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Let E be a real Hausdorff topological vector space. In the present paper, the concepts
of the transfer positive hemicontinuity and strictly transfer positive hemicontinuity of
set-valued maps in E are introduced (condition of strictly transfer positive hemiconti-
nuity is stronger than that of transfer positive hemicontinuity) and for maps F : C→ 2E

and G : C→ 2E defined on a nonempty compact convex subset C of E, we describe how
some ideas of K. Fan have been used to prove several new, and rather general, conditions
(in which transfer positive hemicontinuity plays an important role) that a single-valued
map Φ :

⋃
c∈C(F(c)×G(c))→ E has a zero, and, at the same time, we give various char-

acterizations of the class of those pairs (F,G) and maps F that possess coincidences and
fixed points, respectively. Transfer positive hemicontinuity and strictly transfer positive
hemicontinuity generalize the famous Fan upper demicontinuity which generalizes up-
per semicontinuity. Furthermore, a new type of continuity defined here essentially gen-
eralizes upper hemicontinuity (the condition of upper demicontinuity is stronger than
the upper hemicontinuity). Comparison of transfer positive hemicontinuity and strictly
transfer positive hemicontinuity with upper demicontinuity and upper hemicontinuity
and relevant connections of the results presented in this paper with those given in earlier
works are also considered. Examples and remarks show a fundamental difference between
our results and the well-known ones.

1. Introduction

One of the most important tools of investigations in nonlinear and convex analysis is the
minimax inequality of Fan [11, Theorem 1]. There are many variations, generalizations,
and applications of this result (see, e.g., Hu and Papageorgiou [16, 17], Ricceri and Si-
mons [19], Yuan [21, 22], Zeidler [24] and the references therein). Using the partition of
unity, his minimax inequality, introducing in [10, page 236] the concept of upper demi-
continuity and giving in [11, page 108] the inwardness and outwardness conditions, Fan
initiated a new line of research in coincidence and fixed point theory of set-valued maps in
topological vector spaces, proving in [11] the general results ([11, Theorems 3–6]) which
extend and unify several well-known theorems (e.g., Browder [7], [5, Theorems 1 and 2]
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and [6, Theorems 3 and 5], Fan [6, 9], [10, Theorem 5] and [8, Theorem 1], Glicksberg
[14], Kakutani [18], Bohnenblust and Karlin [3], Halpern and Bergman [15], and others)
concerning upper semicontinuous maps and, in particular, inward and outward maps
(the condition of upper semicontinuity is stronger than that of upper demicontinuity).

Let C be a nonempty compact convex subset of a real Hausdorff topological vector
space E, let F : C→ 2E andG : C→ 2E be set-valued maps and let Φ :

⋃
c∈C(F(c)×G(c))→

E be a single-valued map. The purpose of our paper is to introduce the concepts of
the transfer positive hemicontinuity and strictly transfer positive hemicontinuity of set-
valued maps in E and prove various new results concerning the existence of zeros of Φ,
coincidences of F and G and fixed points of F in which transfer positive hemicontinu-
ity and strictly transfer positive hemicontinuity plays an important role (see Section 2).
In particular, our results generalize theorems of Fan type (e.g., [11, Theorems 3–6]) and
contain fixed point theorems for set-valued transfer positive hemicontinuous maps with
the inwardness and outwardness conditions given by Fan [11, page 108]. Transfer posi-
tive hemicontinuity and strictly transfer positive hemicontinuity generalize the Fan upper
demicontinuity. Furthermore, a new type of continuity defined here essentially gener-
alizes upper hemicontinuity (every upper demicontinuous map is upper hemicontinu-
ous). Comparisons of transfer hemicontinuity and strictly transfer positive hemiconti-
nuity with upper demicontinuity and upper hemicontinuity are given in Sections 3 and
4. The remarks, examples and comparisons of our results with Fan’s results and other re-
sults concerning coincidences and fixed points of upper hemicontinuous maps given by
Yuan et al. [22, 23] (see also the references therein) show that our theorems are new and
differ from those given by the above-mentioned authors (see Sections 2–4).

2. Transfer positive hemicontinuity, strictly transfer positive hemicontinuity,
zeros, coincidences, and fixed points

Let E be a real Hausdorff topological vector space and let E′ denote the vector space of all
continuous linear forms on E.

Let C be a nonempty subset of E. A set-valued map F : C→ 2E is a map which assigns
a unique nonempty subset F(c) ∈ 2E to each c ∈ C (here 2E denotes the family of all
nonempty subsets of E).

Definition 2.1. Let C be a nonempty subset of E, let F : C → 2E and let G : C → 2E. Let
Φ :
⋃
c∈C(F(c)×G(c))→ E be a single-valued map.

(a) We say that a pair (F,G) is Φ-transfer positive hemicontinuous (Φ-t.p.h.c.) on C if,
whenever (c,ϕc,λc)∈ C×E′ ×R and εc > 0 are such that

λc
[(
ϕc ◦Φ

)
(u,v)− (1 + εc

)
λc
]
> 0 for any (u,v)∈ F(c)×G(c), (2.1)

there exists a neighbourhood N(c) of c in C such that

λc
[(
ϕc ◦Φ

)
(u,v)− λc

]
> 0 for any x ∈N(c) and any (u,v)∈ F(x)×G(x). (2.2)
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(b) We say that a pair (F,G) is Φ-transfer hemicontinuous (Φ-t.h.c.) on C if, whenever
(c,ϕc,λc)∈ C×E′ ×R is such that

λc
[(
ϕc ◦Φ

)
(u,v)− λc

]
> 0 for any (u,v)∈ F(c)×G(c), (2.3)

there exists a neighbourhood N(c) of c in C such that

λc
[(
ϕc ◦Φ

)
(u,v)− λc

]
> 0 for any x ∈N(c) and any (u,v)∈ F(x)×G(x). (2.4)

(c) We say that a map F is Φ-t.p.h.c. or Φ-t.h.c. on C if a pair (F,IE) is Φ-t.p.h.c. or
Φ-t.h.c. on C, respectively.

(d) We say that a pair (F,G) is transfer positive hemicontinuous (t.p.h.c.) or transfer
hemicontinuous (t.h.c.) on C if (F,G) is Φ-t.p.h.c. or Φ-t.h.c. on C, respectively, for Φ of
the form Φ(u,v)= u− v where (u,v)∈ F(c)×G(c) and c ∈ C.

(e) We say that a map F is t.p.h.c. or t.h.c. on C if a pair (F,IE) is t.p.h.c. or t.h.c. on C,
respectively.

Recall that an open half-space H in E is a set of the form H = {x ∈ E : ϕ(x) < t} where
ϕ∈ E′ \ {0} and t ∈R.

Remark 2.2. The geometric meaning of the Φ-transfer positive hemicontinuity and Φ-
transfer hemicontinuity is clear.

