper map f : X → Y at y0 is the proper Nielsen root number of f at y0 and is denoted by
PNR( f , y0).

Clearly, every essential root class is properly essential, so NR( f , y0) ≤ PNR( f , y0). It
can happen, however, that NR( f , y0) < PNR( f , y0). Later, in Example 3.11, we show that
if f is the identity on Rn, then PNR( f , y0)= 1 but NR( f )= 0.

The following theorem is an easy consequence of the preceding discussion.

Theorem 3.2. Let f : X → Y be a map and let y0 ∈ Y . Then NR( f , y0) is a homotopy
invariant of f and NR( f , y0) ≤ card f −1(y0). If f is proper, then PNR( f , y0) is a proper
homotopy invariant of f and PNR( f , y0)≤ card f −1(y0).

3.2. Hopf coverings and lifts. Let f : X → Y be a map of well-connected spaces, and let
x ∈ X . Then, from covering space theory, there is a covering q̂ : Ŷ → Y such that for any
ŷ ∈ q̂−1( f (x)) we have im q̂# = im f#, where f# : π(X ,x)→ π(Y , f (x)) and q̂# : π(Ŷ , ŷ)→
π(Y , f (x)) are the induced fundamental group homomorphisms. Moreover, there is a

lift f̂ : X → Ŷ of f through q̂, and f̂# : π(X ,x)→ π(Ŷ , f̂ (x)) is an epimorphism. Here are
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the diagrams:

Ŷ

q̂

X
f

f̂

Y

π
(
Ŷ , f̂ (x)

)
q̂#

π(X ,x)

f̂#
f#

π
(
Y , f (x)

) (3.1)

We call q̂ and f̂ a Hopf covering and Hopf lift for f , since Hopf was the first to exploit

q̂ and f̂ in root theory. The covering q̂ is unique up to covering space isomorphism and
does not depend upon the choice of x ∈ X . The covering q̂ is also a Hopf covering for

any map homotopic to f . The lift f̂ is unique up to deck transformation, that is, if f̂ ′

is another lift of f through q̂, then f̂ ′ = h ◦ f̂ , where h is a deck transformation for the
covering q̂.

The importance of q̂ and f̂ for root theory is the following. Let y0 ∈ Y . A nonempty

subset α ⊂ X is a Nielsen root class of f at y0 if and only if α = f̂ −1( ŷ) for some ŷ ∈
q̂−1(y0). Moreover, if {ht} is a homotopy with f = h0, then we may lift {ht} to a homotopy

{ĥt} beginning at f̂ , and a root class α0 of f at y0 is {ht}-related to a root class α1 of h1 if

and only if α0 = f̂ −1( ŷ) and α1 = ĥ−1
1 ( ŷ) for the same ŷ ∈ q̂−1(y0). It follows that a root

class f̂ −1( ŷ) is essential if and only if ĥ−1
1 ( ŷ) 
= ∅ for every homotopy {ĥt} beginning at

f̂ . Also, using Corollary 2.4, if f is a proper map, then a root class f̂ −1( ŷ) is properly

essential if and only if ĥ−1
1 ( ŷ) 
= ∅ for every proper homotopy {ĥt} beginning at f̂ .

3.3. Admissible pairs

Definition 3.3. Let X and Y be spaces and y0 ∈ Y . A pair ( f ,A) is admissible for X , Y , y0

if f : X → Y is a map, A⊂ X , and A has a closed neighborhood C such that C−A has no
roots of f at y0. If, in addition, f is proper, then ( f ,A) is properly admissible.

The following theorem gives some important examples of (properly) admissible pairs.
Its proof is easy and therefore omitted.

Theorem 3.4. Let f : X → Y be a map and y0 ∈ Y ; then

(1) ( f ,X), ( f ,∅) are admissible;
(2) if both ( f ,A1) and ( f ,A2) are admissible, then so are ( f ,A1∩A2) and ( f ,A1∪A2);
(3) ( f , f −1(y0)) is admissible;
(4) for any Nielsen root class α of f at y0, ( f ,α) is admissible;
(5) if U ⊂ X is open and BdU has no roots of f at y0, then ( f ,U) is admissible.

If f is proper, then each of the above admissible pairs is properly admissible.

Theorem 3.5. Suppose X is normal and ( f ,A) is admissible for X , Y , y0. Then ClA has
a neighborhood N such that N −A has no roots of f at y0. The inclusion (N ,N −A) ⊂
(X ,X −A) is an excision in the sense of Section 2.1.

Proof. Since ( f ,A) is admissible, then A has a closed neighborhood C such that C−A is
root-free. Then C and (X − intC)∩ f −1(y0) are disjoint closed sets. Hence, by normality,
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they have disjoint neighborhoods N and N ′, respectively. The neighborhood N is the
desired neighborhood of ClA. The fact that (N ,N −A) ⊂ (X ,X −A) is an excision is
immediate from Section 2.1. �

3.4. Proper root indices

Definition 3.6. Let X and Y be topological spaces and y0 ∈ Y . A (proper) root index for
X , Y , y0 is a function ω from the set of (properly) admissible pairs for X , Y , y0 into an
abelian group satisfying the following.

(1) (Additivity) If A⊂ X and A1, . . . ,An are subsets of A such that
(a) ( f ,A) is (properly) admissible and ( f ,Ai) is (properly) admissible for each i,
(b) f −1(y0)∩ (A−⋃i Ai)=∅,
(c) Ai∩Aj =∅ for i 
= j,
then ω( f ,A)=∑i ω( f ,Ai).

(2) (Homotopy) If { ft : X → Y} is a (proper) homotopy, A is open in X , and ( ft,A) is
(properly) admissible for all t ∈ I , then ω( f0,A)= ω( f1,A).

Theorem 3.7. Let { ft : X → Y} be a proper homotopy, let y0 ∈ Y , let ω be a proper root
index for X , Y , y0, and suppose that α0 is a Nielsen root class of f0. If α0 is { ft}-related to a
root class α1 of f1 at y0, then ω( f0,α0)= ω( f1,α1). If α0 is not { ft}-related to any root class
of f1 at y0, then ω( f0,α0)= 0.

Proof. See [1, Theorem 4.6] for a proof. Theorem 4.6 of [1] assumes that X is compact.
However, the proof is structured in such a way that it is still valid for noncompact X
provided { ft} is proper. �

Corollary 3.8. Let f : X → Y be a proper map, y0 ∈ Y , α a Nielsen root class of f at y0,
and ω a proper root index for X , Y , y0. Then ω( f ,α) 
= 0 implies that α is properly essential.

The following theorem allows us to construct a proper root indexω by definingω( f ,A)
for properly admissible pairs ( f ,A) for which ClA is compact, and then extending it au-
tomatically to all properly admissible pairs.

Theorem 3.9. Let X and Y be topological spaces and y0 ∈ Y , and let ω be a function into
an abelian group from the set of all properly admissible pairs ( f ,A) for X , Y , y0 such that
ClA is compact. Suppose that ω satisfies conditions (1) and (2) of Definition 3.6 whenever
the sets A and Ai have compact closure. Then ω has a unique extension to a proper root index
for X , Y , y0.

Proof. Let ( f ,A) be properly admissible for X , Y , y0. Then ( f , f −1(y0)∩A) is properly
admissible. Since f is proper, then f −1(y0) is compact, so f −1(y0)∩A has compact clo-
sure. Thus ω( f , f −1(y0)∩A) is well defined, so we may define ω′ by

ω′( f ,A)= ω( f , f −1(y0
)∩A), (3.2)

for every pair ( f ,A) that is properly admissible for X , Y , y0. If ClA is compact, then
ω( f ,A) is already defined, and by additivity (with n= 1 and A1 = f −1(y0)∩A) we have
ω( f ,A) = ω( f , f −1(y0)∩ A), so ω′ is in fact an extension of ω. Moreover, if ω′ is to
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be a proper root index, then additivity demands that ω′( f ,A) = ω′( f , f −1(y0)∩A) =
ω( f , f −1(y0)∩A). So the extension is unique. It remains to show that ω′ is a proper root
index.

Additivity of ω′ follows easily from the additivity of ω, so we omit its proof. For ho-
motopy, suppose that { ft : X → Y} is a proper homotopy, A is open in X , and that ( ft,A)
is admissible for every t ∈ I . Let V be an open neighborhood of y0 with compact closure
and let U =⋃t∈I f −1

t (V). Then, for each t ∈ I , U is an open neighborhood of f −1
t (y0),

and therefore f −1
t (y0)∩BdU =∅, so ( ft,U), and therefore ( ft,U ∩A), is properly ad-

missible for each t ∈ I . Also U =⋃t∈I f −1
t (V) ⊂⋃t∈I f −1

t (ClV), so, by Theorem 2.1, U ,
and therefore U ∩A, has compact closure. Thus ω( ft,U ∩A) is well defined for all t ∈ I
and

ω′( f0,A)= ω( f0, f −1
0

(
y0
)∩A)= ω( f0,A∩U)

= ω( f1,A∩U)= ω( f0, f −1
0

(
y0
)∩A)= ω′( f1,A

)
.

(3.3)

The first and last equality follow from the definition of ω′. The second equality follows
from additivity of ω and the fact that (A∩U)− ( f −1

0 (y0)∩A) is root-free. The third
equality follows from the homotopy property for ω. �

We apply this theorem for the case where X is a (not necessarily compact) orientable
n-manifold, and Y is a topological space that is n-Euclidean at a point y0 ∈ Y .

Theorem and Definition 3.10. Suppose X is an orientable n-manifold and Y is a topo-
logical space that is n-Euclidean at y0 ∈ Y . Let sX : X → X̃ be an orientation of X and let
ν∈Hn(Y ,Y − y0;Z) be a local orientation of Y at y0. Define an integer-valued proper root
index (relative to these orientations) λ for X , Y , y0 as follows.

