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Copyright © 2006 Y. Q. Chen et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In 1929, the KKM map was introduced by Knaster et al. [13] and it provides the founda-
tion for many well-known existence results, such as Ky Fan’s minimax inequality the-
orem, Ky Fan-Browder’s fixed point theorem, Nash’s equilibrium theorem, Hartman-
Stampacchia’s variational inequality theorem and many others (see [1, 2, 5–12, 14–17]).
The central idea of applying KKM theory to prove that a family of sets has nonempty
intersection is to find a suitable space and a mapping defined on that space such that this
mapping is a KKM mapping and the original family of sets has finite intersection prop-
erty provided the resulted family of sets by this mapping has finite intersection property.
Based this idea, we first introduce a large class of mappings that can be interpreted as
KKM mappings, then we apply the KKM technique to study fixed point theory, minimax
inequality and coincidence theorem. A new concept on lower (upper) semi-continuous
function is given and some new results on Fan-Browder’s fixed point theorem, Fan’s min-
imax theorem and coincidence theorem are obtained.

2. The KKM maps

In the sequel, let X be a set and 2X be the collection of nonempty subsets of X . To begin
our results, let us first recall the following definition.

Definition 2.1. Let E be a subset of topological vector space X . A map G : E→ 2X is called
a KKM map if
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co
{
x1,x2, . . . ,xn

}⊆
n⋃

i=1

G
(
xi
)

(2.1)

for xi ∈ E, i= 1,2, . . . ,n.

Definition 2.2. Let E be a set and X be a topological space. A map G : E→ 2X is called
a map with the KKM property if there exists a topological vector space Y such that, for
any {xi : 1 ≤ i ≤ n} ⊆ E, there exist F = {yi : 1 ≤ i ≤ n} ⊆ Y , a closed (or closed under
appropriate topology) mapping L : X → Y or 2Y , that is, maps closed set to closed set, and
G′ : F → 2X with G′(yi)⊆G(xi) for i= 1,2, . . . ,n such that the composition mapping LG′ :
F → 2Y defined by LG′( f )=∪x∈G′( f )L(x) for f ∈ F is a KKM map and∩n

i=1LG
′(yi) 	= ∅

implies that ∩n
i=1G(xi) 	= ∅.

Remark 2.3. Definition 2.2 simply says that the map G has the KKM property if G or the
part of G can be mapped onto another space such that the composite map is a KKM map.
One can easily check that the generalized KKM map in [4, 18] is a map with the KKM
property.

In the following, we give some examples of maps with the KKM property.

Example 2.4. Let E = [0,1] be the closed interval of R, X = R, and let G : E→ 2X be a
map with G(x)= (1,2 + x) for x ∈ E. For any (xi)⊂ [0,1], i= 1,2, . . . ,n, put yi = 3/2 + xi,
F = {y1, y2, . . . , yn}, Y = R, and define G′ : F → 2Y by G′(yi)= [3/2,7/4 + xi]. Take L as the
identity mapping on R. Then the map LG′ = G′ is a KKM map and so G is a map with
the KKM property.

Example 2.5. Let φ : [0,∞)→ R be the convex function defined by

φ(x)=
⎧
⎨

⎩
1 if x = 0,

(x− 1)2− 1 if x > 0.
(2.2)

Define G : [0,∞)→ 2R by G(x) = {y : φ(y) ≤ φ(x)}. It is easy to see that φ is not lower
semi-continuous at 0 and so G(2) = {y : φ(y) ≤ φ(2)} is not closed. For {xi : 1 ≤ i ≤
n} ⊂ [0,∞), if φ(xi) < 0 or φ(xi) ≥ 1, we set yi = xi, otherwise, set yi = xi/2. Put F =
{y1, y2, . . . , yn}, X = Y = R, and define G : F → 2X by G′(yi)= {y : φ(y)≤ φ(yi)}. Take L
as the identity mapping on R. Then LG′ =G′ is a KKM map on F = {yi : 1≤ i≤ n}, thus
G is a map with the KKM property.

The following results are direct consequences of the KKM theorem.

Theorem 2.6. Let X be a topological space and E be a set. Suppose thatG : E→ 2X is a closed
valued map with the KKM property. Then {G(x)}x∈E has a finite intersection property.

Theorem 2.7 (Ky Fan’s theorem). Let X be a topological space and E be a subset of X . If
G : E→ 2X is a closed valued map with the KKM property and there is a set G(x) such that
G(x) is compact. Then ∩x∈EG(x) 	= ∅.
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3. Fan-Browder’s fixed point theorem without compactness condition

The following result is a generalization of Fan-Browder’s fixed point theorem without
compactness condition.