Really define

Hc,ϕc ,λc ,εc =
{
w ∈ E : ϕc(w) <

(
1 + εc

)
λc
}

, εc ≥ 0,

Wc,ϕc ,λc ,Φ =
{
x ∈ C :

(
ϕc ◦Φ

)
(u,v) < λc for any (u,v)∈ F(x)×G(x)

}
,

Uc,ϕc ,λc ,Φ =
{
x ∈ C : sup

(u,v)∈F(x)×G(x)

(
ϕc ◦Φ

)
(u,v)≤ λc

} (2.5)

when λc < 0,

Hc,ϕc ,λc ,εc =
{
w ∈ E : ϕc(w) >

(
1 + εc

)
λc
}

, εc ≥ 0,

Wc,ϕc ,λc ,Φ =
{
x ∈ C :

(
ϕc ◦Φ

)
(u,v) > λc for any (u,v)∈ F(x)×G(x)

}
,

Uc,ϕc ,λc ,Φ =
{
x ∈ C : inf

(u,v)∈F(x)×G(x)

(
ϕc ◦Φ

)
(u,v)≥ λc

} (2.6)

when λc > 0.
By Definition 2.1, we see that the pair (F,G) is Φ-t.p.h.c. or Φ-t.h.c. on C if, when-

ever (c,ϕc,λc) ∈ C×E′ ×R and εc ≥ 0 are such that the set Φ(F(c)×G(c)) is contained
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in open half-space H(c,ϕc,λc,εc) (here εc > 0 in the case of Φ-transfer positive hemicon-
tinuity and εc = 0 in the case of Φ-transfer hemicontinuity), then the following hold:
(i) there exists a neighbourhood N(c) of c in C such that, for any x ∈ N(c), the set
Φ(F(x)×G(x)) is contained in open half-space Hc,ϕc ,λc ,0; (ii) c is an interior point of the
sets Wc,ϕc ,λc ,Φ and Uc,ϕc ,λc ,Φ. Indeed, then λc[(ϕc ◦Φ)(u,v)− λc] > 0 for any x ∈N(c) and
any (u,v)∈ F(x)×G(x).

Definition 2.3. Let C be a nonempty subset of E, let F : C → 2E and let G : C → 2E. Let
Φ :
⋃
c∈C(F(c)×G(c))→ E be a single-valued map.

(a) We say that a pair (F,G) is Φ-strictly transfer positive hemicontinuous (Φ-s.t.p.h.c.)
on C if, whenever (c,ϕc,λc)∈ C×E′ ×R and εc > 0 are such that

λc
[(
ϕc ◦Φ

)
(u,v)− (1 + εc

)
λc
]
> 0 for any (u,v)∈ F(c)×G(c), (2.7)

then c is an interior point of the set Vc,ϕc ,λc ,Φ, where

Vc,ϕc ,λc ,Φ =
{
x ∈ C : sup

(u,v)∈F(x)×G(x)

(
ϕc ◦Φ

)
(u,v) < λc

}
if λc < 0,

Vc,ϕc ,λc ,Φ =
{
x ∈ C : inf

(u,v)∈F(x)×G(x)

(
ϕc ◦Φ

)
(u,v) > λc

}
if λc > 0.

(2.8)

(b) We say that a pair (F,G) is Φ-strictly transfer hemicontinuous (Φ-s.t.h.c.) on C if,
whenever (c,ϕc,λc)∈ C×E′ ×R is such that

λc
[(
ϕc ◦Φ

)
(u,v)− λc

]
> 0 for any (u,v)∈ F(c)×G(c), (2.9)

then c is an interior point of the set Vc,ϕc ,λc ,Φ.
(c) We say that a map F is Φ-s.t.p.h.c. or Φ-s.t.h.c. on C if a pair (F,IE) is Φ-s.t.p.h.c.

or Φ-s.t.h.c. on C, respectively.
(d) We say that a pair (F,G) is strictly transfer positive hemicontinuous (s.t.p.h.c.) or

strictly transfer hemicontinuous (s.t.h.c.) on C if (F,G) is Φ-s.t.p.h.c. or Φ-s.t.h.c. on C,
respectively, for Φ of the form Φ(u,v)= u− v where (u,v)∈ F(c)×G(c) and c ∈ C.

(e) We say that a map F is s.t.p.h.c. or s.t.h.c. on C if a pair (F,IE) is s.t.p.h.c. or s.t.h.c.
on C, respectively.

Proposition 2.4. Let C be a nonempty subset of E, let F : C→ 2E and let G : C→ 2E. Let
Φ :
⋃
c∈C(F(c)×G(c))→ E be a single-valued map.

(i) If (F,G) is Φ-t.h.c. on C, then (F,G) is Φ-t.p.h.c. on C.
(ii) If (F,G) is Φ-t.p.h.c. on C and, for each x ∈ C, Φ(F(x)×G(x)) is compact, then

(F,G) is Φ-t.h.c. on C.
(iii) If (F,G) is Φ-s.t.h.c. on C, then (F,G) is Φ-s.t.p.h.c. on C.
(iv) If (F,G) is Φ-s.t.p.h.c. on C and, for each x ∈ C, Φ(F(x)×G(x)) is compact, then

(F,G) is Φ-s.t.h.c. on C.
(v) If (F,G) is Φ-s.t.p.h.c. (Φ-s.t.h.c., resp.) on C, then (F,G) is Φ-t.p.h.c. (Φ-t.h.c., resp.)

on C.
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(vi) If (F,G) is Φ-t.p.h.c. (Φ-t.h.c., resp.) on C and, for each x ∈ C, Φ(F(x)×G(x)) is
compact, then (F,G) is Φ-s.t.p.h.c. (Φ-s.t.h.c., resp.) on C.

Proof. (i) Let (F,G) be Φ-t.h.c. on C and assume that there exist (c,ϕc,λc)∈ C×E′ ×R
and εc > 0 such that λc[(ϕc ◦Φ)(u,v)− (1 + εc)λc] > 0 or, equivalently, (1 + εc)λc[(ϕc ◦
Φ)(u,v)− (1 + εc)λc] > 0 for any (u,v)∈ F(c)×G(c). Then, by Φ-transfer hemicontinu-
ity, there exists a neighbourhood N(c) of c in C such that (1 + εc)λc[(ϕc ◦Φ)(u,v)− (1 +
εc)λc] > 0 for any x ∈N(c) and any (u,v)∈ F(x)×G(x). This implies, in particular, that
λc[(ϕc ◦Φ)(u,v)− λc] > 0 for any x ∈N(c) and any (u,v)∈ F(x)×G(x), that is, (F,G) is
Φ-t.p.h.c. on C.

(ii) Let (F,G) be Φ-t.p.h.c. on C and let there exists (c,ϕc,λc)∈ C×E′ ×R such that,
for any (u,v) ∈ F(c)×G(c), λc[(ϕc ◦Φ)(u,v)− λc] > 0 or, equivalently, for any (u,v) ∈
F(c) × G(c), (ϕc ◦ Φ)(u,v) < λc if λc < 0 and (ϕc ◦ Φ)(u,v) > λc if λc > 0. Since, for
each x ∈ C, Φ(F(x) × G(x)) is compact, thus sup(u,v)∈F(c)×G(c)(ϕc ◦ Φ)(u,v) < λc if
λc < 0 and inf(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v)>λc if λc >0, so there is some εc > 0 such that
sup(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v) < (1 + εc)λc if λc < 0 and inf(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v) >
(1 + εc)λc if λc > 0. Therefore, for any (u,v)∈ F(c)×G(c), (ϕc ◦Φ)(u,v) < (1 + εc)λc if λc <
0 and (ϕc ◦Φ)(u,v) > (1 + εc)λc if λc > 0 or, equivalently, λc[(ϕc ◦Φ)(u,v)− (1 + εc)λc] > 0
for any (u,v) ∈ F(c)×G(c). Then, by Φ-transfer positive hemicontinuity, there exists a
neighbourhood N(c) of c in C such that λc[(ϕc ◦Φ)(u,v)− λc] > 0 for any x ∈N(c) and
any (u,v)∈ F(x)×G(x), that is, (F,G) is Φ-t.h.c. on C.

(iii) Let (F,G) be Φ-s.t.h.c. on C and assume that there exist (c,ϕc,λc) ∈ C× E′ ×R
and εc > 0 such that λc[(ϕc ◦Φ)(u,v)− (1 + εc)λc] > 0 or, equivalently, (1 + εc)λc[(ϕc ◦
Φ)(u,v)− (1 + εc)λc] > 0 for any (u,v)∈ F(c)×G(c). Then, by Φ-strictly transfer hemi-
continuity, c is an interior point of the set Vc,ϕc ,(1+εc)λc ,Φ. But Vc,ϕc ,(1+εc)λc ,Φ ⊂ Vc,ϕc ,λc ,Φ.
This implies, in particular, that c is an interior point of the set Vc,ϕc ,λc ,Φ, that is, (F,G) is
Φ-s.t.p.h.c. on C.

