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Let X be a closed subset of a Banach space and G an ultimately nonexpansive commuta-
tive semigroup of continuous selfmappings. If the G-closure of X is nonempty, then the
closure of the orbit of any G-closure point is a commutative topological group.
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1. Introduction

Let (X,d) be a metric space. A mapping f : X — X is called nonexpansive if for every
x,y € X, we have d(f (x), f(y)) < d(x, y). Edelstein introduced in [2] the concept of f-
closure points for nonexpansive mappings and proved that a nonexpansive mapping of
E" admits a fixed point if it has a nonempty set of f-closure points (points which are
cluster points of { f"(x)} for some x € X).

When G is a family of mappings g : X — X forming a semigroup under composition,
the notion of G-closure points of X was introduced in [5] to generalize the concept of
f-closure point. A G-closure point x of X is a cluster point of an orbit G(z) for some
z € X. The study of f-closure points sets (called w-limit sets in [1, 7]), orbits, and G-
closure points (e.g., [3, 4, 6]) has since been of great interest in the fixed points theorems
for various contractive-type mappings. In [7], Roehrig and Sine showed that when Cis a
closed set in a Banach space B and f : C — C a nonexpansive mapping, suppose for some
x € C, the w-limit set S (i.e., the set of f-closure points) of x is nonempty, then there
exists a binary operation in the set S under which it is a monothetic topological group
in the topology induced by the metric of B. It is the purpose of this paper to show that
when G is a commutative ultimately nonexpansive semigroup of mappings (a concept
introduced by Edelstein and the author in [3, 4]) of a closed subset X of a Banach space
into itself and if there is a G-closure point z € X, then there exists a binary operation in
the closure of the orbit of z such that it is a commutative topological group.
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2 G-closure points of ultimately nonexpansive mappings

2. Definitions and notations

Definition 2.1. Let (X,d) be a metric space and G : X — X a semigroup of mappings. For
any x € X, the set G(x) = {g(x) : g € G} is called the orbit of x under G.

Definition 2.2. A semigroup of selfmappings G of a metric space (X, d) is called asymp-
totically nonexpansive if for all x, y € X there exists g € G such that forall f € G, d(fg(x),

fg(y) <d(x,y).

Definition 2.3. A semigroup G of continuous selfmappings of a metric space (X,d) is
called ultimately nonexpansive if for every pair of points x,y € X and for every a >0
thereis ¢ € Gsuch thatforall f € G, d(fg(x), fg(y)) < (1+a)d(x,y). (Whena =0, Gis
asymptotically nonexpansive.)

Definition 2.4. Let f : (X,d) — (X,d). Then the w-limit set of x (denoted by w(x) in [1, 7])
or the f-closure of x (denoted by X/ in [2]) is the set

{yex;y: limf”(x)}, (2.1)

neN;
where N is a strictly increasing sequence in Z*.

Definition 2.5. Let G be a family of mappings of (X,d) into itself. The G-closure of X
consists of all points x € X such that for some z € X, any ¢ >0, and any f € G, thereisa
g € Gsuch that d(fg(z),x) < &. The G-closure of X is denoted by X©.

Definition 2.6. A point x of (X,d) is called G-recurrent (or recurrent under G) if for any
e>0andany f € G, thereisa g € G such that d(fg(x),x) <e.
3. Preliminaries

In the following, G is a family of ultimately nonexpansive commutative semigroups of
continuous mappings of a metric space (X, d) into itself.

ProposITION 3.1. If XC # @ and z € X©, then forall f € G, forall e >0, there existsg € G
with d(fg(z),z) < e.

Proof. See [3, Proposition 1(a)]. O

PrOPOSITION 3.2. If z € X©, then Glg(,) is a family of asymptotically nonexpansive map-
pings.
Proof. See [3, Proposition 2(a)]. O

PrOPOSITION 3.3. Ifz € XC, then Glg(,) is a family of isometries.

Proof. By Proposition 3.2, Glg(,) is a family of asymptotically nonexpansive mappings.
By a result of Holmes and Narayanaswami (see [5, Proposition 2]), Glg(,) is a family of
isometries. 0
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CoRroOLLARY 3.4. Ifz € X, then Glg; is a family of isometries.
Proof. Obvious. O

ProPOSITION 3.5. When (X,d) is complete and z € X, then for each f € G, f(G(z)) =
G(z). That is, each f is an onto mapping when restricted to G(z).