Theorem 3.1 (Fan-Browder’s fixed point theorem). Let E be a convex subset of a vector
space X and G : E→ 2E be a map satisfying the following conditions:

(1) there exists {yi : 1 ≤ i ≤ n} ⊂ E such that co{yi : 1 ≤ i ≤ n} ⊆ ∪n
i=1G

−1(yi) and
G−1(yi)∩ co{yi : 1≤ i≤ n} is open in co{yi : 1≤ i≤ n} with co{yi : 1≤ i≤ n} in-
herited with the Euclidean topology, where G−1(y)= {x ∈ E : y ∈G(x)};

(2) G(y) is convex for all y ∈ E.
Then G has a fixed point.

Proof. Let F = {yi : 1≤ i≤ n}. Define a map K : F → 2coF by

K
(
yi
)= coF \G−1(yi

)⋂
coF (3.1)

for i = 1,2, . . . ,n. We may assume that K(yi) 	= ∅ for i = 1,2, . . . . (Otherwise, K(yi) =∅
for some i and so we have coF ⊂G−1(yi). Thus yi is a fixed point of G, and the conclusion
holds.) One can easily see that

n⋂

i=1

K
(
yi
)= coF \

n⋃

i=1

G−1(yi
)⋂

coF. (3.2)

By assumption (1), we have∩n
i=1K(yi)=∅. In view of Theorem 2.6, K cannot be a KKM

map on {yi : 1 ≤ i ≤ n}. Hence there exist yi1 , yi2 , . . . , yik such that co{yi1 , yi2 , . . . , yik} �
∪k

j=1K(yij ), that is, there exists y ∈ co{yi1 , yi2 , . . . , yik} such that y /∈ K(yij ) for j = 1,2, . . . ,
k. Thus we have

y ∈G−1(yij
)
, j = 1,2, . . . ,k, (3.3)

that is, yij ∈ G(y) for j = 1,2, . . . ,k and the convexity of G(y) immediately implies that
y ∈G(y). This completes the proof. �

Remark 3.2. Theorem 3.1 only requires the intersection G−1(y)∩ coF for y ∈ F is rela-
tively open in the convex hull of some finite subset F of E and also E is not compact, which
is different to the result in [3]. See also Theorem 1.2 on page 143 of Granas-Dugundji’s
book [11].

Example 3.3. Let E = (0,1) and a map T : E→ 2E be defined by

Tx =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x,x+

1
2

)
if x ∈

(
0,

1
2

)
,

(
1
3

,x+
1
4

)
if x ∈

[
1
2

,
3
4

]
,

(
x− 1

2
,x
)

otherwise.

(3.4)
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It is obvious that E is not compact and Tx is convex for all x ∈ E. Put y1 = 1/2 and
y2 = 3/4. Then it follows that

co
{
y1, y2

}=
[

1
2

,
3
4

]
⊂ T−1y1

⋃
T−1y2,

T−1 1
2

⋂[
1
2

,
3
4

]
=
[

1
2

,
3
4

]
,

T−1 3
4

⋂[
1
2

,
3
4

]
=
(

1
2

,
3
4

]

(3.5)

are open in [1/2,3/4]. Therefore, the map T satisfies the conditions of Theorem 2.6.

Corollary 3.4. Let C be a nonempty convex subset of a topological vector space E and
V be an open convex subset with 0 ∈ V . Suppose that a map T : C→ E is continuous and
T(C) ⊂ ∪n

i=1{yi + V}, where yi ∈ C for i = 1,2, . . . ,n. Then there exists x0 ∈ C such that
Tx0 ∈ x0 +V .

Proof. Let a map G : C→ 2C be defined by

G(x)= {y ∈ C : Tx− y ∈V}. (3.6)

Then G(x) is convex for all x ∈ C since V is convex. The continuity of T implies that
G−1(yi) is open. Moreover, C =∪n

i=1G
−1(yi) and thus

co
{
y1, y2, . . . , yn

}⊆
n⋃

i=1

G−1(yi
)
. (3.7)

Therefore, by Theorem 3.1, we know that there exists x0 ∈ C such that x0 ∈ G(x0). This
implies that Tx0 ∈ x0 +V . �

Corollary 3.5. Let C be a nonempty convex subset of a locally convex space E and K be a
convex compact subset of E. Suppose that T : C→ E is continuous and T(C)⊂∪n

i=1{yi +K},
where yi ∈ C for i= 1,2, . . . ,n. Then there is an x0 ∈ C such that Tx0 ∈ x0 +K .