(iv) Let (F,G) be Φ-s.t.p.h.c. on C and let there exists (c,ϕc,λc)∈ C×E′ ×R such that,
for any (u,v) ∈ F(c)×G(c), λc[(ϕc ◦Φ)(u,v)− λc] > 0 or, equivalently, for any (u,v) ∈
F(c) × G(c), (ϕc ◦ Φ)(u,v) < λc if λc < 0 and (ϕc ◦ Φ)(u,v) > λc if λc > 0. Since, for
each x ∈ C, Φ(F(x) × G(x)) is compact, thus sup(u,v)∈F(c)×G(c)(ϕc ◦ Φ)(u,v) < λc if
λc < 0 and inf(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v) > λc if λc >0, so there is some εc >0 such that
sup(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v) < (1 + εc)λc if λc < 0 and inf(u,v)∈F(c)×G(c)(ϕc ◦Φ)(u,v) >
(1 + εc)λc if λc > 0. Therefore, for any (u,v)∈ F(c)×G(c), (ϕc ◦Φ)(u,v) < (1 + εc)λc if λc <
0 and (ϕc ◦Φ)(u,v) > (1 + εc)λc if λc > 0 or, equivalently, λc[(ϕc ◦Φ)(u,v)− (1 + εc)λc] > 0
for any (u,v)∈ F(c)×G(c). Then, by Φ-strictly transfer positive hemicontinuity, c is an
interior point of the set Vc,ϕc ,λc ,Φ, that is, (F,G) is Φ-s.t.p.h.c. on C.

(v) By Definitions 2.1 and 2.3 and Remark 2.2, we see that Vc,ϕc ,λc ,Φ ⊂Wc,ϕc ,λc ,Φ.
(vi) By Definition 2.1, the pair (F,G) is Φ-t.p.h.c. or Φ-t.h.c. on C if, whenever

(c,ϕc,λc) ∈ C × E′ ×R and εc ≥ 0 are such that the set Φ(F(c)×G(c)) is contained in
open half-space H(c,ϕc,λc,εc) (here εc > 0 in the case of Φ-transfer positive hemicon-
tinuity and εc = 0 in the case of Φ-transfer hemicontinuity), then there exists a neigh-
bourhood N(c) of c in C such that, for any x ∈N(c) and any (u,v)∈ F(x)×G(x), (ϕc ◦
Φ)(u,v) < λc if λc < 0 and (ϕc ◦Φ)(u,v) > λc if λc > 0. Since, for each x ∈ C, Φ(F(x)×
G(x)) is compact, thus, for each x ∈ N(c), sup(u,v)∈F(x)×G(x)(ϕc ◦Φ)(u,v) < λc if λc < 0
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and inf(u,v)∈F(x)×G(x)(ϕc ◦Φ)(u,v) > λc if λc > 0. Consequently, N(c)⊂ Vc,ϕc ,λc ,Φ, that is, c
is an interior point of the set Vc,ϕc ,λc ,Φ. �

Remark 2.5. This proves, in particular, that the condition of strictly transfer positive
hemicontinuity is stronger than that of transfer positive hemicontinuity.

Definition 2.6. Let C be a nonempty compact convex subset of E. We say that (c,ϕ) ∈
C × (E′ \ {0}) is admissible if ϕ(c) = minx∈C ϕ(x); thus if (c,ϕ) is admissible, then this
means that the closed hyperplane determined by ϕ of the form {x ∈ E : ϕ(x)= ϕ(c)} is a
supporting hyperplane of C at c.

Definition 2.7. Let C be a nonempty subset of E, let F : C → 2E and let G : C → 2E. Let
Φ :
⋃
c∈C(F(c)×G(c))→ E be a single-valued map.

(a) A pair (F,G) is called Φ-inward (Φ-outward, resp.) if, for any admissible (c,ϕ) ∈
C× (E′ \ {0}) there is a point (u,v)∈F(c)×G(c) such that (ϕ◦Φ)(u,v)≥ 0 ((ϕ◦Φ)(u,v)
≤ 0, resp.).

(b) A map F is called Φ-inward (Φ-outward, resp.) if the pair (F,IE) is Φ-inward (Φ-
outward, resp.).

(c) A pair (F,G) is called inward (outward, resp.) if the pair (F,G) is Φ-inward (Φ-
outward, resp.) for Φ of the form Φ(u,v)= u− v where (u,v)∈ F(c)×G(c) and c ∈ C.

(d) A map F is called inward (outward, resp.) (see Fan [11, page 108]) if a pair (F,IE)
is inward (outward, resp.).

Definition 2.8. Let C be a nonempty subset of E, let F : C → 2E and let G : C → 2E. Let
Φ :
⋃
c∈C(F(c)×G(c))→ E be a single-valued map.

(a) We say that a pair (F,G) has a Φ-coincidence if there exist c ∈ C and (u,v)∈ F(c)×
G(c), such that Φ(u,v)= 0, that is, (u,v)∈ F(c)×G(c) is a zero of Φ; this point c is called
a Φ-coincidence point for (F,G).

(b) We say that a map F has a Φ-fixed point (a pair (F,IE) has a Φ-coincidence) if there
exist c ∈ C and u∈ F(c), such that Φ(u,c)= 0; this point c is called a Φ-fixed point for F.

(c) We say that a pair (F,G) has a coincidence if there exist c ∈ C and (u,v) ∈ F(c)×
G(c), such that u= v; this point c is called a coincidence point for (F,G).

(d) We say that F has a fixed point if there exists c ∈ C such that c ∈ F(c); this point c
is called a fixed point for F.

With the background given, the first result of our paper can now be presented.

Theorem 2.9. Let E be a real Hausdorff topological vector space. Let C be a nonempty
compact convex subset of E, let F : C→ 2E and let G : C→ 2E. Let Φ :

⋃
c∈C(F(c)×G(c))→

E be a single-valued map.
(i) Let the pair (F,G) be Φ-t.p.h.c. on C. If (F,G) is Φ-inward or Φ-outward, then there

exists c0 ∈ C such that, for any ϕ∈ E′, there is no λ∈ R such that λ[(ϕ ◦Φ)(u,v)− λ] > 0
for all (u,v)∈ F(c0)×G(c0).

(ii) Let F be Φ-t.p.h.c. on C. If F is Φ-inward or Φ-outward, then there exists c0 ∈ C such
that, for any ϕ∈ E′, there is no λ∈R such that λ[(ϕ◦Φ)(u,c0)− λ] > 0 for all u∈ F(c0).

(iii) Let the pair (F,G) be t.p.h.c. on C. If (F,G) is inward or outward, then there exists
c0 ∈ C such that, for any ϕ ∈ E′, there is no λ ∈ R such that λ[ϕ(u− v)− λ] > 0 for all
(u,v)∈ F(c0)×G(c0).
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(iv) Let F be t.p.h.c. on C. If F is inward or outward, then there exists c0 ∈ C such that,
for any ϕ∈ E′, there is no λ∈R such that λ[ϕ(u− c0)− λ] > 0 for all u∈ F(c0).

