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1. Introduction

It is well known that, in an infinite-dimensional Hilbert space, the normal Mann’s iterative
algorithm has only weak convergence, in general, even for nonexpansive mappings.
Consequently, in order to obtain strong convergence, one has to modify the normal Mann’s
iteration algorithm, the so-called hybrid projection iteration method is such a modification.

The hybrid projection iteration algorithm (HPIA) was introduced initially by
Haugazeau [1] in 1968. For 40 years, HPIA has received rapid developments. For details,
the readers are referred to papers [2–7] and the references therein.

In 2005, Matsushita and Takahashi [5] proposed the following hybrid iterationmethod
with generalized projection for relatively nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JTxn),
Cn =

{
z ∈ C : φ

(
z, yn

) ≤ φ(z, xn)
}
,

Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn(x0).

(1.1)



2 Fixed Point Theory and Applications

They proved the following convergence theorem.

TheoremMT. Let E be a uniformly convex and uniformly smooth Banach space, letC be a nonempty
closed convex subset of E, let T be a relatively nonexpansive mapping from C into itself, and let {αn}
be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞αn < 1. Suppose that {xn}
is given by (1.1), where J is the normalized duality mapping on E. If F(T) is nonempty, then {xn}
converges strongly toΠF(T)x0, where ΠF(T)(·) is the generalized projection from C onto F(T).

In 2007, Qin and Su [2] proposed the following hybrid iteration method with
generalized projection for relatively nonexpansive mapping T in a Banach space E:

x0 ∈ C chosen arbitrarily,

zn = J−1
(
βnJxn +

(
1 − βn

)
JTxn

)
,

yn = J−1(αnJxn + (1 − αn)JTzn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ(v, xn) + (1 − αn)φ(v, zn)
}
,

Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qn(x0).

(1.2)

They proved the following convergence theorem.

TheoremQS. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, let T be a relatively nonexpansive mapping from C into itself such that
Fix(T)/= ∅. Assume that {αn} and {βn} are sequences in [0, 1] such that lim supn→∞αn < 1 and
βn → 1. Suppose that {xn} is given by (1.2). If T is uniformly continuous, then {xn} converges
strongly to ΠFix(T)x0.

Question 1. Can both Theorems MT and QS be extended to more general reflexive, strictly
convex, and smooth Banach spaces with the property (K)?

Question 2. Can both Theorems MT and QS be extended to more general class of quasi-φ-
nonexpansive mappings?

The purpose of this paper is to give some affirmative answers to the questions
mentioned previously, by introducing a modified hybrid projection iteration algorithm and
by proving a strong convergence theorem for a family of closed and quasi-φ-nonexpansive
mappings by using new analysis techniques in the setting of reflexive, strictly convex, and
smooth Banach spaces with the property (K). The results of this paper improve and extend
the results of Matsushita and Takahashi [5], Qin and Su [2], and others.

2. Preliminaries

In this paper, we denote byX andX∗ a Banach space and the dual space ofX, respectively. Let
C be a nonempty closed convex subset ofX. We denote by J the normalized duality mapping
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from X to 2X
∗
defined by

J(x) =
{
j ∈ X∗ :

〈
x, j

〉
= ‖x‖2 = ∥

∥j
∥
∥2
}
, (2.1)

where 〈·, ·〉 denotes the generalized duality pairing between X and X∗. It is well known
that if X is reflexive, strictly convex, and smooth, then J : X → X∗ is single-valued, demi-
continuous and strictly monotone (see, e.g., [8, 9]).

It is also very well known that if C is a nonempty closed convex subset of a Hilbert
spaceH and PC : H → C is the metric projection ofH onto C, then PC is nonexpansive. This
fact actually characterizes Hilbert spaces and consequently, it is not available in more general
Banach spaces. In this connection, Alber [10] recently introduced a generalized projection
operator ΠC in a Banach space X which is an analogue of the metric projection in Hilbert
spaces.

