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We provide sufficient conditions for Picard iteration to converge faster than Krasnoselskij,
Mann, Ishikawa, or Noor iteration for quasicontractive operators. We also compare the rates of
convergence between Krasnoselskij and Mann iterations for Zamfirescu operators.

1. Introduction

Let (X, d) be a complete metric space, and let T be a self-map of X. If T has a unique fixed
point, which can be obtained as the limit of the sequence {p,}, where p,, = T"py, po any point
of X, then T is called a Picard operator (see, e.g., [1]), and the iteration defined by {p,} is
called Picard iteration.

One of the most general contractive conditions for which a map T is a Picard operator
is that of Ciri¢ [2] (see also [3]). A self-map T is called quasicontractive if it satisfies

d(Tx,Ty) < 6max{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}, (1.1)

for each x, y € X, where 6 is a real number satisfying 0 < 6 < 1.

Not every map which has a unique fixed point enjoys the Picard property. For example,
let X = [0, 1] with the absolute value metric, T : X — X defined by Tx =1 - x. Then, T has a
unique fixed point at x = 1/2, but if one chooses as a starting point xo = a forany a#1/2, then
successive function iterations generate the bounded divergent sequence {a,1-a,a,1-a,...}.
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To obtain fixed points for some maps for which Picard iteration fails, a number of fixed
point iteration procedures have been developed. Let X be a Banach space, the corresponding
quasicontractive mapping T : X — X is defined by

|Tx - Ty|| < 6 max{||x - y||, |lx - Tx|, ||y - Ty|, ||x - Ty||, ||y - Tx|| }- (1.2)
In this paper, we will consider the following four iterations.
Krasnoselskij:
Vog € X, vp1=(1-Nv,+A\Tv,, n>0, (1.3)
where 0 < A < 1.
Mann:
Yupe X, up1=1-ay)u,+a,Tu,, n>0, (1.4)
where 0 < a, <1forn>0,and 32 a, = co.
Ishikawa:
Vxo € X,
Xpe1 = (1= an)xy +a,Ty,, n2>0, (1.5)
Yn=(1-by)x, +b,Tx,, n2=>0,
where {a,} c (0,1], {b,} c [0,1].
Noor:
Vwo (S X,
zn = (1= cn)wn + cnTwn, n20,
(1.6)

Yn = 1-by)w,+b,Tz,, n2>0,

Wn+1 = (1 - an)wn + anTyn/ n>0,

where {a,} C (0,1], {b,}, {cn} C [0,1].

Three of these iteration schemes have also been used to obtain fixed points for some
Picard maps. Consequently, it is reasonable to try to determine which process converges the
fastest.

In this paper, we will discuss this question for the above quasicontractions and for
Zamfirescu operators. For this, we will need the following result, which is a special case of
the Theorem in [4].

Theorem 1.1. Let C be any nonempty closed convex subset of a Banach space X, and let T be a
quasicontractive self-map of C. Let {x,} be the Ishikawa iteration process defined by (1.5), where each
a, > 0and 3,77 a, = oo. then {x,} converges strongly to the fixed point of T.
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2. Results for Quasicontractive Operators

To avoid trivialities, we shall always assume that py # q, where g denotes the fixed point of
themap T.

Let {fu}, {gn} be two convergent sequences with the same limit g, then { f,,} is said to
converge faster than {g,} (see, e.g., [5]) if

i Ml _
n—o | g, —q|

2.1)

Theorem 2.1. Let E be a Banach space, D a closed convex subset of E, and T a quasicontractive self-
map of D, then, for 0 < A < (1 — &), Picard iteration converges faster than Krasnoselskij iteration.

Proof. From Theorem 1 of [2] and (1.2),

lpea = all = | 7*po— 4|

n+1

ls)
< m”TPo ~pol|

gl
Sq _5(||TP0 ~Tq|[ +[lpo—4l))

ontl (2-2)
< 75 @max{|lpo - ql|, llpo = qll + [|Tpo - Tall} + lIpo - qll)
6n+1 b
< 15 (8(Im-all+ T=5lm-all) + I -al))
6n+1
< - 7
- (1 _ 6)2 ”po q
where g is the fixed point of T.
From (1.3), with vy #¢,
[ons1 = ql| > A= ) [|lon - q| = A||Ton - Tq]|
A
> (1- 725 ) loa—al
(2.3)

A n+1
> (1-125) leo-all

By setting each 8, = 0 and each a,, = 1\, it follows from Theorem 1.1 that {v, } converges
to g.
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Therefore,

7

lpne — 4|l < ( 6 >"+1(1 gyt llpo -4l 0
[on1 =gl ~\1-6-4 |0 - 4|

asn — oo, since A < (1-6)%

(2.4)

O

Theorem 2.2. Let E, D, and T be as in Theorem 2.1. And let 0 < a, < 0(1-06), by, ¢, € [0,1] for all

n>0.