Proof. (i) Assume that, for any admissible (c,ϕ) ∈ C × (E′ \ {0}), there exists (u,v) ∈
F(c)×G(c) such that

(ϕ◦Φ)(u,v)≥ 0 (2.10)

and assume that the assertion does not hold, that is, without loss of generality, for any
c ∈ C, there exist ϕc ∈ E′ \ {0}, λc < 0 and εc ≥ 0, such that

(
ϕc ◦Φ

)
(u,v) <

(
1 + εc

)
λc ∀(u,v)∈ F(c)×G(c). (2.11)

By Definition 2.1(a), there exists a neighbourhood N(c) of c in C such that

(
ϕc ◦Φ

)
(u,v) < λc for any x ∈N(c) and any (u,v)∈ F(x)×G(x). (2.12)

Since the family {N(c) : c ∈ C} is an open cover of a compact set C, there exists a
finite subset {c1, . . . ,cn} of C such that the family {N(cj) : j = 1,2, . . . ,n} covers C. Let
{β1, . . . ,βn} be a partition of unity with respect to this cover, that is, a finite family of real-
valued nonnegative continuous maps βj on C such that βj vanish outside N(cj) and are
less than or equal to one everywhere, 1≤ j ≤ n, and

∑n
j=1βj(c)= 1 for all c ∈ C.

Define η(c)=∑n
j=1βj(c)ϕcj for c ∈ C. Then η(c)∈ E′ for each c ∈ C. Therefore

([
η(c)

]◦Φ)(u,v) < λ (2.13)

for any c ∈ C and (u,v)∈ F(c)×G(c), where λ=max1≤ j≤n λcj < 0 since

([
η(c)

]◦Φ)(u,v)=
n∑
j=1

βj(c)
(
ϕcj ◦Φ

)
(u,v) <

n∑
j=1

βj(c)λcj . (2.14)

Let now k : C×C→R be a continuous map of the form k(c,x)= [η(c)](c− x) for (c,x)∈
C×C. Since, for each c ∈ C, the map k(c,·) is quasi-concave on C, therefore, by [11, page
103], the following minimax inequality

min
c∈C

max
x∈C

k(c,x)≤max
c∈C

k(c,c) (2.15)

holds. But k(c,c)= 0 for each c ∈ C, so there is some c0 ∈ C such that k(c0,x)≤ 0 for all
x ∈ C. Since

[
η
(
c0
)](

c0
)=min

x∈C
[
η
(
c0
)]

(x), (2.16)
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we have that (c0,η(c0))∈ C× (E′ \ {0}) is admissible and, by (2.13),

([
η
(
c0
)]◦Φ)(u,v) < λ for any (u,v)∈ F(c0

)×G(c0
)
, (2.17)

which is impossible by (2.10).
(ii)–(iv) The argumentation is analogous and will be omitted. �

Two sets X and Y in E can be strictly separated by a closed hyperplane if there exist
ϕ∈ E′ and λ∈R, such that ϕ(x) < λ < ϕ(y) for each (x, y)∈ X ×Y .

Theorem 2.9 has the following consequence.

Theorem 2.10. Let E be a real Hausdorff topological vector space. Let C be a nonempty
compact convex subset of E, let F : C→ 2E and letG : C→ 2E. LetΦ :

⋃
c∈C(F(c)×G(c))→ E

be a single-valued map.
(i) Let the pair (F,G) be Φ-t.p.h.c. on C and inward or outward. Then there exists c0 ∈ C

such that Φ(F(c0)×G(c0)) and {0} cannot be strictly separated by any closed hyperplane in
E. If, additionally, E is locally convex and, for each c ∈ C, the set Φ(F(c)×G(c)) is closed
and convex, then a pair (F,G) has a Φ-coincidence.

(ii) Let F be Φ-t.p.h.c. on C and inward or outward. Then there exists c0 ∈ C such that
Φ(F(c0)×{c0}) and {0} cannot be strictly separated by any closed hyperplane in E. If, ad-
ditionally, E is locally convex and, for each c ∈ C, the set Φ(F(c)×{c}) is closed and convex,
then a map F has a Φ-fixed point.

(iii) Let the pair (F,G) be t.p.h.c. on C and inward or outward. Then, the following hold:
(iii1) if, for each c ∈ C, at least one of the sets F(c) or G(c) is compact, then there

exists c0 ∈ C such that F(c0) and G(c0) cannot be strictly separated by any
closed hyperplane in E;

(iii2) if E is locally convex and, for each c ∈ C, the sets F(c) and G(c) are convex and
closed and at least one of them is compact, then there exists c0 ∈ C such that
F(c0) and G(c0) have a nonempty intersection.

(iv) Let F : C→ 2E be t.p.h.c. on C and inward or outward. Then, the following hold:
(iv1) there exists c0 ∈ C such that F(c0) and {c0} cannot be strictly separated by any

closed hyperplane in E;
(iv2) if E is locally convex and, for each c ∈ C, the set F(c) is closed and convex, then

there exists c0 ∈ C such that c0 ∈ F(c0).

Proof. (i) Let us observe that if we assume that the following condition holds:

(1 + ε)λ
[
(ϕ◦Φ)(u,v)− (1 + ε)λ

]
> 0 (2.18)

for some λ∈R, ϕ∈ E′ and ε ≥ 0, and for all (u,v)∈ F(c0)×G(c0), then we obtain that,
for all (u,v)∈ F(c0)×G(c0), (ϕ◦Φ)(u,v) < (1 + ε)λ≤ λ < ϕ(0) if λ < 0 and (ϕ◦Φ)(u,v) >
(1 + ε)λ≥ λ > ϕ(0) if λ > 0, that is, the sets Φ(F(c0)×G(c0)) and {0} are strictly separated
by a closed hyperplane in E.

Otherwise, assume that, for all (u,v)∈ F(c0)×G(c0), (ϕ◦Φ)(u,v) < t1 < ϕ(0) for some
t1 ∈ R or (ϕ ◦Φ)(u,v) > t2 > ϕ(0) for some t2 ∈ R. Then we obtain that, for all (u,v) ∈
F(c0)×G(c0), (ϕ ◦Φ)(u,v) < (1 + ε)λ1 < 0 where (1 + ε)λ1 = t1 or (ϕ ◦Φ)(u,v) > (1 +
ε)λ2 > 0 where (1 + ε)λ2 = t2. Therefore condition (2.18) is then satisfied.
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The above considerations, Theorem 2.9(i) and the separation theorem yield the asser-
tion.

(ii) This is a consequence of (i).
(iii) Assume, without loss of generality, that G(c0) is compact.
Let us observe that if we assume that the following condition holds:

(1 + ε)λ
[
ϕ(u− v)− (1 + ε)λ

]
> 0 (2.19)

for some λ ∈ R and ε ≥ 0 and for all (u,v)∈F(c0)×G(c0), then we obtain that, for all
(u,v)∈F(c0)×G(c0), ϕ(u) < t2 < ϕ(v) where t2 = (1 + ε)λ+ minw∈G(c0)ϕ(w) if λ < 0 and
ϕ(u) > t1 > ϕ(v) where t1 = (1 + ε)λ+ maxw∈G(c0)ϕ(w) if λ > 0, that is, the sets F(c0) and
G(c0) are strictly separated by a closed hyperplane in E.

Otherwise, assume that, for all (u,v)∈ F(c0)×G(c0), ϕ(u) > t1 > ϕ(v) for some t1 ∈R
or ϕ(u) < t2 < ϕ(v) for some t2 ∈ R. Then we obtain that, for all (u,v) ∈ F(c0)×G(c0),
ϕ(u− v) > (1 + ε)λ1 > 0 where (1 + ε)λ1 = t1−maxw∈G(c0)ϕ(w) or ϕ(u− v) < (1 + ε)λ2 < 0
where (1 + ε)λ2 = t2 −minw∈G(c0)ϕ(w), respectively. Therefore condition (2.19) is then
satisfied.

The above considerations, Theorem 2.9(iii) and the separation theorem yield the as-
sertion.

(iv) This is a consequence of (iii). �

We now prove the result under stronger condition.

Theorem 2.11. Let E be a real Hausdorff topological vector space, let C be a nonempty
compact convex subset of E and suppose that F : C→ 2E and G : C→ 2E.