4. Coincidence theorem and minimax theorem

Theorem 4.1 (Ky Fan’s coincidence theorem). Let X and Y be nonempty convex subsets of
topological vector spaces E and F, respectively. Let A,B : X → 2Y be two maps satisfying the
following conditions:

(1) there exists xi ∈ X such that Axi is open for i= 1,2, . . . ,n, Y =∪n
i=1Axi and A−1y is a

convex set for each y ∈ Y ;
(2) there exists yj ∈ y such that B−1yj is open for j = 1,2, . . . ,m, X =∪m

j=1B
−1yj and Bx

is a convex set for each x ∈ Y .
Then there exists x0 ∈ X such that Ax0∩Bx0 	= ∅.

Proof. Let a map K : X ×Y → 2X×Y be defined by

K(x, y)= X ×Y \ (B−1y×Ax
)

(4.1)
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for all (x, y)∈ X ×Y . By the assumptions, we have

X ×Y =
n⋃

i=1

m⋃

j=1

(
B−1yj ×Axi

)
. (4.2)

Therefore, we have

n⋂

i=1

m⋂

j=1

K
(
xi, yj

)=∅. (4.3)

In view of Theorem 2.6, we know that K cannot be a KKM map on {xi : 1≤ i≤ n}×{yj :
1≤ j ≤m}. So there exist x0,xi1 ,xi2 , . . . ,xil and y0, yj1 , yj2 , . . . , yjk such that x0 ∈ co{xi1 ,xi2 ,
. . . ,xil}, y0 ∈ co{yj1 , yj2 , . . . , yjk} and

(
x0, y0

)
/∈

l⋃

s=1

k⋃

t=1

K
(
xis , yjt

)
, (4.4)

which implies that

(
x0, y0

)∈ (B−1yjt ×Axis
)

(4.5)

for s= 1, . . . , l and t = 1,2, . . . ,k. By the convexities of A−1x and By, we have y0 ∈Ax0 and
y0 ∈ Bx0. This completes the proof. �

Remark 4.2. The classical Ky Fan’s coincidence theorem assume that both X and Y are
compact. See Theorem 3.12 in Singh-Watson-Srivastava’s book [15]. We do not require
this condition in Theorem 4.1.

Definition 4.3. Let X be a topological space. A function f : X → R is said to be lower semi-
continuous from above at x0 if, for any net (xt)t∈T with xt → x0, f (xt′) ≤ f (xt) for t′ ≥ t
implies that f (x0) ≤ limt f (xt). Similarly, f is said to upper semi-continuous from below
at x0 if, for any net (xt)t∈T with xt → x0, f (xt) ≤ f (xt′) for t ≤ t′ implies that f (x0) ≤
limt f (xt).

One can easily see that a lower (resp., upper) semi-continuous function is also a lower
(resp., upper) semi-continuous from above (resp., below) function.

The following example shows that the converse is not true.

Example 4.4. Let a function f : R→ R be defined by

f (x)=
⎧
⎨

⎩
x+ 1 if x ≥ 0,

x if x < 0.
(4.6)

Since R is a metric space, we consider a sequence {xn} such that xn → 0 with f (x1) ≥
f (x2)≥ ··· ≥ f (xn)≥ ··· . Then, by the definition of f (x), we know that xn ≥ 0 for all
n≥ 1. Therefore, it follows that

lim
n→∞ f

(
xn
)= 1= f (0) (4.7)
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and so f is lower semi-continuous from above at 0. If we take xn =−1/n, then we have

lim
n→∞ f

(
xn
)= 0 < f (0) (4.8)

and so f cannot be lower semi-continuous at 0.

Lemma 4.5. Let X be a compact topological space and f : X → R be a real valued function.
If f is lower semi-continuous from above (resp., upper semi-continuous from below), then
there exists x0 ∈ X such that f (x0)=minx∈X f (x) (resp., f (x0)=maxx∈X f (x)).