Let ( f ,A) be properly admissible for X , Y , y0 with ClA compact. LetN ⊂ X be any neigh-
borhood of ClA such thatN −A is root-free, and let K ⊂ X be any compact set containing A.
Let oK ∈Hn(X ,X −K) be the fundamental class of X around K (relative to the orientation
sX). Construct the diagram

(X ,X −K)
iK⊂ (X ,X −A)

e⊃ (N ,N −A)
f ′−→ (

Y ,Y − y0
)
, (3.4)

where f ′ is the map defined by f . Then e is an excision and therefore induces homology
isomorphisms in all dimensions, so there exists a homomorphism f ′n ◦ e−1

n ◦ iKn : Hn(X ,X −
K ;Z)→Hn(Y ,Y − y0;Z). Define the integer λ( f ,A) by

f ′n ◦ e−1
n ◦ iKn

(
oK
)= λ( f ,A)ν. (3.5)

Then λ( f ,A) is independent of the choice of K and N—subject only to the conditions that N
be a neighborhood of ClA and that K be a compact set containing A. Moreover the integer-
valued function λ, defined on the set of all properly admissible pairs ( f ,A) for which A has
compact closure, extends uniquely to an integer-valued root index for X , Y , y0 which will be
called the integer root index for X , Y , y0.

Proof. We first show independence from K . So let K ′ be another compact set containing
A. Then K ∩K ′ is also a compact superset of A and we have the following commutative
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diagram of inclusions:

(X ,X −K)

jK
jK(

X ,X − (K ∩K ′)) iK∩K′
(X ,X −A)

(X ,X −K ′)
jK′

iK′

(3.6)

By the characterization of fundamental class, we easily have jKn(ok)= oK∩K ′ = jK ′n(oK ′).
Therefore, by commutativity,

iKn
(
oK
)= iK∩K ′n(oK∩K)= iK ′n(o′K), (3.7)

so f ′n ◦ e−1
n ◦ iKn(oK )= f ′n ◦ e−1

n ◦ iK ′n(oK ′). Therefore λ( f ,A) is independent of the choice
of K .

The proof that λ is independent of the choice ofN and that it satisfies the additivity and
homotopy for admissible pairs ( f ,A) in whichA has compact closure is very similar to the
proofs of the corresponding facts in [1, Theorem and Definition 4.10], and will therefore
be omitted. By Theorem 3.9, λ has a unique extension to a root index for X , Y , y0. �

Example 3.11. Let f : Rn → Rn be the identity map and y0 ∈ Rn. Then y0 is the only
root of f at y0, and therefore {y0} is the only Nielsen root class of f at y0. Choose an
orientation sRn : Rn → R̃n of Rn and choose the local orientation at y0 to be ν= sRn(y0).
To compute λ( f , y0) relative to these orientations, let N =Rn and K = {y0} in the above
definition. Then f ′, e, and iK are the identity map on (Rn,Rn − y0), so f ′n ◦ e−1

n ◦ iKn is
the identity on Hn(Rn,Rn− y0;Z)≈ Z. Also, oK = ν. Hence, λ( f ,{y0})= 1 
= 0. It follows
from Corollary 3.8 that {y0} is properly essential, and therefore PNR( f , y0)= 1.

On the other hand, let y1 ∈ Rn be distinct from y0, and let {ht} be the straight line
homotopy from f to the constant map into y1, ht(x)= (1− t)x+ ty1. Then h−1

1 (y0)=∅,
so NR(h1, y0) = 0. Since NR is a homotopy invariant, then NR( f , y0) =NR(h1, y0) = 0.
This example shows that PNR( f , y0) can be strictly less than NR( f , y0).

Remark 3.12. If X is compact, then we may take K = X in Theorem and Definition 3.10.
In this case the homomorphism fNn ◦ e−1

Nn ◦ iKn : Hn(X ,X −K ;Z) → Hn(Y ,Y − y0;Z) is
the homomorphism Ln( f ,A) : Hn(X ;Z)→Hn(Y ,Y − y0;Z) of [1, Theorem and Defini-
tion 4.12], and therefore λ is the same as the integer-valued index defined in [1, Theorem
and Definition 4.14].

Remark 3.13. If Y is also an oriented manifold, then λ( f , f −1(y0))= degy0
f , the degree

of f along y0. And when Y is connected (as we usually assume), then this number is the
same for all y0 ∈ Y and is the degree of f , deg f . (This generalizes Brouwer degree from
maps of compact oriented manifolds to proper maps of arbitrary oriented manifolds.)
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By additivity, λ( f , f −1(y0)) = λ( f ,X). Thus, λ( f ,X) = deg f whenever Y is an oriented
connected manifold.

We have an alternative description of λ( f ,A) in terms of degree.

Theorem 3.14. Suppose X is an orientable n-manifold and Y is n-Euclidean at y0 ∈ Y .
Choose an orientation sX : X → X̃ of X and a local orientation ν ∈ Hn(Y ,Y − y0) of Y
at y0. Let λ be the integer root index for X , Y , y0 relative to these orientations. Let E ⊂ Y

be a Euclidean neighborhood of y0, and let sE : E → Ẽ be the orientation of E such that
jn(sE(y0)) = ν, where jn is induced by the inclusion j : n(E,E − y0) ⊂ (Y ,Y − y0). Now
suppose that ( f ,A) is properly admissible for X , Y , y0. Then there is an open neighborhood
U of f −1(y0)∩A such that f (U) ⊂ E and U − ( f −1(y0)∩A) has no roots of f at y0. Let
sU :U → Ũ be the restriction of sX to U . Then relative to the orientations sU and sE,

λ( f ,A)= degy0
fUE, (3.8)

where fUE :U → E is defined by f .

Proof. By additivity, we have λ( f ,A) = λ( f , f −1(y0) ∩ A), so it suffices to show that
λ( f , f −1(y0)∩A) = degy0

fUE. Notice that f −1(y0 ∩A) = f −1
UE (y0), so we will show that

λ( f , f −1
UE (y0))= degy0

fUE.

Since f is proper, then f −1(y0) is compact, and since ( f ,A) is admissible, we have
f −1(y0)∩A = f −1(y0)∩ClA which is closed in X and therefore closed in the compact
set f −1(y0). It follows that f −1

UE (y0)= f −1(y0)∩A is compact. Hence, in order to compute
λ( f , f −1

UE (y0)) we may use f −1
UE (y0) for the set K of Theorem and Definition 3.10. We may

also use U in place of N . Now consider the diagram

(
X ,X − f −1

UE

(
y0
)) e⊃

(
U ,U − f −1

UE

(
y0
)) f ′ (

Y ,Y − y0
)

∪ j(
U ,U − f −1

UE

(
y0
))

∪

f ′UE (
E,E− y0

)
∪

U
fUE

E

(3.9)

where f ′, f ′UE, and fUE are defined by f and all other maps are the indicated inclusions.
By the definition of λ, we have

f ′n ◦ e−1
n

(
oX , f −1

UE (y0)

)= λ( f , f −1
UE

(
y0
))

ν, (3.10)

where oX , f −1
UE (y0) is the fundamental class of X around f −1

UE (y0). By the definition of
degy0

fUE we have

f ′UEn
(
oU , f −1

UE (y0)

)= (degy0
fUE
)
sE
(
y0
)
, (3.11)
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where oU , f −1
UE (y0) is the fundamental class of U around f −1

UE (y0). Applying jn to both sides
of the last equality and making use of commutativity,

f ′n
(
oU , f −1

UE (y0)

)= jn ◦ f ′UEn
(
oU , f −1

UE (y0)

)
= (degy0

fUE
)
jn
(
sE
(
y0
))= (degy0

fUE
)
ν.

(3.12)

Hence, it remains to show that oU , f −1
UE (y0) = e−1

n (oX , f −1
UE (y0)). To do so, let x be an arbitrary

point in f −1
UE (y0) and consider the diagram

(
X ,X − f −1

UE

(
y0
)) e⊃

∩ix

(
U ,U − f −1

UE

(
y0
))

∩kx

(X ,X − x) ex⊃ (U ,U − x)

(3.13)

Then ixn(en(oU , f −1
UE (y0)))= exn(kxn(oU , f −1

UE (y0)))= exn(sU(x))= sX(x). The first equality fol-
lows from commutativity, the second from the characterization of the fundamental class
oU , f −1

UE (y0), and the third from the fact that sU is the restriction of sX . Hence, from the
characterization of the fundamental class oX , f −1

UE (y0), we have en(oU , f −1
UE (y0))= oX , f −1

UE (y0), and
therefore oU , f −1

UE (y0) = e−1
n (oX , f −1

UE (y0)). �

The integer-valued root index λ is defined using homology with integer coefficients.
We now state a completely parallel theorem/definition of a Z/2Z-valued index. The def-
inition applies to nonorientable as well as orientable manifolds X . It is also somewhat
simpler, since the local groups Hn(X ,X − x;Z/2Z) have unique generators, so we need
not worry about choice of orientation.

Theorem and Definition 3.15. Suppose X is an n-manifold and Y is a topological space
that is n-Euclidean at y0 ∈ Y . Define a Z/2Z-valued proper root index λ2 for X , Y , y0 as
follows. Let ( f ,A) be properly admissible for X , Y , y0 with ClA compact. Let N ⊂ X be
any neighborhood of ClA such that N −A is root-free, and let K ⊂ X be any compact set
containing A. Let oK2 ∈Hn(X ,X −K ;Z/2Z) be the Z/2Z fundamental class of X around K .
Consider the diagram

(X ,X −K)
iK⊂ (X ,X −A)

e⊃ (N ,N −A)
f ′−→ (

Y ,Y − y0
)
, (3.14)

where f ′ is the map defined by f . Then e is an excision and therefore induces homology
isomorphisms in all dimensions, so there exists a homomorphism f ′n ◦ e−1

n ◦ iKn : Hn(X ,X −
K ;Z/2Z)→Hn(Y ,Y − y0;Z/2Z). Define λ2( f ,A)∈ Z/2Z by

f ′n ◦ e−1
n ◦ iKn

(
oK
)= λ2( f ,A)ν, (3.15)

where ν generates Hn(Y ,Y − y0;Z/2Z). Then λ2( f ,A) is independent of the choice of K and
N—subject only to the conditions that N be a neighborhood of ClA and that K be a compact
set containing A. Moreover, the Z/2Z-valued function λ2, defined on the set of all properly
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admissible pairs ( f ,A) for which A has compact closure, extends uniquely to an integer mod
root index λ2 for X ,Y , y0 which is called the integer mod two root index for X , Y , y0.

