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A new class of generalized nonlinear variational inclusions involving (A, #)-monotone
mappings in the framework of Hilbert spaces is introduced and then based on the gen-
eralized resolvent operator technique associated with (A,#)-monotonicity, the approxi-
mation solvability of solutions using an iterative algorithm is investigated. Since (A,7)-
monotonicity generalizes A-monotonicity and H-monotonicity, results obtained in this
paper improve and extend many others.
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1. Introduction and preliminaries

Variational inequalities and variational inclusions are among the most interesting and
important mathematical problems and have been studied intensively in the past years
since they have wide applications in mechanics, physics, optimization and control, non-
linear programming, economics and transportation equilibrium, engineering sciences,
and so on. There exists a vast literature [1-6] on the approximation solvability of nonlin-
ear variational inequalities as well as nonlinear variational inclusions using projection-
type methods, resolvent-operator-type methods, or averaging techniques. In most of the
resolvent operator methods, the maximal monotonicity has played a key role, but more
recently introduced notions of A-monotonicity [4] and H-monotonicity [1, 2] have not
only generalized the maximal monotonicity, but gave a new edge to resolvent operator
methods.

Recently, Verma [5] generalized the recently introduced and studied notion of A-
monotonicity to the case of (A,7)-monotonicity. Furthermore, these developments added
a new dimension to the existing notion of the maximal monotonicity and its applications
to several other fields such as convex programming and variational inclusions.



2 Fixed Point Theory and Applications

In this paper, we explore the approximation solvability of a generalized class of non-
linear variational inclusion problems based on (A, #)-resolvent operator techniques.

Now, we explore some basic properties derived from the notion of (4,#)-monotonicity.

Let H denote a real Hilbert space with the norm ||-]| and inner product (-,-). Let 7 :
H x H : —H be a single-valued mapping. The mapping 7 is called 7-Lipschitz continuous
if there is a constant 7 > 0 such that ||#(u,v)|| < llty —v|l for all u,v € H.

Definition 1.1. Let n: H X H—H be a single-valued mapping and M : H—2H be a multi-
valued mapping on H.
(i) The mapping M is said to be (r,7)-strongly monotone if

(w* =v*n(u,v)) =rllu—vl, ¥Y(wu*), (v,v*) € Graph(M), (1.1)

(ii) the mapping M is said to be (m,#)-relaxed monotone if there exists a positive
constant m such that

(u* —v*,n(uv)) = —mllu—vll’, V(u,u*), (v,v*) € Graph(M). (1.2)

Definition 1.2 [3]. A mapping M : H—2H is said to be maximal (m,#)-relaxed monotone
if
(i) M is (m,#n)-relaxed monotone,
(ii) for (u,u™) € H xH and (u* —v*,n(u,v)) >—m||lu—v||? forall (v,v*) €Graph (M),
and u* € M(u).

Definition 1.3 [3]. Let A: H—H and n: H X H—H be two single-valued mappings. The
mapping M : H—2! is said to be (A,7)-monotone if
(i) M is (m,#n)-relaxed monotone,
(ii) R(A+pM) = H for p > 0.
Note that, alternatively, the mapping M : H—2H is said to be (A,#)-monotone if
(i) M is (m,#n)-relaxed monotone,
(ii) A+ pM is y-pseudomonotone for p > 0.

Remark 1.4. The (A,n)-monotonicity generalizes the notion of the A-monotonicity in-
troduced by Verma [4] and the H-monotonicity introduced by Fang and Huang [1, 2].

Definition 1.5. Let A: H—H be an (r,%)-strong monotone mapping and M : H—H be
an (A, n)-monotone mapping. Then the generalized resolvent operator ]ffj, :H—H isde-
fined by Jy; (1) = (A+pM) " (u) forall u € H.