Proof. For each f € G, cearly fG(z) € fG(z) = G(z) since f is continuous. It suffices to
show that G(z) € fG(z). Let p € G(z). Then for all € = 1/n, there exists g, € G such that
d(ga(2), p) < Do

Since z € X©, for the above f and g,, there exists ¢, corresponding to fg, such that
d(fgnta(z),z) < 1/2n. By Proposition 3.3, each member in G is an isometry on G(z).
Hence d(fgngntn(2), p) < d(fgngntn(2),gn(2)) +d(gn(2),p) < 1/2n+1/2n = 1/n. Let h, =
Zngntn. Then for each ¢ = 1/n, there exists h, € G such that d(fh,(z),p) < 1/n. Now
{fhu(2)} converges to p implies that {h,(z)} is a Cauchy sequence since f is an isometry.
Since X is complete {h,(2)}, converges to a point g € G(2).

Clearly f(q) = f(lim,~ h,(2)) = lim, . fh,(z) = p, showing that G(z) = f@ O

PrOPOSITION 3.6. For each f € G, f gy is a homeomorphism.

Proof. By the corollary to Propositions 3.3 and 3.5, each f is an isometry of G(z) onto
itself. Hence, each f is a homeomorphism. O

4. Main result

TueoreM 4.1. Let X be a closed subset of a Banach space and let G : X — X be a commuta-
tive semigroup (under composition) of ultimately nonexpansive mappings. If X° + @ and z
is any arbitrary member in X, then a binary operation can be introduced in G(z) such that
G(z2) is a commutative topological group in the topology induced by the metric of X.

Proof. By Proposition 3.6, each f € G is an isometry and therefore a homeomorphism
of G(z) onto itself. Hence, the inverse of each f € G exists. Let f~! denote the inverse of
f. By Proposition 3.1, since z € X9, for each € = 1/n, for the above f, there exists f, € G
such that d(f f,(2),z) < 1/n. Denote g, = f f,. We have lim, . g,(2z) = z. Let p,q € G(2).
Then there exist h, € G and t, € G such that lim,_ h,(z) = p and lim,_ t,(2) = q.
Denote hf = h,g, ! and t} = t,g,'. Then h, = h}g, and t,, = t} gn

Define g o p = lim, .« t;f g,h; (z). This limit exists since each member of G is an isom-
etry. It is also unique. Clearly g o p € G(z). The following results are immediate:

(1) the operation o is associative,
(2) z is the identity of G(z) (since z o p =lim,—w g gnh (z) = lim,_« h,(z) = p),
(3) go p = pogsince G is commutative.

If p = limy—co hy(2) = lim,—. h}gn(2), define p~! = lim,— g, (h}) ! (2). This limit ex-
ists as each member of G is an isometry; clearly p~! o p = lim,_(h}) " g,hi(2) =z =
po p~'. Hence G(z) is a commutative group.

Next, let p; — p and q; — g, where p;,qi, p,q € G(z). Then there exist h;, and t;, such
that lim, e his(2) = pi and lim, .« t;,(z) = qi. Denote hj, = hi,g,' and £, = t;.g, '
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Then (t,)"! = gut;,). Since (£f)7! = gut,!, 7! = limy_w gu(t)"'(2), and g;' =
limy,— 0 gu(t,) "1 (2), we have

lpieqi —peq il <llaitepi—q " opll+llpiog —pogq'll
= [|tim ()" guhi(2) ~ lim (1) "' ()|
+[1im it () @) = lim () @)

@

= |[lim g, (£,) ' (2) ~ lim g, (£) "

+ || lim it (2) = lim i (2)]| (4.1)
= |[1im g, (£,) ™" (2) = lim gu (£7) ' (2)|

+ ||lim gy (2) - lim hgy ' (2)]|
= llg " = q |+ [lim hi(2) = lim B (2)|

=llair" = 'l +llp: = pll,

since all mappings are isometries.

Asi— oo, |lg;' —q 'l and || p; — pll become arbitrarily small, so [|p;og;' — pogq~ !l
approaches zero. Hence the operation o is continuous in both variables and G(z) is a
topological group. O
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