The proof of Theorem and Definition 3.15 is completely parallel to that of Theorem
and Definition 3.10, so we leave its proof as well as formulating the Z/2Z parallels to
Remarks 3.12 and 3.13 and Theorem 3.14 to the reader.

3.5. Nielsen classes in the orientation manifold. In this subsection, we examine the re-
lation between Nielsen root classes of a map f : X → Y of a nonorientable manifold X

and the classes of f ◦ p̃, where p̃ : X̃ → X is the orientation covering of X . So, throughout
this subsection, let f : X → Y be a map of a connected nonorientable n-manifold X into a
well-connected space Y , let p̃ : X̃ → X be the orientation covering of X , let q̂ : Ŷ → Y and

f̂ : X → Ŷ be a Hopf covering and lift for f , and let q̄ : Ȳ → Ŷ and f̄ : X̃ → Ȳ be a Hopf

covering and lift for f̂ ◦ p̃ : X̃ → Ŷ . Choose a base point x̃0 ∈ X̃ and base the fundamental

groups of X̃ , X , Y , Ŷ , and Ȳ at x̃0, p̃(x̃0), f ◦ p̃(x̃0), f̂ ◦ p̃(x̃0), and f̄ (x̃0), respectively. We
then have the following diagram of maps and diagram of induced fundamental group
homomorphisms:

Ȳ

q̄

X̃

f̄

p̃

Ŷ

q̂

X
f

f̂

Y

π(Ȳ)

q̄#

π̃(X)

f̄#

p̃#

π(Ŷ)

q̂#

π(X)
f#

f̂#

π(Y)

(3.16)

Theorem 3.16. Referring to the above diagram, q̂ ◦ q̄ and f̄ are a Hopf covering and lift for
f ◦ p̃. If f is orientable, then q̄ is a double covering. If f is nonorientable, then q̄ is a single

covering (homeomorphism), so q̂ and f̂ ◦ p̃ are a Hopf covering and lift for f ◦ p̃.

Proof. To prove the first statement we have

im
(
q̂ ◦ q̄)# = q̂#

(
im q̄#

)= q̂#

(
im
(
f̂ ◦ p̃)#

)
= im

(
q̂# ◦ f̂# ◦ p̃#

)= im
(
f# ◦ p̃#

)= im
(
f ◦ p̃)#.

(3.17)

The second equality follows from the fact that q̄ is a Hopf covering for f̂ ◦ p̃, and the
fourth follows from commutativity. Thus q̂ ◦ q̄ and f̄ are a Hopf covering and lift for
f ◦ p̃.

To prove the rest of the theorem, note that the sequence

1−→ ker f̂# −→ π(X)
f̂#−→ π(Ŷ)−→ 1 (3.18)
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is exact and therefore induces an exact sequence

1−→ ker f̂#

im p̃#∩ ker f̂#
−→ π(X)

im p̃#
−→ π(Ŷ)

im f̂# ◦ p̃#

−→ 1. (3.19)

Since q̂# is a monomorphism, then ker f̂# = ker q̂# ◦ f̂# = ker f#, and since q̄ is a Hopf cov-

ering for f̂ ◦ p̃, then im f̂# ◦ p̃# = im q̄#. Making these substitutions, the exact sequence
becomes

1−→ ker f#
im p̃#∩ ker f#

−→ π(X)
im p̃#

−→ π(Ŷ)
im q̄#

−→ 1. (3.20)

Now suppose f is orientable. Then ker f# ⊂ im p̃#, so the group ker f#/ im p̃#∩ ker f# is
trivial, and therefore, by exactness, π(X)/ im p̃# → π(Ŷ)/ im q̄# is an isomorphism. Since
π(X)/ im p̃# is of order 2, then so is π(Ŷ)/ im q̄#, and therefore q̄ is a double covering.

Finally, suppose f is nonorientable. Then ker f# 
⊂ im p̃#, so the group ker f#/
(im p̃#∩ker f#) is not trivial, and therefore, by exactness, the epimorphism π(X)/im p̃#→
π(Ŷ)/ im q̄# is not an isomorphism. Since π(X)/ im p̃# is of order 2, this implies that
π(Ŷ)/ im q̄# has order 1, and therefore q̄ is a single covering. �

Now let y0 ∈ Y .

Theorem 3.17. Suppose the map f : X → Y is orientable. Then, for any Nielsen root class
α of f at y0 ∈ Y , p̃−1(α)= α̃� (−α̃), where both α̃ and −α̃ are Nielsen root classes of f ◦ p̃
at y0. If α̃ is (properly) essential, then so is α.

Proof. Since α is a Nielsen root class of f at y0, there is a ŷ ∈ q̂−1(y0) such that f̂ −1( ŷ)= α.
Since f is orientable, then from Theorem 3.16 q̄−1( ŷ)= { ȳ, ȳ′} for two distinct points ȳ
and ȳ′. Let α̃ = f̄ −1( ȳ) and α̃′ = f̄ −1( ȳ′), so p̃−1(α) = α̃� α̃′ 
= ∅, and each of α̃ and α̃′

is either a Nielsen root class of f ◦ p̃ at y0 or empty. To complete the proof of the first

statement, it remains to show that −α̃ = α̃′. So let x̃ ∈ α̃, then q̄ ◦ f̄ (−x̃) = f̂ ◦ p̃(−x̃) =
f̂ ◦ p̃(x̃) = q̄ ◦ f̄ (x̃) = ŷ, so −x̃ ∈ α̃� α̃′. Let Ã be any path from x̃ to −x̃. Then p̃ ◦ Ã is
an orientation-reversing loop in X , so, since f is orientable, we cannot have [ f ◦ p̃ ◦ Ã]=
[y0]. It follows that −x̃ /∈ α̃, and therefore −x̃ ∈ α̃′. Thus, −α̃ ⊂ α̃′. Similarly, −α̃′ ⊂ α̃,
and therefore α̃′ = −(−α̃′)⊂−α̃, so −α̃= α′.

To prove the last statement, we prove its contrapositive. So suppose that α is (prop-
erly) inessential; we will show that α̃ is also (properly) inessential. Since α = f̂ −1( ŷ) is

(properly) inessential, there is a (proper) homotopy {ĥt : X → Ŷ} beginning at f̂ such

that ĥ−1
1 ( ŷ) =∅. Lift {ĥt ◦ p̃} to a (proper) homotopy {h̄t : X̃ → Ȳ} beginning at f̄ ◦ p̃.

Then α̃ = f̄ −1( ȳ). But h̄−1
1 ( ȳ) ⊂ f̄ −1(q̄−1( ŷ)) = p̃−1(ĥ−1

1 ( ŷ)) = ∅. Thus α̃ is (properly)
inessential. �

The following theorem is an easy consequence of Theorem 3.16, so we omit its proof.

Theorem 3.18. Suppose the map f : X → Y is nonorientable. Then, for any Nielsen root
class α of f at y0 ∈ Y , α̃= p̃−1(α) is a root class of f ◦ p̃, and for this class, α̃=−α̃.
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3.6. Multiplicity and absolute degree. We are finally in a position to define multiplicity
and absolute degree.

Definition 3.19. Let f : X → Y be a proper map of a connected n-manifold X into a well-
connected space Y that is locally n-Euclidean at the point y0 ∈ Y . Then, for any Nielsen
root class α of f at y0, define the multiplicity of α, denoted by mult( f ,α, y0), as follows.

(1) If X is orientable, then

mult
(
f ,α, y0

)= ∣∣λ( f ,α)
∣∣. (3.21)

(2) If X is nonorientable, but f is orientable, then according to Theorem 3.17 there is
a root class α̃ of f ◦ p̃ : X̃ → Y such that p̃−1(α)= α̃� (−α̃). Then,

mult
(
f ,α, y0

)= ∣∣λ( f ◦ p̃, α̃)
∣∣= ∣∣λ( f ◦ p̃,−α̃)

∣∣. (3.22)

(3) If neither X nor f is orientable, then

mult
(
f ,α, y0

)= ∣∣λ2( f ,α)
∣∣. (3.23)

Remark 3.20. Since we use the absolute value of λ in case (1), the definition in case
(1) is independent of the choice of orientations used to define λ. In the second case,
since the map x̃ �→ −x̃ is an orientation-reversing homeomorphism, it is easy to see that
λ( f ◦ p̃,α)=−λ( f ◦ p̃,−α), so the definition of multiplicity is independent of the choice
of α̃ versus −α̃. Thus multiplicity is well defined.

Remark 3.21. In [3, page 57], Brown and Schirmer define multiplicity using the notion of
degree. Using Theorem 3.14, their definition of multiplicity is easily seen to coincide with
ours in cases (1) and (3). Case (2) is a bit more complicated, however. In this case they
first show that α has an orientable open neighborhood U containing no roots of f , other
than those in α, that is mapped by f into a connected orientable open neighborhoodV of
y0. Then f defines a map fUV :U →V . In general, however,U is not connected, so differ-
ent orientations of U may differ by more than just a sign. They describe an “orientation
procedure” for orienting U , and define mult( f ,α, y0)= |degy0

fUV |. It can be shown that
their procedure for finding an oriented neighborhood U of α is equivalent to the follow-
ing: since, by Theorem 3.17, α̃ 
= −α̃, we can find a neighborhood Ũ of α̃ disjoint from−Ũ
that is mapped by f ◦ p̃ into a Euclidean neighborhood E of y0. Then, since p̃ is a dou-
ble covering, p̃ maps Ũ homeomorphically onto a neighborhood U of α. We orient U by
first restricting an orientation of X̃ to Ũ , and then using the homeomorphism p̃|Ũ to ori-
entU . We now have (using Theorem 3.14) |λ( f ◦ p̃, α̃)| = |degy0

( f ◦ p̃)ŨE| = |degy0
fUE|,

so the two definitions of multiplicity are consistent.