Definition 1.6. The mapping T : H X H is said to be relaxed (a, 3)-cocoercive with respect
to A in the first argument if there exist two positive constants «, 8 such that

(T(x,u) — T(y,u),Ax — Ay) = (—a) I T (x,u) — T(y,u)ll2 +/3||xfy||2, Vx,y,u € H.
(1.3)

ProrosrTioN 1.7 [5]. Let 11 : H X —H be a single-valued mapping, A : H—H be an (r,1)-
strongly monotone mapping and M : H—2H an (A, n)-monotone mapping. Then the map-
ping (A+pM)~" is single-valued.



Yeol Je Choetal. 3

2. Results on algorithmic convergence analysis

Let N:H x H—H, g: H—H, n: H x H—H be three nonlinear mappings and M : H—2"
be an (A, 7)-monotone mapping. Then the nonlinear variational inclusion (NVI) prob-
lem: determine an element u € H for a given element f € H such that

f € N(u,u)+M[g(u)]. (2.1)
A special cases of the NVI (2.1) problem is to find an element u € H such that
0€ N(u,u)+M[g(u)]. (2.2)

If g =1 in (2.1), then NVI (2.1) reduces to the following nonlinear variational inclu-
sion problem: determine an element u € H for a given element f € H such that

f € N(u,u) + M(u). (2.3)

The solvability of the NVI problem (2.1) depends on the equivalence between (2.1)
and the problem of finding the fixed point of the associated generalized resolvent oper-
ator. Note that, if M is (A,#)-monotone, then the corresponding generalized resolvent
operator ]]\[}”Z is defined by ];&I’)’Z,(u) =(A -i—pM)f1 (u) for all u € H, where p >0 and A is
an (r,#)-strongly monotone mapping.

In order to prove our main results, we need the following lemmas.

LemMA 2.1. Assume that {a,} is a sequence of nonnegative real numbers such that
a1 < (1=An)a,+b,, Vn=ng, (2.4)

where ng is some nonnegative integer, {\,} is a sequence in (0,1) with >, A, = o, b, =
o(A,), thenlim,, . oa, = 0.

LEmMA 2.2. Let H be a real Hilbert space and n: H X H—H be a t-Lipschitz continuous
nonlinear mapping. Let A : H—H be a (r,n)-strongly monotone and M : H—2H be (A,n)-
monotone. Then the generalized resolvent operator ]JCI’,'Z, :H—H is v/(r — pm)-Lipschitz con-
tinuous, that is,

Tai(x) = T )] = ’pm lx=yll, VxyeH (2.5)

e
LemMA 2.3. Let H be a real Hilbert space, A: H—H be (r,n)-strongly monotone and
M : H—2H be (A,n)-monotone. Let y: H X H—H be a t-Lipschitz continuous nonlinear
mapping. Then the following statements are mutually equivalent:

(i) An element u € H is a solution to the NVI (2.1).

(i) g(u) = Jo" [Ag(u) — pN (w,u) +p £ ].

From Lemma 2.3, we have the following:

u=u-g(u) +];@’Z, (Ag(u) — pN(u,u)+pf), (2.6)
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where u is a solution to the NVI problem (2.1). Let S be a nonexpansive mapping on H.
If u is also a fixed point of S, we have

u= S{u—g(u)+]ﬁ’j,(Ag(u) —pN(u,u)+pf)}. (2.7)
Next, we consider the following algorithms and denote the solution to the NVI prob-
lem (2.1) by Q;, the NVI problem (2.3) by Q,, respectively.

ALGORITHM 2.4. For any uy € H, compute the sequence {u,} by the iterative processes

unir = (1 — o) by + 0, S{un — g () +JJ€I),Z (Ag(un) — pN (unun) +pf)}, (2.8)

where {a,} is a sequence in [0,1] and S is a nonexpansive mapping on H.
If S=g=1TIand {a,} = I in Algorithm 2.4, then we have the following algorithm.

ALGORITHM 2.5. For any uy € H, compute the sequence {u,} by the iterative processes

Unt1 :]f\}’fZ,(Aun — pN (un,un) +pf). (2.9)

We remark that Algorithm 2.5 gives the approximate solution to the NVI problem (2.3).
Now, we are in the position to prove our main results.