(i) Denote by Φ a single-valued map of
⋃
c∈C(F(c)×G(c)) into E such that, for each

c ∈ C, Φ(F(c)×G(c)) is convex and compact and let the pair (F,G) be Φ-t.h.c. on C. Then
the following hold: (i1) either (F,G) has a Φ-coincidence or there exists λ∈ R and, for any
c ∈ C, there exists ϕc ∈ E′ such that λ[(ϕc ◦Φ)(u,v)− λ] > 0 for all (u,v) ∈ F(c)×G(c);
(i2) if the pair (F,G) is Φ-inward or Φ-outward, then (F,G) has a Φ-coincidence.

(ii) Denote by Φ a single-valued map of
⋃
c∈C(F(c)× {c}) into E such that, for each

c ∈ C, Φ(F(c)×{c}) is convex and compact and assume that F is Φ-t.h.c. on C. Then the
following hold: (ii1) either F has a Φ-fixed point or there exists λ ∈ R and, for any c ∈ C,
there exists ϕc ∈ E′ such that λ[(ϕc ◦Φ)(u,c)− λ] > 0 for all u∈ F(c); (ii2) if F is Φ-inward
or Φ-outward, then F has a Φ-fixed point.

(iii) Suppose that F(c) and G(c) are compact subsets of E and F(c)−G(c) is convex for
each c ∈ C and assume that the pair (F,G) is t.h.c. on C. Then the following hold: (iii1)
either (F,G) has a coincidence or there exists λ∈R and, for any c ∈ C, there exists ϕc ∈ E′

such that λ[ϕc(u− v)− λ] > 0 for all (u,v)∈ F(c)×G(c); (iii2) if the pair (F,G) is inward
or outward, then (F,G) has a coincidence; (iii3) either (F,G) has a coincidence or, for any
c ∈ C, the sets F(c) and G(c) are strictly separated by a closed hyperplane in E.

(iv) Suppose that F is a t.h.c. map on C such that, for each c ∈ C, F(c) is convex and
compact. Then the following hold: (iv1) either F has a fixed point or there exists λ∈R and,
for any c ∈ C, there exists ϕc ∈ E′ such that λ[ϕc(u− c)− λ] > 0 for all u∈ F(c); (iv2) if F
is inward or outward, then F has a fixed point; (iv3) either F has a fixed point or, for any
c ∈ C, the sets F(c) and {c} are strictly separated by a closed hyperplane in E.
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Proof. (i1) Assume that (F,G) has no Φ-coincidence in C. Then, for all c ∈ C, the set Dc,
Dc =Φ(F(c)×G(c)), is convex, compact and 0 /∈Dc.

For (c,w)∈ C×Dc, there exists ϕc,w ∈ E′ such that ϕc,w(w) 	= 0 and we assume, with-
out loss of generality, that, ϕc,w(w) > 0 for each (c,w)∈ C×Dc.

First, let us observe that:
(a) for each c ∈ C, there exist ϕc ∈ E′ and λc > 0, such that

(
ϕc ◦Φ

)
(u,v) > λc for any (u,v)∈ F(c)×G(c). (2.20)

Indeed, by the continuity of ϕc,w, we define a neighbourhood Mc(w) of w in Dc such that

Mc(w)⊂ {x ∈Dc : ϕc,w(x) > ϕc,w(w)/2
}
. (2.21)

Clearly, there exists a finite subset {w1, . . . ,wm} of Dc such that Mc(wi) are nonempty,
1 ≤ i ≤ n, and Dc =

⋃m
i=1Mc(wi). Let {α1, . . . ,αm} be a partition of unity with respect to

this cover, that is, a finite family of real-valued nonnegative continuous maps αi on Dc

such that αi vanish outsideMc(wi) and are less than or equal to one everywhere, 1≤ i≤m,
and

∑m
i=1αi(w)= 1 for all w ∈Dc. Define

ψc(w)=
m∑
i=1

αi(w)ϕc,wi for w ∈Dc. (2.22)

Then ψc(w)∈ E′ for each w ∈Dc.
Now, let hc :Dc×Dc →R be of the form

hc(w, y)= [ψc(w)
]
(w− y) for (w, y)∈Dc×Dc. (2.23)

Thus hc is continuous on Dc×Dc and, for each w ∈Dc, the map hc(w,·) is quasi-concave
on Dc. By [11, page 103], the following minimax inequality

min
w∈Dc

max
y∈Dc

hc(w, y)≤max
w∈Dc

hc(w,w) (2.24)

holds. But hc(w,w)= 0 for each w ∈Dc, so there is some wc ∈Dc such that hc(wc, y)≤ 0
for all y ∈Dc. Then

[
ψ
(
wc
)](

wc
)=min

y∈Dc

[
ψ
(
wc
)]

(y). (2.25)

Since wc ∈Mc(wi) for some 1≤ i≤m, therefore αi(wc) > 0 and

[
ψc
(
wc
)](

wc
)= αi(wc

)
ϕc,wi

(
wc
)≥ αi(wc

)
ϕc,wi

(
wi
)
/2 > 0. (2.26)

Consequently, we may assume that

ϕc = ψc
(
wc
)
, λc = αi

(
wc
)
ϕc,wi

(
wi
)
/4, (2.27)

where λc > 0. Thus (a) is proved.
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Using (a), since (F,G) is Φ-t.h.c. on C, we get:
(b) for each c ∈ C, there exist ϕc ∈ E′, λc > 0 and a neighbourhood N(c) of c in C, such

that

(
ϕc ◦Φ

)
(u,v) > λc for any x ∈N(c) and any (u,v)∈ F(x)×G(x). (2.28)

Now, we prove:
(c) there exists λ > 0 and, for any c ∈ C, there exists ϕc ∈ E′ such that

(
ϕc ◦Φ

)
(u,v) > λ ∀(u,v)∈ F(c)×G(c). (2.29)

Indeed, for each c ∈ C, let ϕc, λc and N(c) be as in (b). Since the family {N(c) : c ∈ C}
is an open cover of a compact set C, there exists a finite subset {c1, . . . ,cn} of C such that
the family {N(cj) : j = 1,2, . . . ,n} covers C. Let {β1, . . . ,βn} be a partition of unity with
respect to this cover, that is, a finite family of real-valued nonnegative continuous maps
βj on C such that βj vanish outside N(cj) and are less than or equal to one everywhere,
1≤ j ≤ n, and

∑n
j=1βj(c)= 1 for all c ∈ C.

Define η(c)=∑n
j=1βj(c)ϕcj for c ∈ C. Then η(c)∈ E′ for each c ∈ C.

If c ∈ C and the index j are such that βj(c) > 0, then

c ∈N(cj)⊂ {x ∈ C : ϕcj (w) > λcj ∀w ∈Dc
}
. (2.30)

Consequently, for any c ∈ C and w ∈Dc, we have

[
η(c)

]
(w)=

n∑
j=1

βj(c)ϕcj (w) >
n∑
j=1

βj(c)λcj ≥ min
1≤ j≤n

λcj , (2.31)

whence it follows that we may assume that λ= (1/2)min1≤ j≤n λcj > 0 and, for any c ∈ C,
ϕc = η(c).