Theorem 3.22. Let {ht : X → Y} be a proper homotopy, where X is a connected n-manifold
and Y is a well-connected space that is n-Euclidean at y0 ∈ Y , and suppose that α0 is a
Nielsen root class of h0 at y0. If α0 is {ht}-related to a Nielsen root class α1 of h1 at y0, then
mult(h0,α0, y0)=mult(h1,α1, y0). If α0 is not {ht}-related to a Nielsen root class of h1, then
mult(h0,α0,y0)= 0.
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Proof. In cases (1) and (3) of Definition 3.19, this follows directly from the definition,
Theorem 3.7, and the fact that λ and λ2 are proper root indices. So assume X is nonori-
entable but h0 (and therefore h1) is orientable and write p̃−1(α0) = α̃0 � (−α̃0). If α0 is
not essential, then by Theorem 3.17 neither is α̃0, so we have mult( f ,α0, y0) = |λ(h0 ◦
p̃, α̃0)| = 0. On the other hand, it is easy to show (using Hopf coverings and Theorems
3.16 and 3.17) that if α0 is {ht}-related to α1, then α̃0 is {ht ◦ p̃}-related to a class α̃1,
where p̃(α̃1)= α1. In this case we have mult( f ,α0, y0)= |λ(h0 ◦ p̃, α̃0)| = |λ(h1 ◦ p̃, α̃1)| =
mult( f ,α1, y0). �

Corollary 3.23. Let {ht : X → Y} be a proper homotopy, where X is a connected n-
manifold and Y is a well-connected space that is n-Euclidean at y0 ∈ Y . Then the {ht} rela-
tion defines a bijection from the set of root classes of h0 with nonzero multiplicity onto the set
of those of h1.

Corollary 3.24. Let α be a Nielsen root class at y0 of a proper map f : X → Y of an n-
manifold X into a well-connected space Y that is n-Euclidean at y0 ∈ Y . Then mult( f ,α,
y0) 
= 0 implies that α is properly essential.

We will see later that at least for n > 2, we also have the converse: if α is properly
essential, then mult( f ,α, y0) 
= 0.

Definition 3.25. Let f : X → Y be a proper map of an n-manifold X into a space Y that is
locally n-Euclidean at the point y0 ∈ Y . Then the absolute degree of f at y0 is the sum of
the multiplicities of all the root classes of f at y0. It is denoted by �( f , y0):

�
(
f , y0

)= ∑
α∈ f −1(y0)/N

mult
(
f ,α, y0

)
. (3.24)

As an immediate consequence of Theorem 3.22 and Corollary 3.23 we have the fol-
lowing corollary.

Corollary 3.26. Let f : X → Y be a proper map of a connected n-manifold X into a well-
connected space Y that is n-Euclidean at y0. Then �( f , y0) = �(g, y0) for every map g
properly homotopic to f .

As an easy consequence of the fact that p̃ : X̃ → X is a double covering, Theorem 3.17,
and Definitions 3.19 and 3.25, we have the following theorem.

Theorem 3.27. Let f : X → Y be an orientable proper map of a connected nonorientable
n-manifold X into a well-connected space Y that is locally n-Euclidean at the point y0 ∈ Y ,
and let p̃ : X̃ → X be the orientation covering. Then card( f ◦ p̃)−1(y0)= 2card f −1(y0) and
�( f ◦ p̃, y0)= 2�( f , y0).

We are now ready to show that �( f ) is a lower bound on the number of roots of
transverse maps.

Theorem 3.28. Let f : X → Y be a proper map of a connected n-manifold X into a well-
connected space Y that is n-Euclidean at y0. Then every map properly homotopic to f and
transverse to y0 has at least �( f , y0) roots.
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Proof. Suppose that g is properly homotopic to f and transverse to y0. We distinguish
three cases.
Case 1 (X orientable). Let α be a root class of g. Then

mult
(
g,α, y0

)= ∣∣λ(g,α)
∣∣= ∣∣∣∣∣∑

x∈α
λ(g,x)

∣∣∣∣∣≤∑
x∈α

∣∣λ(g,x)
∣∣= cardα. (3.25)

The first equality is by definition of λ, the second follows from additivity of λ, and the last
from the fact that g is a local homeomorphism at each x ∈ α, and therefore λ(g,x)=±1.
When we sum this inequality over all Nielsen root classes α of g, we have �(g, y0) ≤
cardg−1(y0). But �( f , y0) = �(g, y0) since f and g are properly homotopic. Thus
�( f , y0)≤ cardg−1(y0).
Case 2 (X nonorientable but f orientable). Let p̃ : X̃ → X be the orientation covering.
Since p̃ has only two sheets, then it is proper, so f ◦ p̃ and g ◦ p̃ are properly homotopic.
Since p̃ is a covering and g is transverse to y0, it follows easily that g ◦ p̃ is a local home-
omorphism at each of its roots at y0, and therefore, since it is proper, g ◦ p̃ is transverse
to y0. Thus, using Theorem 3.27 together with Case 1, we have

�
(
f , y0

)= 1
2

�
(
f ◦ p̃, y0

)≤ 1
2

card(g ◦ p̃)−1(y0)= cardg−1(y0
)
. (3.26)

Case 3 (neither X nor f orientable). The proof is the same as in Case 1, but uses λ2 in
place of λ. �

4. Isolating roots

This section is devoted to the following theorem and its corollaries.

Theorem 4.1. Let f : X → Y be a map from an n-manifold X into a space Y that is locally
n-Euclidean at y0, and let N ⊂ Y be any neighborhood of y0. Then f is homotopic to a map
that is a local homeomorphism at each of its roots at y0 by a homotopy that is constant outside
of f −1(N).

Proof. Let E be a Euclidean neighborhood of y0 such that E ⊂N . The proof proceeds in
two stages. In the first stage we approximate f −1(E) by a polyhedron and the map f by
a simplicial approximation and use this approximation to get a new map g homotopic to
f such that g−1(y0) is covered by a disjoint union of open sets U ⊂ g−1(E) each of which
is contained in the interior of an n-ball B. In the second stage we use triangulations of
the balls B to get a map homotopic to g, and therefore f , that is a local homeomorphism
at each of its roots at y0. All of the homotopies will be constant outside of f −1(E), and
therefore outside of f −1(N).

In the following, if s is a simplex in a simplicial complex K , then stK s denotes the open
star of s inK—the union of all open simplices including s that have s for a face. If v0, . . . ,vk
are vertices in K , then 〈v0, . . . ,vk〉 denotes the open simplex whose vertices are v0, . . . ,vk.
Stage 1. Let ψ : Rn → E be a homeomorphism and KE a simplicial complex such that
Rn = |KE|. Then {ψ,KE} is a triangulation of E. We may assume thatψ−1(y0) is in an open
n-simplex s of KE because if it is not, taking z0 to be a point that is in an open n-simplex,
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we may define ψ′ by ψ′(z) = ψ(ψ−1(y0) + z− z0) so that {ψ′,KE} is a triangulation of E
and ψ′(z0)= y0.

The collection {stKE v | v a vertex of KE} is an open cover of Rn, so { f −1(ψ(stKE v)) | v
a vertex of KE} is an open cover of f −1(E). Now let � be an open cover of f −1(E) with
the following properties.

(1) � is a refinement of { f −1(ψ(stKE v)) | v a vertex of KE}.
(2) For each W ∈�, there is an n-ball B such that ClW ⊂ intB.
(3) The nerve of � has dimension n or less.

Construct a family {γW |W ∈�} of maps γW : f −1(E)→ I with the following properties.

(1) W = {x ∈ f −1(E) | γW (x) > 0}.
(2)

∑
W∈� γW (x)= 1 for all x ∈ f −1(E).

We may construct such a family by first defining γ′W (x) to be the distance from x to
X −W , and then letting γW (x)= γ′W (x)/

∑
V∈� γ′V (x).

Now define a map ν : f −1(E)→ |Nerve�| by

ν(x)=
∑

{W∈�|γW (x)>0}
γW (x)W. (4.1)

For each W ∈�, select a vertex v of KE such that W ⊂ f −1(ψ(stKE v)), and let µ(W)= v.
Then µ extends to a simplicial map µ : Nerve�→ KE. Let |µ| : |Nerve�| → Rn denote
the induced map of the corresponding polyhedra.

Now, for any x ∈ f −1(E) and W0, . . . ,Wp ∈�,

ν(x)∈ 〈W0, . . . ,Wp
〉 =⇒ |µ| ◦ ν(x)∈ 〈µ(W0

)
, . . . ,µ

(
Wp

)〉
. (4.2)

But ν(x) ∈ 〈W0, . . . ,Wp〉 also implies that x ∈ ⋂p
i=0Wi ⊂

⋂p
i=0 f

−1(ψ(stKE µ(Wi))), so
ψ−1 ◦ f (x)∈⋂p

i=0 stKE µ(Wi), thus

ν(x)∈ 〈W0, . . . ,Wp
〉 =⇒ ψ−1 ◦ f (x)∈

p⋂
i=0

stKE µ
(
Wi
)
. (4.3)

Every point in
⋂p
i=0 stKE µ(Wi) is in a simplex having µ(W0), . . . ,µ(Wp) for some of its

vertices. Thus |µ| ◦ ν(x) is in a face of the open simplex that contains φ−1 ◦ f (x). We
may therefore use the linear structure in these simplices to define a homotopy {k′t} from
ψ−1 ◦ ( f | f −1(E)) to |µ| ◦ ν by

k′t (x)= (1− t)ψ−1 ◦ f (x) + t|µ| ◦ ν(x). (4.4)

Then k′t (x) lies on the straight line segment joining a point in the unique open simplex
containing φ−1 ◦ f (x) to a point in one of its faces. Hence (since there are no (n+ 1)-
simplices), if k′t (x) ∈ s, we must also have ψ−1 ◦ f (x) ∈ s. The contrapositive of this
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statement is

k′t
(
f −1(E)− f −1(ψ(s)

))⊂Rn− s ∀t ∈ I. (4.5)

Now let C be a closed neighborhood of X − f −1(E) disjoint from Cl f −1(ψ(s)), let
β : f −1(E)→ I be a function that is 1 on Cl f −1(ψ(s)) and 0 on C, and define a homotopy
{kt : X → Y} by

kt(x)=
ψ ◦ k′β(x)t(x) for x ∈ f −1(E),

f (x) for x ∈ intC.
(4.6)

The two formulas agree on the open set (intC)∩ f −1(E), and (intC)∪ f −1(E) ⊂ (X −
f −1(E))∪ f −1(E)= X , so {kt} is well defined on all of X . Also the homotopy is constant
off of f −1(E). Let g = k1.