Next, we assume that X is a real reflexive, strictly convex, and smooth Banach space.
Let us consider the functional defined as in [4, 5] by

φ
(
x, y

)
= ‖x‖2 − 2〈x, Jy〉 + ∥∥y

∥∥2 for x, y ∈ E. (2.2)

Observe that, in a Hilbert space H, (2.2) reduces to φ(x, y) = ‖x − y‖2, x, y ∈ H.
The generalized projection ΠC : X → C is a map that assigns to an arbitrary point

x ∈ X the unique minimum point of the functional φ(·, x); that is, ΠCx = x, where x is the
unique solution to the minimization problem

φ(x, x) = min
y∈C

φ
(
y, x

)
. (2.3)

Remark 2.1. The existence and uniqueness of the element x ∈ C follow from the reflexivity of
X, the properties of the functional φ(·, x), and strict monotonicity of the mapping J (see, e.g.,
[8–12]). In Hilbert spaces, ΠC = PC. It is obvious from the definition of function φ that

(∥∥y
∥∥ − ‖x‖)2 ≤ φ

(
y, x

) ≤ (∥∥y
∥∥ + ‖x‖)2 ∀x, y ∈ X. (2.4)

Remark 2.2. If X is a reflexive, strictly convex, and smooth Banach space, then for x, y ∈ X,
φ(x, y) = 0 if and only if x = y. It is sufficient to show that if φ(x, y) = 0 then x = y. From (2.4),
we have ‖x‖ = ‖y‖. This in turn implies that 〈x, Jy〉 = ‖x‖2 = ‖Jy‖2. From the smoothness of
X, we know that J is single valued, and hence we have Jx = Jy. Since X is strictly convex, J
is strictly monotone, in particular, J is one to one, which implies that x = y; one may consult
[8, 9] for the details.

Let C be a closed convex subset of X, and T a mapping from C into itself. A point p in
C is said to be asymptotic fixed point of T [13] if C contains a sequence {xn}which converges
weakly to p such that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed point of T will be
denoted by ˜F(T). A mapping T from C into itself is said to be relatively nonexpansive [5, 14–
16] if ˜F(T) = F(T) and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T). The asymptotic behavior
of a relatively nonexpansive mapping was studied in [14–16].
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T is said to be quasi-φ-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C
and p ∈ F(T).

Remark 2.3. The class of quasi-φ-nonexpansive mappings is more general than the class of
relatively nonexpansive mappings [5, 14–16] which requires the strong restriction: ˜F(T) =
F(T).

We present two examples which are closed and quasi-φ-nonexpansive.

Example 2.4. Let ΠC be the generalized projection from a smooth, strictly convex, and
reflexive Banach space X onto a nonempty closed convex subset C of X. Then,ΠC is a closed
and quasi-φ-nonexpansive mapping from X onto C with F(ΠC) = C.

Example 2.5. LetX be a reflexive, strictly convex, and smooth Banach space, andA ⊂ X×X∗ is
a maximal monotone mapping such that its zero setA−10 is nonempty. Then, Jr = (J + rA)−1J
is a closed and quasi-φ-nonexpansive mapping from X onto D(A) and F(Jr) = A−10.

Recall that a Banach space X has the property (K) if for any sequence {xn} ⊂ X and
x ∈ X, if xn → x weakly and ‖xn‖ → ‖x‖, then ‖xn − x‖ → 0. For more information
concerning property (K) the reader is referred to [17] and references cited therein.

In order to prove our main result of this paper, we need to the following facts.

Lemma 2.6 (see, e.g., [10–12]). Let C be a convex subset of a real smooth Banach space X, x ∈ X,
and x0 ∈ C. Then,

φ(x0, x) = inf
{
φ(z, x) : z ∈ C

}
(2.5)

if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0, ∀z ∈ C. (2.6)

Lemma 2.7 (see, e.g., [10–12]). Let C be a convex subset of a real reflexive, strictly convex, and
smooth Banach space X. Then the following inequality holds:

φ
(
y,ΠCx

)
+ φ(ΠCx, x) ≤ φ

(
y, x

)
(2.7)

for all x ∈ X and y ∈ C.

Now we are in a proposition to prove the main results of this paper.