(i2) First, let us observe that if k : C×C→R is a map of the form k(c,x)= [η(c)](c− x)
for (c,x)∈ C×C, where η(c) is constructed in the proof of (i1), then k is continuous on
C×C and, for each c ∈ C, the map k(c,·) is quasi-concave on C. By [11, page 103], the
following minimax inequality

min
c∈C

max
x∈C

k(c,x)≤max
c∈C

k(c,c) (2.32)

holds. But k(c,c)= 0 for each c ∈ C, so there is some c0 ∈ C such that k(c0,x)≤ 0 for all
x ∈ C. Since

[
η
(
c0
)](

c0
)=min

x∈C
[
η
(
c0
)]

(x), (2.33)

we have that (c0,η(c0))∈ C× (E′ \ {0}) is admissible.
Assume now that, for any admissible (c,ϕ)∈ C× (E′ \ {0}), there exists (u,v)∈ F(c)×

G(c) such that (ϕ ◦Φ)(u,v) ≥ 0 (or (ϕ ◦Φ)(u,v) ≤ 0) but (F,G) has no Φ-coincidence.
From assertion (i) and its proof we then have that there exists λ < 0 (or λ > 0) such that
([η(c0)]◦Φ)(u,v) < λ (or ([η(c0)]◦Φ)(u,v) > λ) for all (u,v)∈ F(c0)×G(c0). We obtain
a contradiction.
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(ii1), (ii2), (iii1) and (iii2) This is a consequence of (i).
(iii3) By (iii1), if (F,G) has no coincidence, then, for any c ∈ C and for any (u,v) ∈

F(c)×G(c), we have that ϕc(u) < λ + minw∈G(c)ϕc(w) < ϕc(v) if λ < 0, and ϕc(u) > λ +
maxw∈G(c)ϕc(w) > ϕc(v) if λ > 0.

(iv1)–(iv3) This is a consequence of (iii). �

3. Comparison of transfer positive hemicontinuity and strictly transfer positive
hemicontinuity with upper demicontinuity and upper hemicontinuity

We say that F : C→ 2E is upper semicontinuous (u.s.c.) (see Berge [2, Chapter VI]) if, for
each c ∈ C and an arbitrary neighbourhood V of F(c), there is a neighbourhood N(c) of
c in C such that F(x)⊂V for each x ∈N(c).

A map F : C→ 2E is called upper demicontinuous (u.d.c.) on C (after Fan [10]) if, for
each c ∈ C and any open half-space H in E containing F(c), there is a neighbourhood
N(c) of c in C such that F(x)⊂H for each x ∈N(c).

The upper demicontinuity for set valued maps, defined by Fan, generalizes the upper
demicontinuity studied by Browder [4] for single valued maps.

A map F : C→ 2E is called upper hemicontinuous (u.h.c.) on C (see Aubin and Ekeland
[1]) if for each ϕ∈ E′ \ {0} and any λ∈R the set

{
x ∈ C : sup

u∈F(x)
ϕ(u) < λ

}
(3.1)

is open in C.
It is clear that every u.s.c. map is u.d.c. and each u.d.c. is u.h.c.
The following result says that the conditions of upper demicontinuity and upper hemi-

continuity are stronger than that of transfer positive hemicontinuity.

Proposition 3.1. Let C be a nonempty subset of E, let F : C→ 2E and let G : C→ 2E.
(i) If F and G are u.d.c., then the pair (F,G) is t.p.h.c.
(ii) If F is u.d.c., then F is t.h.c.
(iii) If F and G are u.h.c., then the pair (F,G) is t.p.h.c.
(iv) If F is u.h.c., then F is t.p.h.c.

Proof. (i) Assume that F : C→ 2E and G : C→ 2E are u.d.c. on C and assume that there
exist (c,ϕc,λc)∈ C×E′ ×R and εc > 0, such that

λc
[
ϕc(u− v)− (1 + εc

)
λc
]
> 0 for any (u,v)∈ F(c)×G(c). (3.2)

Assume that

λc > 0, ϕc(u− v) >
(
1 + εc

)
λc for any (u,v)∈ F(c)×G(c) (3.3)

(if we replace assumption (3.3) by λc < 0 and ϕc(u− v) < (1 + εc)λc for any (u,v)∈ F(c)×
G(c), then the argumentation is analogous). Let, for some η ≥ εc,

inf
(u,v)∈F(c)×G(c)

ϕc(u− v)= (1 +η)λc (3.4)
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and let τ > 0 be such that τ < ηλc. Then there exists (u0,v0)∈ F(c)×G(c) such that

ϕc
(
u0− v0

)
< (1 +η)λc + τ/2 (3.5)

and, for any (u,v)∈ F(c)×G(c), we get

ϕc(u− v) > (1 +η)λc− τ/4. (3.6)

Hence, for any (u,v)∈ F(c)×G(c),

ϕc(u) > (1 +η)λc− τ/4 +ϕc
(
v0
)
, −ϕc(v) > (1 +η)λc− τ/4−ϕc

(
u0
)
. (3.7)

By the upper demicontinuity of F and G, there exist neighbourhoods U(c) and V(c) of c
in C such that

ϕc(u) > (1 +η)λc− τ/4 +ϕc
(
v0
)

for any u∈ F(x) and any x ∈U(c),

−ϕc(v) > (1 +η)λc− τ/4−ϕc
(
u0
)

for any v ∈G(x) and any x ∈V(c).
(3.8)

Therefore we obtain

ϕc(u− v) > 2(1 +η)λc− τ/2−ϕc
(
u0− v0

)
(3.9)

for any (u,v)∈ F(x)×G(x) and x ∈N(c) where N(c)=U(c)∩V(c). Consequently,

ϕc(u− v)≥ 2(1 +η)λc− τ/2− (1 +η)λc− τ/2= λc +ηλc− τ > λc (3.10)

for any (u,v)∈ F(x)×G(x) and x ∈N(c). The assertion has thus been proved.
(ii) Assume that F : C → 2E is u.d.c. on C, and that there exists (c,ϕc,λc) ∈ C× (E′ \

{0})× (R \ {0}) such that λc[ϕc(u− c)− λc] > 0 for any u∈ F(c).
If λc > 0, then, by the upper demicontinuity of F, there exists a neighbourhoodN(c) of

c in C such that ϕc(u) > λc +ϕc(c) or, equivalently, λc[ϕc(u− c)− λc] > 0 for any x ∈N(c)
and any u∈ F(x).

If λc < 0, then the argumentation is analogous.
(iii) Let F and G be u.h.c. on C and let there exist (c,ϕc,λc) ∈ C×E′ × (R \ {0}) and

εc > 0 such that λc[ϕc(u− v)− (1 + εc)λc] > 0 for any (u,v)∈ F(c)×G(c).
Assume that

λc > 0, ϕc(u− v) >
(
1 + εc

)
λc for any (u,v)∈ F(c)×G(c) (3.11)

(if we replace condition (3.11) by λc < 0 and ϕc(u− v) < (1 + εc)λc for any (u,v)∈ F(c)×
G(c), then the argumentation is analogous and will be omitted) and let η be such that η ≥
εc and inf(u,v)∈F(c)×G(c)ϕc(u− v)= (1 +η)λc. Assume also that τ > 0 satisfies τ < (1/3)ηλc.
Then there exists (u0,v0)∈ F(c)×G(c) such that

ϕc
(
u0− v0

)
< (1 +η)λc + τ/2. (3.12)
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Obviously ϕc(u− v) > (1 + η)λc − τ/4 for any (u,v) ∈ F(c)×G(c). Hence, in particular,
we have that ϕc(u) > (1 + η)λc − τ/4 + ϕc(v0) and −ϕc(v) > (1 + η)λc − τ/4− ϕc(u0) for
any (u,v) ∈ F(c)×G(c), that is, −ϕc(u) < −(1 + η)λc + τ/4− ϕc(v0) and ϕc(v) < −(1 +
η)λc + τ/4 +ϕc(u0) for any (u,v)∈ F(c)×G(c).