We now show that

g−1(ψ(s)
)= (|µ| ◦ ν

)−1
(s). (4.7)

Suppose first that x ∈ g−1(ψ(s)), so g(x)∈ ψ(s). If x ∈ C, then g(x)= f (x), which implies
that f (x) ∈ ψ(s), which is impossible since C and f −1(ψ(s)) are disjoint. Therefore x ∈
f −1(E), so g(x) = ψ ◦ k′β(x)(x). From (4.5), k′t maps f −1(E)− f −1(ψ(s)) into Rn − s for
all t, and therefore ψ ◦ k′β(x) maps f −1(E)− f −1(ψ(s)) into E−ψ(s). Since ψ ◦ k′β(x)(x)∈
ψ(s), we cannot have x ∈ f −1(E)− f −1(ψ(s)), so x ∈ f −1(ψ(s)). Therefore β(x)= 1 and
g(x) = ψ ◦ k′1(x) = ψ ◦ |µ| ◦ ν(x), so ψ ◦ |µ| ◦ ν(x) ∈ ψ(s), which implies that x ∈ (|µ| ◦
ν)−1(s).

Conversely, suppose that x ∈ (|µ| ◦ ν)−1(s), so k′1(x) = |µ| ◦ ν(x) ∈ s. Since k′t maps
f −1(E)− f −1(s) into Rn − s, this implies that x ∈ f −1(s) and therefore that β(x) = 1.
Therefore g(x) = k1(x) = ψ ◦ k′β(x) = ψ ◦ k′1(x) = ψ ◦ |µ| ◦ ν(x) ∈ ψ(s), so x ∈ g−1(ψ(s)).
This proves (4.7).

Since µ is simplicial, |µ|−1(s) is either empty or a disjoint union of open n-simplices
〈W0, . . . ,Wn〉. In the first case, we are done since then g has no roots at y0. In the second,
g−1(ψ(s)) = (|µ| ◦ ν)−1(s) is the disjoint union of open sets U , where each U ⊂W0 ∩
···∩Wn, for some n+ 1 sets W0, . . . ,Wn ∈�. Let � be the family of all these open sets
U . Note that because g−1(y0) ⊂⊔U∈�U , g has no roots at y0 in Bd

⊔
U∈�U . Since the

sets U are open and disjoint,
⊔

U∈� BdU ⊂ Bd
⊔

U∈�U , so BdU is root-free for every
U ∈�. Since each U ∈� is a subset of W0∩···∩Wn, for some sets W0, . . . ,Wn ∈�,
then ClU ⊂ ClW0 ⊂ intB for some n-ball B. This completes the first stage of the proof.
Stage 2. Again, let ψ : Rn → E be a homeomorphism onto the Euclidean neighborhood
E ⊂N of y0. From the first stage we have a map g homotopic to f by a homotopy constant
off of f −1(N), and a family � of disjoint open sets U ⊂ g−1(E) covering g−1(y0), where,
for each U ∈�, there is an n-ball B with ClU ⊂ intB, and BdU contains no roots of g
at y0.

So let U ∈�, let B be an n-ball with ClU ⊂ intB, and let (φ : |KB| → B,KB) be a tri-
angulation of B. Let C ⊂ intB be a closed neighborhood of BdU disjoint from g−1(y0).
Then φ−1(C) and φ−1(g−1(y0)) are disjoint compact subsets of |KB| and therefore a pos-
itive distance d > 0 apart. We may assume, by subdividing KB if necessary, that the mesh
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of KB is less than d. Define subcomplexes K and L of KB by

K = {σ ∈ KB | (stKB σ
)∩φ−1(U ∪C) 
= ∅},

L= {σ ∈ KB | (stKB σ
)∩φ−1(C) 
= ∅}. (4.8)

Clearly, φ−1(U ∪C)⊂ |K| and φ−1(C)⊂ |L|, so φ−1(BdU)⊂ int|L|. Now, if z ∈ |L|, then
z is in the face of a simplex that meets φ−1(C), and is therefore at a distance less than
d from φ−1(C), so z /∈ (g ◦ φ)−1(y0). Therefore |L| ∩ (g ◦ φ)−1(y0) =∅. Thus ψ−1 ◦ g ◦
φ(|L|) is a compact set in Rn not containing ψ−1(y0), so there is a positive distance d′ > 0
between ψ−1 ◦ g ◦φ(|L|) and ψ−1(y0). Let K ′E be a complex with mesh less than d′ such
that |K ′E| =Rn. We may assume that ψ−1(y0) is in an open n-simplex s′ of K ′E, otherwise
we could, as in Stage 1, modify ψ by a translation so that it is. Then ψ−1 ◦ g ◦φ(|L|)∩ s′ =
∅, so ψ−1 ◦ g ◦ φ defines a map g′ : (|K|,|L|)→ (Rn,Rn − s′). By the simplicial approx-
imation theorem, there are a subdivision (K ′,L′) of (K ,L), a simplicial approximation
k : (K ′,L′) → (K ′E,K ′E − s′) to g′, and a homotopy {k′t : (|K ′|,|L′|) = (|K|,|L|) → (Rn,
Rn − s′)} from g′ to |k|. Since φ−1(BdU) ⊂ int|L|, then the closed sets φ(|K| − int|L|)
and BdU are disjoint, so there is a map β : B→ I that is 1 on φ(|K| − int|L|) and 0 on
BdU . Define a homotopy {hUt : ClU → Y} by

hUt(x)= ψ ◦ k′β(x)t ◦φ−1(x) for x ∈ ClU. (4.9)

Then we assert the following:

(1) hU0 = g|ClU ,
(2) {hUt} is constant on BdU ,
(3) hU1 is a local homeomorphism at each x ∈ h−1

U1(y0).

The first two assertions follow easily from the definitions, so we prove only the third.
Let x ∈ h−1

U1(y0). Then ψ ◦ k′β(x) ◦ φ−1(x) = hU1(x) = y0, and therefore k′β(x) ◦ φ−1(x) =
ψ−1(y0) ∈ s′. Since k′t (|L|) ⊂ Rn − s′ for all t, we must have φ−1(x) ∈ |K| − |L| ⊂ |K| −
int|L|, so β(x) = 1, and therefore |k| ◦ φ−1(x) = k′1 ◦ φ−1(x) = ψ−1(y0) ∈ s′. Since |k| is
simplicial, this implies that φ−1(x) ∈ σ for some open n-simplex σ in K ′, and |k| takes
σ homeomorphically onto s′. This also implies that σ ⊂ |K| − |L|. Let V = φ−1(σ)∩U .
Then V is a neighborhood of x, and we will show that hU1 maps V homeomorphically
onto hU1(V). Now, for any x′ in V , we have φ−1(x′) ∈ σ ⊂ |K| − int|L|, so β(x′) = 1.
It follows that hU1|V = ψ ◦ |k| ◦ φ−1|V . Moreover, since φ−1(V) ⊂ σ , we have hU1|V =
ψ ◦ |k| ◦φ−1|V = ψ ◦ (|k|∣∣σ)◦ (φ−1|V).

Since each of the maps (φ−1|V), (|k||σ), and ψ is a homeomorphism onto its image,
then so is hU1|V . By invariance of domain, (h|V)(V) is open in E and therefore Y . This
proves the third assertion.

Perform this construction for each U ∈�, and define a homotopy {ht : X → Y} by

ht(x)=
hUt if x ∈ ClU for some U ∈�, t ∈ I ,
g(x) if x ∈ X −⊔U∈�U , t ∈ I. (4.10)
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Then h1 is a local homeomorphism at each of its roots at y0, and is homotopic to g and
therefore f by a homotopy constant outside of f −1(N). �

For proper maps, we have the following corollary.

Corollary 4.2. Let f : X → Y be a proper map from an n-manifold X into a space Y that
is locally n-Euclidean at y0, and let N ⊂ Y be any neighborhood of y0. Then f is properly
homotopic to a map that is transverse to y0 by a homotopy that is constant outside of f −1(N).

Proof. We may assume that N is compact, otherwise, we may replace N by a compact
neighborhood of y0 contained in N . By the theorem, f is homotopic to a map g that is
a local homeomorphism at each of its roots at y0 by a homotopy that is constant outside
of f −1(N). Since f is proper, f −1(N) is compact, and since the homotopy from f to g is
constant off of the compact set f −1(N), then it is a proper homotopy. So f is properly
homotopic to g, and therefore g is proper. It follows from Theorem 2.6 that g is transverse
to y0. �

5. Combining isolated roots

This section begins with a succession of lemmas that are needed to complete the proofs
of Theorems 1.1 and 1.2. It ends with the proofs of Theorems 1.1 and 1.2. A proof
of Theorem 1.1, for compact orientable triangulable manifolds, in [10] uses Whitney’s
lemma [8]. The proof of Theorem 1.1 for manifolds with boundary in [3] uses microbun-
dle theory and a version of Whitney’s lemma applicable to topological manifolds. The
proof here, although somewhat longer, is more self-contained. It is centered on Lemma
5.2 below, the idea for which comes from Epstein [6, pages 378–380]. The proof of
Theorem 1.2 is also centered on Lemma 5.2.

Lemma 5.1. Suppose n > 2 and Y is locally n-Euclidean at y0 ∈ Y .
(1) Any path in Y with endpoints in Y − y0 is fixed-endpoint-homotopic in Y to a path

in Y − y0.
(2) Any two paths in Y − y0 that are fixed-endpoint-homotopic in Y are fixed-endpoint-

homotopic in Y − y0.

Proof. We may assume that Y is path-connected, otherwise replace Y by the path com-
ponent containing y0. Then Y − y0 is also path-connected. To see this, let y1, y2 ∈ Y − y0;
we will find a path in Y − y0 from y1 to y2. Let A1 be a path in Y from y1 to y2. If A1 is
also in Y − y0, then we are done. Otherwise A1 passes through y0. Let B be an n-ball with
y0 ∈ intB. Then A−1

1 (B)⊂ I is compact and therefore has a minimum tmin and maximum
tmax. Because y0 ∈ intB, it is easy to see that tmin < tmax. Since n > 2, there is a path A2 in
B− y0 from A1(tmin) to A1(tmax). Connect y1 to y2 by the path A3 defined by

A3(t)=


A1(t) for 0≤ t ≤ tmin,

A2

(
t− tmin

tmax− tmin

)
for tmin ≤ t ≤ tmax,

A1(t) for tmax ≤ t ≤ 1.