3. Main Results

Theorem 3.1. Let X be a reflexive, strictly convex, smooth Banach space such that X and X∗ have
the property (K). Assume that C is a nonempty closed convex subset of X. Let {Ti}∞i=1 : C → C be an
infinitely countable family of closed and quasi-φ-nonexpansive mappings such that F =

⋂∞
i=1F(Ti)/= ∅.
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Assume that {αn,i} are real sequences in [0, 1] such that b0,i = lim infn→∞αn,i < 1. Define a sequence
{xn} in C by the following algorithm:

x0 ∈ X chosen arbitrarily,

C1,i = C, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0),

yn,i = J−1(αn,iJxn + (1 − αn,i)J(Tixn)), n ≥ 1,

Cn+1,i =
{
z ∈ Cn,i : φ

(
z, yn,i

) ≤ φ(z, xn)
}
,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = ΠCn+1x0, n ≥ 0.

(3.1)

Then {xn} converges strongly to p0 = ΠFx0, whereΠF is the generalized projection from C onto F.

Proof. We split the proof into six steps.

Step 1. Show that ΠFx0 is well defined for every x0 ∈ X.

To this end, we prove first that F(Ti) is closed and convex for any i ∈ N. Let {pn}
be a sequence in F(Ti) with pn → p as n → ∞, we prove that p ∈ F(Ti). From the
definition of quasi-φ-nonexpansive mappings, one has φ(pn, Tip) ≤ φ(pn, p), which implies
that φ(pn, Tip) → 0 as n → ∞. Noticing that

φ
(
pn, Tip

)
=
∥∥pn

∥∥2 − 2
〈
pn, J

(
Tip

)〉
+
∥∥Tip

∥∥2
. (3.2)

By taking limit in (3.2), we have

lim
n→∞

φ
(
pn, Tip

)
=
∥∥p

∥∥2 − 2
〈
p, J

(
Tip

)〉
+
∥∥Tip

∥∥2 = φ
(
p, Tip

)
. (3.3)

Hence φ(p, Tip) = 0. It implies that p = Tip for all i ∈ N. We next show that F(Ti) is convex.
To this end, for arbitrary p1, p2 ∈ F(Ti), t ∈ (0, 1), putting p3 = tp1 + (1 − t)p2, we prove that
Tip3 = p3. Indeed, by using the definition of φ(x, y), we have

φ
(
p3, Tip3

)
=
∥∥p3

∥∥2 − 2
〈
p3, J

(
Tip3

)〉
+
∥∥Tip3

∥∥2

=
∥∥p3

∥∥2 − 2
〈
tp1 + (1 − t)p2, J

(
Tip3

)〉
+
∥∥Tip3

∥∥2

=
∥∥p3

∥∥2 − 2t
〈
p1, J

(
Tip3

)〉 − 2(1 − t)
〈
p2, J

(
Tip3

)〉
+
∥∥Tip3

∥∥2

=
∥∥p3

∥∥2 + tφ
(
p1, Tip3

)
+ (1 − t)φ

(
p2, Tip3

) − t
∥∥p1

∥∥2 − (1 − t)
∥∥p2

∥∥2

≤ ∥∥p3
∥∥2 + tφ

(
p1, p3

)
+ (1 − t)φ

(
p2, p3

) − t
∥∥p1

∥∥2 − (1 − t)
∥∥p2

∥∥2

=
∥∥p3

∥∥2 − 2
〈
p3, Jp3

〉
+
∥∥p3

∥∥2

= 0.

(3.4)
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This implies that Tip3 = p3. Hence F(Ti) is closed and convex for all i ∈ N and consequently
F =

⋂∞
i=1F(Ti) is closed and convex. By our assumption that F =

⋂∞
i=1F(Ti)/= ∅, we have ΠFx0

is well defined for every x0 ∈ X.

Step 2. Show that Cn is closed and convex for each n ≥ 1.