Proof. Assume that f is lower semi-continuous from above on X . There exists a net (yt)⊂
C such that f (yt′)≤ f (yt) if t′ ≥ t and f (yt)→ inf y∈C f (y). Since C is compact, without
loss of generality, we may assume that yt → y0. By the lower semi-continuity from above
of f (y), we have f (y0)≤ limt f (yt) and so f (y0)= inf y∈C f (y). The proof of upper semi-
continuous from below case is similar and hence we omit the detail. This completes the
proof. �

Theorem 4.6 (von Neuman’s minimax principle). Let X and Y be two nonempty compact
convex subsets of topological vector spaces E and F, respectively. Suppose that f : X ×Y → R
is a real valued function satisfying the following conditions:

(1) y → f (x, y) is lower semi-continuous from above and quasi convex for each fixed
x ∈ X , that is, {y : f (x, y) < r} is convex for each x ∈ X ;

(2) x → f (x, y) is upper semi-continuous from below and quasi concave for each fixed
y ∈ Y , that is, {x : f (x, y) > r} is convex for each y ∈ Y ;

(3) for each r ∈ R, there exist xi, i = 1,2, . . . ,n, such that Ai = {y : f (xi, y) > r} is open
and Y =∪n

i=1Ai;
(4) for each r ∈ R, there exist yj , j = 1,2, . . . ,m, such that Bj = {x : f (x, yj) < r} is open

and X =∪m
j=1Bj .

Then maxx∈X miny∈Y f (x, y)=miny∈Y maxx∈X f (x, y).

Proof. By the assumptions (1), (2) and Lemma 4.5, we know that maxx∈X miny∈Y f (x, y)
and miny∈Y maxx∈X f (x, y) both exist. It is obviously that

max
x∈X

min
y∈Y

f (x, y)≤min
y∈Y

max
x∈X

f (x, y). (4.9)

Now we show that

max
x∈X

min
y∈Y

f (x, y)=min
y∈Y

max
x∈X

f (x, y). (4.10)

If this is not true, then there would be a number r ∈ R such that

max
x∈X

min
y∈Y

f (x, y) < r < min
y∈Y

max
x∈X

f (x, y). (4.11)

Define two maps A,B : X → 2Y by Ax = {y : f (x, y) > r} and Bx = {y : f (x, y) < r} for
x ∈ X . It is obvious that

Y =
n⋃

i=1

Axi, X =
m⋃

j=1

B−1yj . (4.12)
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It is direct to check that A−1y is convex for y ∈ Y and Bx is convex for each x ∈ X and,
by Theorem 4.1, there exists x0 ∈ X and y0 ∈ Y such that y0 ∈Ax0∩Bx0 	= ∅. Hence we
have f (x0, y0) < r < f (x0, y0), which is a contradiction. This completes the proof. �

Theorem 4.7 (Ky Fan’s minimax inequality). Let C be a compact convex subset of a topo-
logical vector space X . Let f : C×C → R be a real valued function satisfying the following
conditions:

(1) supx∈C f (x, y) is lower semi-continuous from above on C;
(2) {y : f (x, y)≤ supx∈C f (x,x)} is closed for each x ∈ C;
(3) x→ f (x, y) is quasi-concave on C for each y ∈ C.

Then miny∈C supx∈C f (x, y)≤ supx∈C f (x,x).

Proof. By Lemma 4.5, we know that supx∈C f (x, y) obtains its minimum on C.
Now, we may assume that supx∈C f (x,x)= μ <∞. Define a map G : C→ 2C by

G(x)= {y ∈ C : f (x, y)≤ μ
}

(4.13)

for all x ∈ C. The quasi-concavity of x→ f (x, y) on C for each y ∈ C implies that G is a
KKM map. By the assumption (2), we know that G(x) is compact. Therefore, it follows
from Theorem 2.7 that ∩x∈CG(x) 	= ∅, thus there exists y0 ∈ C such that y0 ∈ G(x) for
all x ∈ C, that is, f (x, y0)≤ μ for all x ∈ C. This immediately implies that

min
y∈C

sup
x∈C

f (x, y)≤ sup
x∈C

f (x,x). (4.14)

�

To end this paper, we give a function f which satisfies all the conditions of Theorem
4.6.

Example 4.8. Let a function f : [0,1]× [0,1]→ R be defined by

f (x, y)=
⎧
⎨

⎩
x+ y if y ∈ [0,1),

x+ 2 if y = 1.
(4.15)

Then we have

sup
x∈[0,1]

f (x, y)=
⎧
⎨

⎩
1 + y if y ∈ [0,1),

3 if y = 1.
(4.16)

Thus it follows that supx∈[0,1] f (x, y) is not lower semi-continuous, but lower semi-
continuous from above. It is obvious that the set

{
y : f (x, y)≤ sup

x∈[0,1]
f (x,x)= 3

}
= [0,1] (4.17)
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is closed and

{
x : f (x,1) > r

}= {x : x > r− 2
}

,
{
x : f (x, y) > r

}= {x : x > r− y} (4.18)

for all y ∈ [0,1) are convex sets, that is, x→ f (x, y) is quasi-concave on C for each y ∈ C.
Therefore, the function f satisfies all the conditions of Theorem 4.6.
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