(5.1)
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Let E be a Euclidean neighborhood of y0 and let y ∈ E− y0. Since n > 2, then both E
and E∩ (Y − y0) = E− y0 are simply connected. Therefore an application of van Kam-
pen’s theorem [9, pages 211 and 217] to the pair Y − y0 and E shows that the inclu-
sion i : Y − y0 ⊂ E∪ (Y − y0)= Y induces a fundamental group isomorphism i# : π(Y −
y0, y)≈�π(Y , y).

To prove the first statement, let A be a path in Y with endpoints in Y − y0. Let A1 be
a path in Y − y0 from y to A(0), and A2 a path in Y − y0 from A(1) to y. Then (A1A)A2

is a loop in Y at y, so, since i# is surjective, [(A1A)A2]= [A3] for some loop A3 in Y − y0

at y. Then (A−1
1 A3)A−1

2 is a path in Y − y0 and [A]= [(A−1
1 A3)A−1

2 ].
To prove the second statement, letA andA′ be paths in Y − y0 that are fixed-endpoint-

homotopic in Y . Let A1 be a path in Y − y0 from y to A(0)= A′(0) and let A2 be a path
in Y − y0 from A(1)= A′(1) back to y. Then A1(AA2) and A1(A′A2) are loops in Y − y0

at y that are fixed-endpoint-homotopic in Y . Since i# is injective, then they are fixed-
endpoint-homotopic in Y − y0, and therefore A and A′ are fixed-endpoint-homotopic in
Y − y0. �

Lemma 5.2. Suppose n > 2 and f : X → Y is a map from a connected n-manifold X into a
well-connected space Y that is locally n-Euclidean at y0. Suppose also that x0 and x1 are two
isolated roots of f at y0 that are Nielsen-related by a pathA in X from x0 to x1, thatN ⊂ X is
a neighborhood of A containing no roots of f other than x0 and x1, and that E is a Euclidean
neighborhood of y0. Then there are an n-ball B ⊂N , a map g : X → Y , and a homotopy {ht}
from f to g with the following properties:

(1) {ht} is constant on a neighborhood of f −1(y0) and constant off of N ,
(2) h−1

t (y0)= f −1(y0) for all t ∈ I ,
(3) g = h1 maps the pair (B,BdB) into the pair (E,E− y0),
(4) any path in B from x0 to x1 is fixed-endpoint-homotopic in N to A.

Proof. By taking a smaller neighborhood if necessary, we may assume N connected and
open, and therefore a connected n-manifold. By [1, Lemma 5.30] there is an n-ball C ⊂N
such that x0,x1 ∈ intC and any path in C from x0 to x1 is fixed-endpoint-homotopic in
N to A. Let φ : Bn→ C be a homeomorphism and set x′0 = φ−1(x0) and x′1 = φ−1(x1). The
picture in Figure 5.1 will be helpful for subsequent constructions.

In this picture, B′ ⊂ intBn is a Euclidean ball concentric with Bn that also has x′0 and x′1
in its interior. (By “Euclidean ball” we mean a ball of the form {z ∈Rn | ‖z− z0‖ ≤ ε}, not
just a homeomorph of Bn.) The sets C′0,C′1 ⊂ intB′ are disjoint Euclidean balls centered
at x′0 and x′1 such that f ◦φ(C′0)⊂ E and f ◦φ(C′1)⊂ E, � is the straight line segment from
x′0 to x′1, the points where � intersects BdC′0 and BdC′1 are labeled z′0 and z′1, and a′ is the
arc from z′0 to z′1 parameterized by a′(t)= (1− t)z′0 + tz′1.

We now construct a deformation retraction{
r′t : Bn− ( intC′0∪ intC′1

)−→ Bn− ( intC′0∪ intC′1
)}

(5.2)

of Bn − (intC′0 ∪ intC′1) onto BdC′0 ∪ BdC′1 ∪ a′(I). First define r′1(x), for any x ∈ Bn −
(intC′0 ∪ intC′1), to be the unique point where the line segment joining x to the closest
point on � intersects BdC′0 ∪ BdC′1 ∪ a′(I). Then, for any t ∈ I , let r′t (x) = (1− t)x +
tr′1(x).
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Bn

B′



x′0

C′0 
x′1 C′1� a′

z′0



z′1


r′1(x)


x

Figure 5.1. The construction in Bn.

Y

E


y0


f (z0)


 f (z1)
�
A3

�
f ◦A0

	
f ◦A1


f ◦ a

Figure 5.2. The picture in Y .

Use φ to copy this construction into C by letting B = φ(B′), C0 = φ(C′0), C1 = φ(C′1),
z0 = φ(z′0), z1 = φ(z′1), a = φ ◦ a′, and {rt} = {φ ◦ r′t ◦ φ−1}. So {rt} is a deformation re-
traction of C− (intC0∪ intC1) onto BdC0∪BdC1∪ a(I), and a is an arc from z0 to z1.

Now let A0 be a path in C0 from x0 to z0 = a(0), A1 a path in C1 from z1 = a(1) to x1,
and A3 a path in E− y0 from f (z0) to f (z1). Then we have the picture in Y shown in
Figure 5.2.

Since (A0a)A1 is a path in C from x0 to x1, then [(A0a)A1] = [A], and therefore
[ f ◦A0][ f ◦ a][ f ◦A1] = [ f ◦A] = [y0]. But (( f ◦A0)A3) f ◦A1 is a loop in the sim-
ply connected space E, so we also have [ f ◦A0][A3][ f ◦A1] = [y0] which implies that
[ f ◦ a] = [A3]. Since n > 2 and the paths f ◦ a and A3 are in Y − y0, then by statement
(2) of Lemma 5.1 they are not only fixed-endpoint-homotopic in Y , but are also fixed-
endpoint-homotopic in Y − y0. Thus, there is a map H : I × I → Y − y0 such that for
every (s, t)∈ I × I ,

H(s,0)= f
(
z0
)
, H(s,1)= f

(
z1
)
,

H(0, t)= f ◦ a(t), H(1, t)= A3(t)∈ E− y0.
(5.3)
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Define a homotopy {h′s : C− (intC0∪ intC1)→ Y − y0} by

h′s(x)=



f ◦ r2s(x) for 0≤ s≤ 1
2

, x ∈ C− ( intC0∪ intC1
)
,

f ◦ r1(x) for
1
2
≤ s≤ 1, x ∈ r−1

1

(
BdC1∪BdC2

)
,

H
(
2s− 1,a−1

(
r1(x)

))
for

1
2
≤ s≤ 1, x ∈ r−1

1

(
a(I)

)
.

(5.4)

In the last formula, a−1(r1(x)) is meant to denote the value of t for which a(t) = r1(x).
This makes sense since x ∈ r−1

1 (a(I)), and therefore a−1(r1(x)) is a continuous function
of x ∈ r−1

1 (a(I)). The last two formulas agree on the overlap of their domains, (x,s) ∈
r−1

1 ({z0,z1})× [1/2,1], and this set is closed in X × I . The first formula agrees with the
last two when s = 1/2, and the set X × 1/2 is also closed in X × I . Thus h′s(x) is a well-
defined continuous function of (x,s).

Now let β : X → I be a map such that β(x)= 1 for x ∈ B and β(x)= 0 for x ∈ X − intC.
Define a homotopy {ht : X → Y} by

ht(x)=

h′β(x)t(x) for x ∈ C− ( intC0∪ intC1

)
, t ∈ I ,

f (x) for x ∈ (X − intC
)∪C0∪C1.

(5.5)

The two formulas have the closed set (x, t) ∈ (BdC ∪ BdC0 ∪ BdC1)× I for common
domain and are easily seen to agree there. Thus ht is well defined and is continuous in
(x, t). Let g = h1. We now verify assertions (1), (2), (3), and (4) of the lemma.

By its definition, {ht} is constant on X − (C− (intC0∪ intC1)), which is a neighbor-
hood of f −1(y0). Also C− (intC0∪ intC1)⊂N , so {ht} is constant off of N . This proves
assertion (1).

For all s ∈ I , neither f ◦ rs nor H has any roots at y0, so the map hs has no roots in
C− (intC0∪ intC1). Moreover, as we have seen, {ht} is constant on f −1(y0). Therefore,
h−1
s (y0)= f −1(y0) for all s∈ I . This verifies assertion (2).

From the definition of {h′s}, we see that h′1(C− (intC0∪ intC1))= f (BdC0∪BdC1)∪
A(3)⊂ E−y0. Since β(x)= 1 for x ∈ B, this implies that h1(B− (intC0∪ intC1))⊂ E− y0.
Also, h1(C0∪C1)= f (C0∪C1)⊂ E. Thus g = h1 maps the pair (B,BdB) into (E,E− y0),
which verifies assertion (3).

Any path in B from x0 to x1 is also a path in C from x0 to x1 and thus, by the construc-
tion of C, must be fixed-endpoint-homotopic to A. This verifies assertion (4). �

Lemma 5.3. Suppose n≥ 1, f : X → Y is a map from an n-manifold X into a space Y that
is locally n-Euclidean at y0, B is an n-ball in X such that f (B) ⊂ E for some n-Euclidean
neighborhood E of y0, and BdB contains no roots of f at y0. Then there is a homotopy
{ht : X → Y} such that

(1) h0 = f ,
(2) {ht} is constant at f outside of intB,
(3) B contains exactly one root of h1 at y0.
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Proof. Let φ : Bn → B and ψ : Rn → E be homeomorphisms with ψ(0) = y0. Define h1 :
X → Y by

h1(x)=


ψ

(∥∥φ−1(x)
∥∥ψ−1 ◦ f ◦φ

(
φ−1(x)∥∥φ−1(x)

∥∥
))

for x ∈ B, φ−1(x) 
= 0,

y0 for x ∈ B, φ−1(x)= 0,

f (x) for x /∈ B.
(5.6)

Then it is easy to see that h1 is continuous, f and h1 agree outside of intB, and φ(0) is the
only root of h1 in B at y0. Define a homotopy {ht : X → Y} from f to h1 by

ht(x)=
ψ

(
(1− t)ψ−1 ◦ f (x) + tψ−1 ◦h1(x)

)
for x ∈ B, t ∈ I ,

f (x) for x /∈ B, t ∈ I. (5.7)

Since f (x) = h1(x) for x ∈ BdB, then ht is a well-defined homotopy from f to h1. The
homotopy is clearly constant at f outside of intB. �

Lemma 5.4. Suppose n > 2 and k : (Bn,BdBn)→ (Rn,Rn− 0) is a map whose induced ho-
momorphism kn :Hn(Bn,BdBn;Z)→Hn(Rn,Rn− 0;Z) is trivial. Then there is a homotopy
{�t : (Bn,BdBn)→ (Rn,Rn− 0)} such that

(1) �0 = k,
(2) {�t} is constant on BdBn,
(3) �1(Bn)⊂Rn− 0.