It suffices to show that for any i ∈ N, Cn,i is closed and convex for every n ≥ 1. This
can be proved by induction on n. In fact, for n = 1, C1,i = C is closed and convex. Assume that
Cn,i is closed and convex for some n ≥ 1. For z ∈ Cn+1,i, one obtains that

φ
(
z, yn,i

) ≤ φ(z, xn) (3.5)

is equivalent to

2
〈
z, Jxn − Jyn,i

〉 ≤ ‖xn‖2 −
∥∥yn,i

∥∥2
. (3.6)

It is easy to see that Cn+1,i is closed and convex. Then, for all n ≥ 1, Cn,i is closed and convex.
Consequently, Cn =

⋂∞
i=1Cn,i is closed and convex for all n ≥ 1.

Step 3. Show that F =
⋂∞

i=1F(Ti) ⊂
⋂∞

n=1Cn = D.

It suffices to show that for any i ∈ N, F ⊂ Cn,i for every n ≥ 1. For any c0 ∈ F, from the
definition of quasi-φ-nonexpansive mappings, we have φ(c0, Tix) ≤ φ(c0, x), for all x ∈ C and
i ∈ N. Noting that for any x ∈ C and α ∈ [0, 1], we have

φ
(
c0, J

−1(αJx + (1 − α)J(Tix))
)

= ‖c0‖2 − 2〈c0, αJx + (1 − α)J(Tix)〉 +
∥∥∥J−1(αJx + (1 − α)J(Tix))

∥∥∥
2

≤ ‖c0‖2 − 2〈c0, αJx + (1 − α)J(Tix)〉 + α‖x‖2 + (1 − α)‖Tix‖2

= αφ(c0, x) + (1 − α)φ(c0, Tix)

≤ αφ(c0, x) + (1 − α)φ(c0, x)

= φ(c0, x),

(3.7)

which implies that c0 ∈ Cn,i and consequently F ⊂ Cn,i. So F ⊂ ⋂∞
n=1Cn. Hence xn+1 = ΠCn+1x0

is well defined for each n ≥ 0. Therefore, the iterative algorithm (3.1) is well defined.

Step 4. Show that ‖xn − p0‖ → 0, where p0 = ΠDx0.

From Steps 2 and 3, we obtain that D is a nonempty, closed, and convex subset of C.
Hence ΠDx0 is well defined for every x0 ∈ C. From the construction of Cn, we know that

C ⊃ C1 ⊃ C2 ⊃ · · · . (3.8)
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Let p0 = ΠDx0, where p0 ∈ C is the unique element that satisfies infx∈Dφ(x, x0) = φ(p0, x0).
Since xn = ΠCnx0, by Lemma 2.7, we have

φ(xn, x0) ≤ φ(xn+1, x0) ≤ · · · ≤ φ
(
p0, x0

)
. (3.9)

By the reflexivity of X, we can assume that xn → g1 ∈ X weakly. Since Cj ⊂ Cn, for j ≥ n, we
have xj ∈ Cn for j ≥ n. Since Cn is closed and convex, by the Marzur theorem, g1 ∈ Cn for any
n ∈ N. Hence g1 ∈ D. Moreover, by using the weakly lower semicontinuity of the norm on X
and (3.9), we obtain

φ
(
p0, x0

) ≤ φ
(
g1, x0

) ≤ lim inf
n→∞

φ(xn, x0)

≤ lim sup
n→∞

φ(xn, x0) ≤ inf
x∈D

φ(x, x0) = φ
(
p0, x0

)
,

(3.10)

which implies that limn→∞φ(xn, x0) = φ(p0, x0) = φ(g1, x0) = infx∈Dφ(x, x0). By using
Lemma 2.6, we have

〈
p0 − g1, Jp0 − Jg1

〉
= 0, (3.11)

and hence p0 = g1, since J is strictly monotone.
Further, by the definition of φ, we have

lim
n→∞

(
‖xn‖2 − 2〈xn, Jx0〉 + ‖x0‖2

)
=
(∥∥p0

∥∥2 − 2
〈
p0, Jx0

〉
+ ‖x0‖2

)
, (3.12)

which shows that limn→∞‖xn‖ = ‖p0‖. By the property (K) of X, we have ‖xn − p0‖ → 0,
where p0 = ΠDx0.

Step 5. Show that p0 = Tip0, for any i ∈ N.