Now, let us observe that, by upper hemicontinuity, the sets U(c)= {c ∈ C : supu∈F(x)−
ϕc(u)<−(1+2η/3)λc+τ/4−ϕc(v0)} and V(c)={c∈C : supv∈G(x)ϕc(v) <−(1 + 2η/3)λc +
τ/4 +ϕc(u0)} are open in C. Of course, c ∈ U(c)∩V(c) since supu∈F(c)−ϕc(u) ≤ −(1 +
η)λc+τ/4−ϕc(v0)<−(1 + 2η/3)λc + τ/4−ϕc(v0) and supv∈G(c)ϕc(v)≤−(1 +η)λc + τ/4 +
ϕc(u0) <−(1 + 2η/3)λc + τ/4 +ϕc(u0). Hence, if we denote N(c)= U(c)∩V(c), then we
conclude that ϕc(u− v) > 2(1 + 2η/3)λc − τ/2− ϕc(u0 − v0) for any x ∈ N(c) and any
(u,v) ∈ F(x)× G(x) and, by (3.12), we obtain ϕc(u− v) > 2(1 + 2η/3)λc − τ/2− (1 +
η)λc − τ/2 = λc + ηλc/3− τ > λc since τ < (1/3)ηλc. Consequently, we have shown that
if λc > 0, then ϕc(u− v)− λc > 0 for any x ∈ N(c) and any (u,v) ∈ F(x)×G(x), that is,
λc[ϕc(u− v)− λc] > 0 for any x ∈N(c) and any (u,v)∈ F(x)×G(x). Thus the pair (F,G)
is t.p.h.c. on C.

(iv) Assume that F : C → 2E is u.h.c. on C and assume that there exist (c,ϕc,λc) ∈
C× (E′ \ {0})× (R \ {0}) and εc > 0, such that

λc
[
ϕc(u− c)−

(
1 + εc

)
λc
]
> 0 for any u∈ F(c). (3.13)

If λc < 0, then the above condition implies that ϕc(u− c) < (1 + εc)λc for any u∈ F(c),
that is, ϕc(u) < ϕc(c) + (1 + εc)λc < ϕc(c) + λc < ϕc(c) for any u ∈ F(c). Now, by upper
hemicontinuity, the set N(c)= {x ∈ C : supu∈F(x)ϕc(u) < ϕc(c) + λc} is open in C. More-
over, c ∈ N(c) since supu∈F(c)ϕc(u) ≤ ϕc(c) + (1 + εc)λc < ϕc(c) + λc. Obviously N(c) ⊂
{x ∈ C : ϕc(u) < ϕc(c) + λc,u ∈ F(x)}. This gives ϕc(u− c) < λc < 0 for any x ∈ N(c) and
any u∈ F(x), that is, λc[ϕc(u− c)− λc] > 0 for any x ∈N(c) and any u∈ F(x).

If we assume that λc > 0 and ϕc(u− c) > (1 + εc)λc for any u ∈ F(c), then, by analo-
gous argumentation, we show that there exists a neighbourhood N(c) of c in C such that
λc[ϕc(u− c)− λc] > 0 for any x ∈N(c) and any u∈ F(x).

The assertion has thus been proved. �

Remark 3.2. (a) Let the map F : C→ 2E be t.p.h.c. or t.h.c. on C. Denote

Hc,ϕc ,λc ,εc =
{
w ∈ E : ϕc(w) < ϕc(c) +

(
1 + εc

)
λc
}

, εc ≥ 0,

Wc,ϕc ,λc =
{
x ∈ C : ϕc(u) < ϕc(c) + λc for any u∈ F(x)

}
,

Uc,ϕc ,λc =
{
x ∈ C : sup

u∈F(x)
ϕc(u)≤ ϕc(c) + λc

} (3.14)

when λc < 0;

Hc,ϕc ,λc ,εc =
{
w ∈ E : ϕc(w) > ϕc(c) +

(
1 + εc

)
λc
}

, εc ≥ 0,

Wc,ϕc ,λc =
{
x ∈ C : ϕc(u) > ϕc(c) + λc for any u∈ F(x)

}
,

Uc,ϕc ,λc =
{
x ∈ C : inf

u∈F(x)
ϕc(u)≥ ϕc(c) + λc

} (3.15)
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when λc > 0. By Definition 2.1 and Remark 2.2, we see that if the set F(c) is contained in
open half-space Hc,ϕc ,λc ,εc (here εc > 0 in the case of transfer positive hemicontinuity and
εc = 0 in the case of transfer hemicontinuity), then there exists a neighbourhood N(c) of
c in C such that, for any x ∈ N(c), the set F(x) is contained in open half-space Hc,ϕc ,λc ,0

and c is an interior point of the sets of Wc,ϕc ,λc and Uc,ϕc ,λc .
This fact means that transfer positive hemicontinuity essentially generalizes upper

semicontinuity and upper demicontinuity.
(b) Let the map F : C→ 2E be s.t.p.h.c. or s.t.h.c. on C. Denote

Vc,ϕc ,λc =
{
x ∈ C : sup

u∈F(x)
ϕc(u) < ϕc(c) + λc

}
when λc < 0,

Vc,ϕc ,λc =
{
x ∈ C : inf

u∈F(x)
ϕc(u) > ϕc(c) + λc

}
when λc > 0.

(3.16)

By Definition 2.3 and Remark 2.5, we see that if the set F(c) is contained in open half-
spaceHc,ϕc ,λc ,εc (here εc > 0 in the case of stictly transfer positive hemicontinuity and εc = 0
in the case of strictly transfer hemicontinuity), then c is an interior point of the setVc,ϕc ,λc .

This fact means that strictly transfer positive hemicontinuity essentially generalizes
upper hemicontinuity.

(c) If set-valued map is compact-valued, then upper hemicontinuity implies upper
demicontinuity. If the space of set-valued map with compact-valued is compact, then the
definition of upper semicontinuity, upper demicontinuity and upper hemicontinuity are
equivalent. For more details concerning comparisons of these three concepts of continu-
ity, see, for example, Yuan et al. [20, 22, 23].

Analogous properties do not hold between upper hemicontinuity and strictly transfer
positive hemicontinuity (transfer positive hemicontinuity). Indeed, in Example 4.1 we
show that the sets C, F3(C), G3(C), F3(c) and G3(c), c ∈ C, are compact and convex and
F3 and G3 are s.t.p.h.c. and t.p.h.c. on C (thus also s.t.h.c. and t.h.c. by Proposition 2.4,
Remark 2.2 and Definitions 2.1 and 2.3) but not u.h.c. on C.

4. Examples and remarks

Let E = {x = (x1,x2) : x ∈ R2} be a normed space with the Euclidean norm ‖ · ‖ and let
C = {c = (c1,c2) ∈ E : ‖c‖ ≤ 1}. Note that if (w0,ϕ0) ∈ C× (E′ \ {0}) is admissible, then
w0 = (−α/θ,−β/θ), θ = (α2 + β2)1/2, ϕ0(c) = αc1 + βc2, c ∈ E, |α|+ |β| > 0 and ϕ0(w0) =
minc∈C ϕ0(c)=−θ.

Example 4.1. For c = (c1,c2)∈ C, define:

F1(c)=G1(c)= {x = (x1,x2
)∈ C :−1/2 < x1 < 1/2

}
if c1 = 0,

F1(c)= {x ∈ C : x2 > c2
}

, G1(c)= {x ∈ C : x2 <−c2
}

if c1 	= 0, c2 ≥ 0,

F1(c)= {x ∈ C : x2 < c2
}

, G1(c)= {x ∈ C : x2 >−c2
}

if c1 	= 0, c2 < 0;

F2(c)= Int
(
F1(c)

)
, G2(c)= Int

(
G1(c)

)
; F3(c)= F1(c), G3(c)=G1(c);

F4(c)= Int
(
F1(c)

)
, G4(c)=G1(c); F5(c)= F1(c), G5(c)=G1(c).

(4.1)
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The pair (Fi,Gi) is t.p.h.c. on C, i= 1− 5. Indeed, if (c,ϕc,λc)∈ (C \ {0})×E′ ×R and
εc > 0 are such that λc[ϕc(u− v)− (1 + εc)λc] > 0 for any (u,v)∈ Fi(c)×Gi(c), there exists
a neighbourhood Ni(c) of c in C such that λc[ϕc(u− v)− λc] > 0 for any x ∈ Ni(c) and
any (u,v)∈ Fi(x)×Gi(x), i= 1− 5.