Proof. Choose a base point b0 ∈ BdBn, let e0 = k(b0)∈Rn− 0, and consider the commu-
tative diagram

πn
(

Bn,BdBn,b0
)

Hurewicz

kπn
πn
(
Rn,Rn− 0,e0

)
Hurewicz

Hn
(

Bn,BdBn;Z
)

kn
Hn
(
Rn,Rn− 0;Z

) (5.8)

where kπn and kn are induced by k. Since Hn(Rn,Rn − 0;Z) = 0 for p < n and Rn − 0 is
simply connected for n > 2, then the right-hand Hurewicz homomorphism is an isomor-
phism. Since kn is trivial, it follows that kπn is also trivial.

The identity i : (Bn,BdBn,b0) → (Bn,BdBn,b0) represents an element [i] ∈ πn(Bn,
BdBn,b0), whose image under kπn is [k ◦ i] = [k] ∈ πn(Rn,Rn − 0,e0). Since kπn is triv-
ial, then [k] = [e0], so there is a homotopy {ht : (Bn,BdBn,b0)→ (Rn,Rn − 0,e0)} such
that h0 = k and h1(Bn)= e0. We will use the homotopy {ht} to construct {�t}.

By Theorem 2.1 the set C =⋃t∈I h−1
t (0) is compact and therefore closed in B. Since

ht(BdBn) ⊂ Rn − 0 for all t, then C and BdBn are disjoint, so there is a map β : Bn → I
that is 0 on BdBn and 1 on C. Define the homotopy {�t : (Bn,BdBn) → (Rn,Rn − 0)}
by �t(x)= hβ(x)t for all (x, t) ∈ Bn× I . Clearly, {�t} satisfies properties (1) and (2) of the
lemma. Suppose, contrary to (3), that �1(x)= 0 for some x ∈ Bn. Then, by the definition
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of �, we have h1β(x)(x)= 0, so, by the definition of C, we have x ∈ C. Therefore β(x)= 1,
so �1(x)= h1(x)= e0 
= 0. This contradiction proves (3). �

Remark 5.5. The conclusion of Lemma 5.4 is true even when n = 1,2. However, we will
only need it for n > 2.

Lemma 5.6. Suppose n > 2 and f : X → Y is a proper map of a connected orientable n-
manifold X into a well-connected space Y . Suppose that E ⊂ Y is an n-dimensional Eu-
clidean neighborhood of y0 ∈ Y , and B ⊂ X is an n-ball such that f (B) ⊂ E, f (BdB) ⊂
E− y0, and λ( f , intB) = 0, where λ is the integer root index for X , Y , y0 relative to some
orientation sX ofX and local orientation µ of Y at y0. Then there is a homotopy {ht : X → Y}
such that h0 = f , {ht} is constant off of B, and h1(B)⊂ E− y0.

Note that because f is proper and {ht} is constant off of the compact set B, then {ht}
is proper.

Proof. We use the following diagram in which x is an arbitrary point in intB, N is a
neighborhood of B such that N − intB is root-free, the maps f ′ and f ′′ are defined by f ,
and all other maps are inclusions:

(X ,X −B) i⊂
(
X ,X − intB

) e⊃
j∩

(
N ,N − intB

) f ′

∪

(
Y ,Y − y0

)
∪

(X ,X − x) (B,BdB)
f ′′ (

E,E− y0
) (5.9)

Let oB ∈Hn(X ,X −B;Z) be the fundamental class around B (using the orientation sX).
Then ( j ◦ i)n(oB)=sX(x)∈Hn(X ,X − x;Z). Since sX(x) generates the infinite cyclic group
Hn(X ,X − x;Z), then ( j ◦ i)n is onto. But B is connected, so according to [4, Corollary 3.4,
page 260] Hn(X ,X −B;Z) is also infinite cyclic. It follows that ( j ◦ i)n is an isomorphism
and that oX generatesHn(X ,X −B;Z). Now X − intB is a deformation retract of X − x, so
jn :Hn(X ,X − intB;Z)→Hn(X ,X − x;Z) is an isomorphism. Thus in :Hn(X ,X −B;Z)→
Hn(X ,X − intB;Z) is also an isomorphism. Hence Hn(N ,N − intB;Z) is infinite cyclic
and generated by e−1

n ◦ in(oX). Since f ′n (e−1
n ◦ in(oX)) = λ( f , intB)µ = 0µ = 0, it follows

that f ′n = 0. The inclusion (E,E− y0) ⊂ (Y ,Y − y0) is an excision and therefore induces
homology isomorphisms, so, since f ′n = 0, we also have f ′′n = 0.

Since f ′′n = 0, we may use Lemma 5.4 to construct a homotopy {h′t : (B,BdB)→ (E,E−
y0)} such that h′0 = f ′′, {h′t} is constant on BdB, and h′0 has no roots at y0. Define the
desired homotopy {ht : X → Y} by

ht(x)=
h′t(x) for (x, t)∈ B× I ,
f (x) for (x, t) /∈ B× I. (5.10)

�

We are now ready to complete the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Assume that f : X → Y is a proper map of a connected n-manifold
X into a well-connected space Y that is n-Euclidean at y0. By Theorem 3.28 every map
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properly homotopic to f and transverse to y0 has at least �( f , y0) roots. To prove the rest
of the theorem, assume that n > 2; we will show that there is a map properly homotopic
to f and transverse to y0 that has no more than �( f , y0) roots.

By Corollary 4.2 there is at least one map properly homotopic to f and transverse to
y0. Every such map has a finite number of roots at y0, so there must be a map fmin properly
homotopic to f and transverse to y0 that has, among all such maps, the fewest number
of roots. Call such a map minimal. We need to show that card f −1

min(y0)≤�( f , y0). To do
this, we will assume to the contrary that card f −1

min(y0) > �( f , y0) and show that fmin is
not minimal. This contradiction will prove the theorem.

Since
∑

α∈ f −1
min(y0)/N cardα= card f −1

min(y0) >�( fmin, y0)=∑α∈ f −1
min(y0)/N mult( fmin,α, y0),

there must be a root class α such that cardα > mult( fmin,α, y0). To show that fmin is not
minimal we consider three cases:X is orientable,X is nonorientable but fmin is orientable,
and fmin is nonorientable.
Case 1 (X is orientable). Since fmin is transverse to y0, fmin is a local homeomorphism
at each root x ∈ α, and so it is easy to see, using Theorem 3.14, that λ( fmin,x) = ±1 for
each x ∈ α. It follows that since cardα > mult( fmin,α, y0)= |∑x∈α λ( fmin,x)|, there must
be two roots, x0 and x1 say, in α such that λ( fmin,x0) + λ( fmin,x1) = 0. We will find a
homotopy of fmin that eliminates these two roots.

Let E be a Euclidean neighborhood of y0 and letA be a path inX from x0 to x1 such that
[ fmin ◦A] = [y0]. Since fmin has only a finite number of roots, we may apply statement
(1) of Lemma 5.1, with X in place of Y , a finite number of times to find a path fixed-
endpoint-homotopic to A that avoids all roots other than x0 and x1. So we assume that A
already avoids all roots of f other than x0 and x1. ThenA(I) has a compact neighborhood
N that is disjoint from the closed set f −1

min(y0)−{x0,x1}. Thus we may apply Lemma 5.2
with fmin in place of f to find an n-ball B ⊂ N , a map g : X → Y , and a homotopy {ht}
from fmin to g with the properties enumerated in Lemma 5.2. Since {ht} is constant off of
the compact setN , it is a proper homotopy, and since {ht} is constant on a neighborhood
of f −1(y0)= g−1(y0), then g is still a local homeomorphism at each of its roots. Since for
every t ∈ I , ht has no roots on BdB, we have, by the homotopy and additivity properties of
the index, λ(g, intB)= λ( fmin, intB)= λ( fmin,x0) + λ( fmin,x1)= 0. Now apply Lemma 5.6
with g in place of f to find another homotopy {h′t} that is constant off of B such that
h′0 = g and h′1 has no roots at y0 in B. Then h′1 agrees with g on X −B and has no roots
in B, so it has two fewer roots than fmin does. It is also properly homotopic to fmin and
a local homeomorphism at each of its roots and therefore, since it is proper, transverse
to y0. Thus fmin is not minimal, and the proof is complete in the X orientable case.
Case 2 (X is nonorientable, fmin is orientable). Let p̃ : X̃ → X be the orientation covering
for X , and α̃ a root class of fmin ◦ p̃ at y0 such that p̃−1(α) = α̃� (−α̃). Then p̃ takes
α̃ bijectively onto α, so card α̃ = cardα > mult( fmin,α, y0) = |λ( fmin ◦ p̃, α̃)|. Since p̃ is a
covering and fmin is transverse to y0, it follows that fmin ◦ p̃ is a local homeomorphism
at each x̃ ∈ α̃. Then, arguing as in Case 1, there are two roots, x̃0 and x̃1 say, in α̃ such
that λ( fmin ◦ p̃, x̃0) + λ( fmin ◦ p̃, x̃1) = 0. Let Ã be a path in X̃ from x̃0 to x̃1 such that
[ fmin ◦ p̃ ◦ Ã]= [y0]. Let A= p̃ ◦ Ã, x0 = p̃(x̃0), and x1 = p̃(x̃1), so A is a path in X from
x0 to x1 such that [ fmin ◦A] = [y0]. Since n > 2, we may assume that Ã avoids all roots
of fmin ◦ p̃ other than x̃0 and x̃1, and therefore A avoids all roots of fmin other than x0
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and x1. Let N be a compact neighborhood of A(I) containing no roots of fmin other
than x0 and x1, and apply Lemma 5.2 with fmin in place of f to find an n-ball B ⊂ N , a
map g : X → Y , and a homotopy {ht} from fmin to g with the properties enumerated in
Lemma 5.2. Since B is simply connected, then it is evenly covered. Let B̃ be the component
of p̃−1(B) containing x̃0. Then x̃1 ∈ B̃ as well. To see this, let A′ be a path in B from x0

to x1. Then [A′]= [A]. Since ( p̃|B̃)−1 ◦A′ and Ã are lifts ofA′ andA that both begin at x̃0,
it follows that [( p̃|B̃)−1 ◦A′]= [Ã], and therefore that x̃1 = Ã(1)= ( p̃|B̃)−1 ◦A′(1)∈ B̃.
Now apply Lemma 5.6 with B̃ in place of B and g ◦ p̃ in place of f to find a homotopy