Since xn+1 ∈ Cn+1 =
⋂∞

i=1Cn+1,i for all n ≥ 0 and i ∈ N, we have

0 ≤ φ
(
xn+1, yn,i

) ≤ φ(xn+1, xn). (3.13)

Since ‖xn − p0‖ → 0, φ(xn+1, xn) → 0 and consequently

φ
(
xn+1, yn,i

) −→ 0. (3.14)

Note that 0 ≤ (‖xn+1‖ − ‖yn,i‖)2 ≤ φ(xn+1, yn,i). Hence ‖yn,i‖ → ‖p0‖ and consequently
‖J(yn,i)‖ → ‖Jp0‖. This implies that {J(yn,i)} is bounded. Since X is reflexive, X∗ is also
reflexive. So we can assume that

J
(
yn,i

) −→ f0 ∈ X∗ (3.15)
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weakly. On the other hand, in view of the reflexivity of X, one has J(X) = X∗, which means
that for f0 ∈ X∗, there exists x ∈ X, such that J(x) = f0. It follows that

lim
n→∞

φ
(
xn+1, yn,i

)
= lim

n→∞

[
‖xn+1‖2 − 2

〈
xn+1, J

(
yn,i

)〉
+
∥
∥yn,i

∥
∥2
]

= lim
n→∞

[
‖xn+1‖2 − 2

〈
xn+1, J

(
yn,i

)〉
+
∥∥J

(
yn,i

)∥∥2
]

≥ ∥
∥p0

∥
∥2 − 2

〈
p0, f0

〉
+
∥
∥f0

∥
∥2

=
∥
∥p0

∥
∥2 − 2

〈
p0, Jx

〉
+ ‖Jx‖2

= φ
(
p0, x

)
,

(3.16)

where we used the weakly lower semicontinuity of the norm on X∗. From (3.14), we have
φ(p0, x) = 0 and consequently p0 = x, which implies that f0 = Jp0. Hence

J
(
yn,i

) −→ Jp0 ∈ X∗ (3.17)

weakly. Since ‖J(yn,i)‖ → ‖Jp0‖ and X∗ has the property (K), we have

∥∥J
(
yn,i

) − Jp0
∥∥ −→ 0. (3.18)

Since ‖xn − p0‖ → 0, noting that J : X → X∗ is demi-continuous, we have

Jxn −→ Jp0 ∈ X∗ (3.19)

weakly. Noticing that

∣∣‖Jxn‖ −
∥∥Jp0

∥∥∣∣ =
∣∣‖xn‖ −

∥∥p0
∥∥∣∣ ≤ ∥∥xn − p0

∥∥ −→ 0, (3.20)

which implies that ‖Jxn‖ → ‖Jp0‖. By using the property (K) of X∗, we have

∥∥Jxn − Jp0
∥∥ −→ 0. (3.21)

From (3.1), (3.18), (3.21), and b0,i = lim infn→∞αn,i < 1, we have

∥∥J(Tixn) − Jp0
∥∥ −→ 0. (3.22)

Since J−1 : X∗ → X is demi-continuous, we have

Tixn −→ p0 (3.23)

weakly in X. Moreover,

∣∣‖Tixn‖ −
∥∥p0

∥∥∣∣ =
∣∣‖J(Tixn)‖ −

∥∥Jp0
∥∥∣∣ ≤ ∥∥J(Tixn) − Jp0

∥∥ −→ 0, (3.24)
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which implies that ‖Tixn‖ → ‖p0‖. By the property (K) of X, we have

Tixn −→ p0. (3.25)

From ‖xn − p0‖ → 0 and the closeness property of Ti, we have

Tip0 = p0, (3.26)

which implies that p0 ∈ F =
⋂∞

i=1F(Ti).

Step 6. Show that p0 = ΠFx0.

It follows from Steps 3, 4, and 5 that

φ
(
p0, x0

) ≤ φ(ΠFx0, x0) ≤ φ
(
p0, x0

)
, (3.27)

which implies that φ(ΠFx0, x0) = φ(p0, x0). Hence, p0 = ΠFx0. Then {xn} converges strongly
to p0 = ΠFx0. This completes the proof.