THEOREM 2.6. Let H be a real Hilbert space, A : H X H be (r,n)-strongly monotone and s-
Lipschitz continuous and M : H—2H be (A, n)-monotone. Let y : H X H—H be a t-Lipschitz
continuous nonlinear mapping and N : H X H—H be relaxed («1,[3,)-cocoercive (with re-
spect to Ag) and y,-Lipschitz coninuous in the first variable and N be v,-Lipschitz contin-
uous in the second variable. Let g : H—H be relaxed (ay,[3,)-cocoercive and u,-Lipschitz
continuous on H, S : H—H be a nonexpansive mapping and {u,} be a sequence generated
by Algorithm 2.4. Suppose the following conditions are satisfied:

(i) &y € (0,1), 2ot = 005

(ii) 7(61 + pv1) < (r — pm)(1 — 6,), where 6, =\/y§sz—2pﬁl+2pa1y%+p2y% and 6, =

\/1 +2u3an — 23, + 3.
Then the sequence {u,} converges strongly to u* € F(S) N Q.

Proof. Let u* € C be the common element of F(S) N Q. Then we have
uw* = (1— o)™ +a,S{u* —g(u*) +];\:[’Z (Ag(u*) —pN(u*,u™)+pf)}. (2.10)
It follows that

ttner = ] < (1= o) — 00| + ot [ — 0" = [g () — g (") ]|
rzojijAg(un) —Ag(u*) = p[N (un, un) = N (u*,u,) | (2.11)
— p[N(u*,un) = N (u*,u*)]||.

+
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It follows from relaxed (a1, 3,)-cocoercive monotonicity and y,-Lipschitz continuity of
N in the first variable, the s-Lipschitz continuity of A and the y,-Lipschitz continuity of
g that

1Ag (t4) — Ag(u*) = p(N (thy 1) — N (u*, 1)) ||
— [|Ag (un) — Ag (u™)|I” = 20 (N (s 1) — N (u*,11,), Ag (1) — Ag(u*))  (2.12)
+p2||N<un,un>—N<u ) |I° < 03 — |,

where 0, = \/y%sz —2pP, +2paiut + p?ui. Observe that the v;-Lipschitz continuity of N
in the second argument yields that

[N (u*,u,) — N(u*,u)|| <vi||lu, —u*]|. (2.13)
Now, we consider the second term of the right side of (2.11). It follows from the relaxed
(@02, 3,)-cocoercive monotonicity and y,-Lipschitz continuity of g that

it — u* — g (un) — g (u®)]|”

= Mt — [ |” = 24 (1) — g (™) 140 = ) + g (1) —g ()]’
< Jlwn = u|1* = 2[ = aollg () = g () "+ B llwn = ] +[lg () g ()|

< 03|, —u|I’,

(2.14)

where 60, = \/1 +2p3a, — 23, + p3. Substituting (2.12), (2.13), and (2.14) into (2.11), we
arrive at

[letrs = |

TX,PY
") (|t — ]| + P, — ||
m r—

~[1-an(1-0- 6 ) [ —u¥|.

pm r—pm

TQ
< (1= o) ||t — u™*|| + 0,02 ||t — u*|| + -

(2.15)

Using the conditions (i)-(ii) and applying Lemma 2.1 to (2.15), we can obtain the desired
conclusion. This completes the proof. O

Remark 2.7. Theorem 2.6 mainly improves the results of Verma [5, 6].

CoROLLARY 2.8. Let H be a real Hilbert space, A : H X H be (r,1)-strongly monotone, and s-
Lipschitz continuous and M : H—2H be (A, n)-monotone. Let  : H X H—H be a t-Lipschitz
continuous nonlinear mapping and N : H X H—H be relaxed («y,[3,)-cocoercive (with re-
spect to A) and y, -Lipschitz coninuous in the first variable and N be v\ -Lipschitz continuous
in the second variable. Let {u,} be a sequence generated by Algorithm 2.5. Suppose the fol-

lowing condition is satisfied: T(0, + pv;) < r — pm, where 60, = \/y%sz —2pf, +2parut + p*ui,
then the sequence {u,} converges strongly to u* € Q,.
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