{h̃t : X̃ → Y} that begins at g ◦ p̃ that is constant off of B̃, and such that h̃1 has no roots
in B̃. Define a homotopy {ht : X → Y} beginning at g by

ht(x)=
h̃t ◦

(
p̃|B̃)−1

(x) for (x, t)∈ B× I ,
g(x) for (x, t) /∈ B× I. (5.11)

Then it is straightforward that h1 is properly homotopic to fmin, transverse to y0, and has
two fewer roots at y0 than fmin. Thus fmin is not minimal, and this completes the proof
for Case 2.
Case 3 ( fmin nonorientable). In this case mult( fmin,α, y0)= |λ2( f ,α)|, so mult( fmin,α, y0)
is either 0 or 1. Since fmin is a local homeomorphism at each root, then λ2(x) = [1] ∈
Z/2Z for each x ∈ α. Thus, if mult( fmin,α, y0) = 0, then α has an even number of roots
greater than 0. On the other hand, since cardα >mult( fmin,α, y0), if mult( fmin,α, y0)= 1,
then α contains two or more roots. Therefore, in either case, we may find two distinct
roots x0,x1 ∈ α. Let p̃ : X̃ → X be the orientation covering of X . Let x̃0 ∈ p̃−1(x0) and
x̃1 ∈ p̃−1(x1). Then, since fmin is nonorientable, Theorem 3.18 implies that all four points
x̃0,−x̃0, x̃1, and −x̃0 are Nielsen related roots of fmin ◦ p̃ at y0. Also fmin ◦ p̃ is a local
homeomorphism at each root, so the integer root index at each of these roots is ±1.
Since x̃ �→ −x̃ is an orientation-reversing homeomorphism of X̃ , then λ( fmin ◦ p̃, x̃1) =
−λ( fmin ◦ p̃,−x̃1). Hence either λ( fmin ◦ p̃, x̃0) + λ( fmin ◦ p̃, x̃1) = 0 or λ( fmin ◦ p̃, x̃0) +
λ( fmin ◦ p̃,−x̃1)=0. Assume, without loss of generality, that λ( fmin ◦ p̃, x̃0) + λ( f ◦ p̃, x̃1)=
0 (otherwise we would replace x̃1 by −x̃1). The proof now proceeds exactly as in Case 2
above. �

For nonorientable f , Theorem 1.1 has the following corollary.

Corollary 5.7. Suppose n > 2 and f : X → Y is a nonorientable proper map from a con-
nected nonorientable n-manifold X into a well-connected space Y that is locally n-Euclidean
at y0. Then

(1) PNR( f , y0)=�( f , y0),
(2) a Nielsen root class α of f at y0 is properly essential if and only if mult( f ,α, y0) 
= 0.

Proof. Let S 
=0 be the set of all Nielsen root classes of f at y0 that have nonzero multiplic-
ity, and let Sess be the set of all properly essential Nielsen root classes of f at y0. We first
prove

PNR
(
f , y0

)≤�
(
f , y0

)= cardS
=0 ≤ cardSess = PNR
(
f , y0

)
. (5.12)
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Now, PNR( f , y0) is a proper homotopy invariant lower bound on the number of roots
of f , but according to Theorem 1.1 there is a map properly homotopic to f that has
�( f , y0) roots at y0. This justifies the first inequality. Since f is nonorientable, each of its
root classes has multiplicity 0 or 1, and since the absolute degree is the sum of these mul-
tiplicities, we have the first equality above. Since every Nielsen class with nonzero multi-
plicity is essential, then S
=0 ⊂ Sess. This justifies the second inequality. The last equality is
the definition of PNR( f , y0).

The first assertion follows directly from (5.12). Also, from (5.12), we have cardS
=0 =
cardSess, and since S
=0 ⊂ Sess and the sets are finite, this proves S
=0 = Sess, which is the
second assertion. �

Proof of Theorem 1.2. Again assume that f : X → Y is a proper map of a connected n-
manifold X into a well-connected space Y that is n-Euclidean at y0. We have already seen
that every map properly homotopic to f has at least PNR( f , y0) roots at y0 (Theorem 3.2)
and every Nielsen root class of f at y0 with nonzero multiplicity is properly essential
(Corollary 3.24). It remains to show that if n > 2, then

(1) there is a map properly homotopic to f that has exactly PNR( f , y0) roots at y0,
(2) a root class of f is properly essential only if it has nonzero multiplicity.

For nonorientable maps, both of these assertions follow from Theorem 1.1 and Corollary
5.7, so we need to consider only orientable maps.

Call a map minimal if no other map properly homotopic to f has fewer roots. Then,
since there are maps properly homotopic to f with only a finite number of roots, we
know that there is a minimal map fmin and it has only a finite number of roots.

We first show that every root class of fmin has only one element. Suppose to the con-
trary that a root class α has two distinct roots x0,x1 ∈ α. Let A be a path in X from x0 to
x1 such that [ f ◦A]= [y0]. Since n > 2 and f −1

min(y0) is finite, we may apply statement (1)
of Lemma 5.1 a finite number of times to ensure that A does not pass through any roots
of f other than x0 and x1. There is then a compact neighborhood N of A(I) containing
no roots of f other than x0 and x1. Now apply Lemma 5.2 with fmin in place of f to find
an n-ball B ⊂N , a map g : X → Y , and a homotopy {ht} from f to g with the properties
enumerated in Lemma 5.2. Since {ht} is constant off of the compact set N , it is a proper
homotopy. Now apply Lemma 5.3 with g in place of f to obtain a homotopy {ht} begin-
ning at g, and constant off of B such that h1 has only one root in B. Then h1 is properly
homotopic to fmin but has fewer roots—contradicting the minimality of fmin. It follows
that every root class of f has only one element.

We now show that each root class of fmin has nonzero multiplicity. Let α= {x} be a root
class of fmin and suppose, contrary to what we want to show, that mult( fmin,α, y0) = 0.
Let E be a Euclidean neighborhood of y0. Then x has an n-ball neighborhood B such
that fmin(B) ⊂ E and fmin(BdB) ⊂ E− y0. We consider two cases, X orientable, and X
nonorientable but f orientable. (The case for nonorientable f has already been covered.)
Case 1 (X orientable). Since |λ( fmin,α)| = mult( fmin,α, y0) = 0, by additivity we have
λ( fmin, intB) = λ( fmin,α) = 0. Thus we may apply Lemma 5.6 with fmin in place of f to
find a homotopy {ht} that is constant off of B such that h0 = fmin and h1 has no roots at y0

in B. Then h1 agrees with fmin on X −B and has no roots in B, so it has fewer roots than
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fmin does. It is also properly homotopic to fmin since fmin is proper and {ht} is constant
off of the compact set B. This contradicts the minimality of fmin and thereby shows that
we must have mult( fmin,α, y0) 
= 0.
Case 2 (X nonorientable and fmin orientable). Let p̃ : X̃ → X be the orientation covering
of X . Since B is simply connected, it is evenly covered by p̃, so there is an n-ball B̃ ⊂
X̃ such that p̃ maps B̃ and −B̃ homeomorphically onto B. Let α̃ = ( p̃|B̃)−1(α), so α̃ =
{( p̃|B̃)−1(x)} and −α̃ are the two Nielsen root classes of fmin ◦ p̃ that p̃ maps onto α.
Then |λ( fmin ◦ p̃, α̃)| =mult( fmin,α, y0) = 0, so by additivity we have λ( fmin ◦ p̃, int B̃) =
λ( fmin ◦ p̃,α) = 0. Thus we may apply Lemma 5.6 with fmin ◦ p̃ in place of f and B̃ in

place of B to find a homotopy {h̃t} that is constant off of B̃ such that h̃0 = fmin ◦ p̃ and h̃1

has no roots at y0 in B. Define {ht : X → Y} by

ht(x)=
h̃t ◦

(
p̃|B̃)−1

(x) for (x, t)∈ B× I ,
fmin(x) for (x, t) /∈ B× I. (5.13)

Then h1 is properly homotopic to fmin, has the same roots as fmin outside of B, but
has no roots in B. This contradicts the minimality of fmin and completes the proof that
mult( fmin,α, y0) 
= 0 for every Nielsen root class of fmin.

Since each root class of fmin has nonzero multiplicity, then each root class is properly
essential. Thus fmin has only PNR( fmin, y0) = PNR( f , y0) root classes. Since each root
class contains only one root, then fmin has only PNR( fmin, y0) = PNR( f , y0) roots. This
proves the first assertion.

Now let S 
=0( f ) be the set of root classes of f that have nonzero multiplicity, let Sess( f )
be the set of essential root classes of f , and similarly for fmin. Then

PNR
(
f , y0

)= card f −1
min

(
y0
)= cardS
=0

(
fmin

)
= cardS
=0( f )≤ cardSess( f )= PNR

(
f , y0

)
.

(5.14)

Here, the first two equalities are what we have just proved, the third follows from
Corollary 3.23, the inequality follows from Corollary 3.24, which implies that S
=0( f ) ⊂
Sess( f ), and the last equality is the definition of PNR. Thus the two finite sets S
=0( f ) ⊂
Sess( f ) have the same cardinality and must therefore be equal. This proves the second
assertion. �
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