From Theorem 3.1, we can obtain the following corollary.

Corollary 3.2. Let X be a reflexive, strictly convex and smooth Banach space such that both X and
X∗ have the property (K). Assume that C is a nonempty closed convex subset of X. Let T : C → C
be a closed and quasi-φ-nonexpansive mapping. Assume that {αn} is a sequence in [0, 1] such that
b0 = lim infn→∞αn < 1. Define a sequence {xn} in C by the following algorithm:

x0 ∈ C chosen arbitrarily,

C1 = C, x1 = ΠC1(x0),

yn = J−1(αnJxn + (1 − αn)J(Txn)), n ≥ 1,

Cn+1 =
{
z ∈ Cn : φ

(
z, yn

) ≤ φ(z, xn)
}
,

xn+1 = ΠCn+1x0, n ≥ 0.

(3.28)

Then {xn} converges strongly to p0 = ΠF(T)x0, whereΠF(T) is the generalized projection from C onto
F(T).

Remark 3.3. Theorem 3.1 and its corollary improve and extend Theorems MT and QS at
several aspects.

(i) From uniformly convex and uniformly smooth Banach spaces extend to reflexive,
strictly convex and smooth Banach spaces with the property (K). In Theorem 3.1
and its corollary the hypotheses on X are weaker than the usual assumptions
of uniform convexity and uniform smoothness. For example, any strictly convex,
reflexive and smooth Musielak-Orlicz space satisfies our assumptions [17] while,
in general, these spaces need not to be uniformly convex or uniformly smooth.
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(ii) From relatively nonexpansive mappings extend to closed and quasi-φ-non-
expansive mappings.

(iii) The continuity assumption on mapping T in Theorem QS is removed.

(iv) Relax the restriction on {αn} from lim supn→∞αn < 1 to lim infn→∞αn < 1.

Remark 3.4. Corollary 3.2 presents some affirmative answers to Questions 1 and 2.

4. Applications

In this section, we present some applications of the main results in Section 3.

Theorem 4.1. Let X be a reflexive, strict, and smooth Banach space that both X and X∗ have the
property (K), and let C be a nonempty closed convex subset of X. Let {fi}i∈N

: X → (−∞,+∞] be a
family of proper, lower semicontinuous, and convex functionals. Assume that the common fixed point
set F =

⋂
i∈N

F(Ji) is nonempty, where Ji = (J + ri∂fi)
−1J for ri > 0 and i ∈ N. Let {xn} be a sequence

generated by the following manner:

x0 ∈ X chosen arbitrarily,

C1,i = C, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0),

yn,i = J−1(αn,iJxn + (1 − αn,i)Jzn,i), n ≥ 1,

zn,i = argmin
z∈X

{
fi(z) +

1
2ri

‖z‖2 − 1
ri
〈z, Jxn〉

}
,

Cn+1,i =
{
z ∈ Cn,i : φ

(
z, yn,i

) ≤ φ(z, xn)
}
,

Cn+1 =
∞⋂

i=1

Cn+1,i,

xn+1 = ΠCn+1x0, n ≥ 0,

(4.1)

where {αn,i} satisfies the restriction: 0 ≤ αn,i < 1 and lim infn→∞αn,i < 1. Then {xn} defined by (4.1)
converges strongly to a minimizerΠFx0 of the family {fi}i∈N

.

Proof. By a result of Rockafellar [18], we see that ∂fi : X → 2X
∗
is a maximal monotone

mapping for every i ∈ N. It follows from Example 2.5 that Ji : X → X is a closed and quasi-
φ-nonexpansive mapping for every i ∈ N. Notice that

zn,i = argmin
z∈X

{
fi(z) +

1
2ri

‖z‖2 − 1
ri
〈z, Jxn〉

}
(4.2)
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is equivalent to

0 ∈ ∂fi(zn,i) +
1
ri
Jzn,i − 1

ri
Jxn, n, i ∈ N, (4.3)

and the last inclusion relation is equivalent to

zn,i =
(
J + ri∂fi

)−1
Jxn = Jixn. (4.4)

Now the desired conclusion follows from Theorem 3.1. This completes the proof.
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