The maps Fi andGi are t.p.h.c. on C, i= 1− 5. Indeed, if (c,ϕc,λc)∈ (C \ (0,0)),×E′ ×
R and εc > 0 are such that λc[ϕc(c− v)− (1 + εc)λc] > 0 for any v ∈ Gi(c), there exists a
neighbourhood Ni(c) of c in C such that λc[ϕc(c− v)− λc] > 0 for any x ∈Ni(c) and any
v ∈Gi(x), i= 1− 5.

The pair (Fi,Gi) and the maps Fi and Gi are not t.h.c. on C, i = 1,2,4,5. The pair
(F3,G3) and the maps F3 and G3 are t.h.c. on C.

The pair (F3,G3) is s.t.h.c. on C. Indeed, assume that (c,ϕc,λc) ∈ (C \ {0})× E′ ×R
is such that λc[ϕc(u− v)− λc] > 0 for any (u,v) ∈ F3(c)×G3(c). Since Wc,ϕc ,λc ⊂ Vc,ϕc ,λc ,
Remark 2.2 yields that c is an interior point of the set Vc,ϕc ,λc . Here Vc,ϕc ,λc = {x ∈ C :
sup(u,v)∈F3(x)×G3(x)ϕc(u− v) < λc} if λc < 0, Vc,ϕc ,λc = {x ∈ C : inf (u,v)∈F3(x)×G3(x)ϕc(u− v) >
λc} if λc > 0, Wc,ϕc ,λc = {x ∈ C : ϕc(u− v) < λc for any (u,v) ∈ F3(x)×G3(x)} if λc < 0
and Wc,ϕc ,λc = {x ∈ C : ϕc(u− v) > λc for any (u,v)∈ F3(x)×G3(x)} if λc > 0. This proves
that (F3,G3) is s.t.h.c. on C. The maps F3 and G3 are s.t.h.c. on C; the argumentation is
analogous and will be omitted.

Obviously, Fi and Gi are not u.h.c. on C, i = 1− 5. Indeed, for ϕ ∈ E′ of the form
ϕ(x)= x1, x = (x1,x2)∈ E, and λ= 2/3 we have that 0∈Ui = {x ∈ C : supu∈Fi(x)ϕ(u) < λ}
and 0∈ Vi = {x ∈ C : supv∈Gi(x)ϕ(v) < λ}. But Ui and Vi are not open in C since if N(0)
is an arbitrary and fixed neighbourhood of 0 in C, then N(0) is contained neither in Ui

nor Vi, i= 1− 5.
The pair (Fi,Gi) and the maps Fi and Gi satisfy the assumptions of Theorems 2.9(iii)

and 2.9(iv), respectively, i = 1− 5. The pair (Fi,Gi) and the maps Fi and Gi satisfy the
assumptions of Theorems 2.10(iii) and 2.10(iv), respectively, i= 3− 5. The pair (F3,G3)
and the maps F3 and G3 satisfy the assumptions of Theorems 2.11(iii) and 2.11(iv), re-
spectively.

Remark 4.2. (a) Theorems 2.10(iii2) and 2.10(iv2) includes Theorems 5 and 6 of Fan [11],
respectively; this follows from Proposition 3.1.

(b) Example 4.1 shows that Theorems 5 and 6 of Fan [11] for pairs (F3,G3) and maps
F3 and G3, respectively, hold if we replace upper demicontinuity by strictly transfer posi-
tive hemicontinuity or transfer positive hemicontinuity.

Example 4.3. Define the maps F and G as follows:

F(0)= {x = (x1,x2
)∈ Int(C) : x2 > 0

}
,

F(c)= {x ∈ Int(C) :
∣∣Arg

(
x1 + ix2

)−Arg
(
c1 + ic2

)∣∣ < π/2} if c 	= 0;

G(c)=−F(c) if c ∈ C.
(4.2)

The pair (F,G) and the maps F and G are t.p.h.c. on C, neither F nor G is not u.h.c. on C
and ϕ0(u0− v0) < 0 for each (u0,v0)∈ F(w0)×G(w0). Thus the pair (F,G) and the maps
F and G satisfy the assumptions of Theorems 2.9(iii) and 2.9(iv), respectively.
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Remark 4.4. Example 4.3 shows that Theorems 3 and 4 of Fan [11] not hold if we replace
upper demicontinuity by transfer positive hemicontinuity.

Example 4.5. For c ∈ C, let F1(c)= F(c), F2(c)= F(c) and G1(c)=G2(c)=G(c) where F
and G are defined in Example 4.3. Then the t.p.h.c. pairs (F1,G1) and (F2,G2) satisfy the
assumptions of Theorems 2.10(iii1) and 2.10(iii2), respectively, and all the maps F1, F2,
G1 and G2 are not u.h.c. on C.

Example 4.6. For c = (c1,c2)∈ C, define:

F(c)=G(c)= {x ∈ C :
∣∣x1
∣∣≤ 1/4

}
if c1 = 0;

F(c)= {x ∈ E :
∥∥(x1,x2

)− (c1,1/2
)∥∥≤ 1/2

}
if c1 	= 0;

G(c)= {x ∈ E :
∥∥(x1,x2

)− (c1,−1/2
)∥∥≤ 1/2

}
if c1 	= 0.

(4.3)

Obviously, C, F(c) andG(c), c ∈ C, are compact and convex, the pair (F,G) and the maps
F and G are t.h.c. on C, and u0 = v0 = (−α/θ,0) ∈ F(w0)∩G(w0), ϕ0(u0 − v0) = 0 and
ϕ0(u0−w0)= ϕ0(v0−w0)= β2/θ2 ≥ 0.

All the assumptions of Theorems 2.11(iii3) and 2.11(iv3) for the pair (F,G) and for the
maps F and G, respectively, are satisfied, each c ∈ C is a coincidence for (F,G) and each
c ∈ C is a fixed point of F or G.

Obviously, neither F nor G is not u.h.c. on C. Indeed, for ϕ ∈ E′ of the form ϕ(x) =
x1, x = (x1,x2) ∈ E, and λ = 1/2 we have that 0 ∈ U = {x ∈ C : supu∈F(x)ϕ(u) < λ} and
0∈ V = {x ∈ C : supv∈G(x)ϕ(v) < λ}. But U and V are not open in C since if N(0) is an
arbitrary and fixed neighbourhood of 0 in C, then N(0) is contained neither in U nor V .

Example 4.7. For c = (c1,c2)∈ C, define G(c)=−F(c) where

F(0)= {x ∈ C :
∣∣x1
∣∣ < 1/2

}
,

F(c)= {x = (x1,x2
)∈ C :

∣∣Arg
(
x1 + ix2

)−Arg
(
c1 + ic2

)∣∣ < π/4 if c 	= 0
}
.

(4.4)

The pair (F,G) and the maps F andG are t.p.h.c. on C,w0 ∈ F(w0) and ϕ0(w)≥ ϕ0(w0)=
−θ for all w ∈ F(w0)∪G(w0). Thus (F,G) satisfies the assumptions of Theorem 2.9(iii)
and F satisfies the assumptions of Theorem 2.10(iv1).

Obviously, neither F norG is not u.h.c. on C. Indeed, for ϕ∈ E′ of the form ϕ(x)= x1,
x = (x1,x2) ∈ E, and λ = 21/2/2 we have that 0 ∈ U = {x ∈ C : supu∈F(x)ϕ(u) < λ} and
0∈ V = {x ∈ C : supv∈G(x)ϕ(v) < λ}. But U and V are not open in C since if N(0) is an
arbitrary and fixed neighbourhood of 0 in C, then N(0) is contained neither in U nor V .

Remark 4.8. Our theorems concern maps which satisfy a more general condition of con-
tinuity than those existing in a large literature; cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24] (see also references therein).
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