(A) If the constant 0 < 0 <1 — 8, then Picard iteration converges faster than Mann iteration.

(B) If the constant 0 < 0 < (1 - 8)2/(1 - 6 + 6%), then Picard iteration converges faster than

Ishikawa iteration.

(C) If the constant 0 < 0 < (1 - 8)2/(1-26 +262), then Picard iteration converges faster than

Noor iteration.

Proof. We have the following cases

Case A (Mann Iteration). Using Theorem 1.1 with each 8, = 0, {u,} converges to g. Using

(14),
i =gl > (1= an) s~ 1] - [Tt~ T]
> (1125 e -all = -2 TT(1- 125 o -al.
Therefore,

llpnes —all _ " lpo 4
4w =all = (1= 6)*TTLo(1 - ai/ (1 - 6)) [|uo - 4|

7

asn — oo, since a, < 6(1 — 6) for each n > 0.

Case B (Ishikawa Iteration). From Theorem 1.1, {x,} converges to q. Using (1.5),

et =l = (1 = @)l - qll - an [Ty - T

a,6

> (1 —an)“xn_q” - 1 _6||yn_q”

2 (1 - an)”xn - q” -

a,6
75 Ulxn = all + bal| Txw ~ T4[)

(2.5)

(2.6)



Fixed Point Theory and Applications 5

an6 anbn62
2 (1- a0 25 ) I —all = 2

1-a _ @b a8 (B
> T qogy )1 q

ST 1_a._‘L5_L§2 llx0 - ]|
i b1-6 (1—5)2 oAl

\%

[\

(2.7)
Hence,

i —all _ & |lpo — 4l
lenet =all = (1 - 6)° 120 (1 - @i - a6/ (1 - 6) - 262/ (1 - 6)°) || x0 -

—0,  (2.8)

asn — oo, since a, < 6(1 - 6) for each n > 0.

Case C (Noor Iteration). First we must show that {w,} converges to q. The proof will follow
along the lines of that of Theorem 1.1. O

Lemma 2.3. Define
An = {zi}io U {yi} iy U {wid g U {Tzi} o U Ty} oy U {Twi} iy,
a, = diam(A,),
2.9)
Bn = max{max{|wo — Twj|| : 0 <i < n}, max{||wo - Tyi|| : 0<i<n},

max{||wy —Tz|| : 0 <i<n}},

then { Ay} is bounded.
Proof.

Case 1. Suppose that a,, = ||Tz; — Tzj|| for some 0 < i,j < n, then, from (1.2) and the definition
of a,,

an = |7z -T2

< 6max{||zi — zj||, lzi — Tz, ||zj - Tzj|, ||zi - Tzj||, ||z - Tzl } (2.10)

S 6“1’1/
a contradiction, since 6 < 1.

Similarly, &, #||Ty: — Ty;ll, an# |Twi — Twjl|, an #[|Tzi - Ty;ll, an# Tz — Twj||, and
an #||Ty; — Twj| forany 0 <i,j < n.
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Case 2. Suppose that a, = ||w; — wj||, without loss of generality we let 0 < i < j < n. Then,
from (1.6),
a = ||wi -]
< (1-aj)|Jwi - wja || + aja[Jwi = Ty | (211)
< (1-aj)||wi - wja || + aj-ra,.
Hence, a;, < ||lw; — wj1|| < ay, thatis, a, = |[w; — wj-1]|. By induction on j, we obtain a,, =
|lw; — w;|| = 0, a contradiction.

Case 3. Suppose that a,, = ||w; — Twj|| for some 0 < i, j < n. If i > 0, then we have, using (1.6),

ay = ||wi - Twj||
<(1-aj1) ||wi,1 - Tw]-” + ai—lllTyi—l - Tw]- || (2.12)

< (1 - aj)||wis — Twj|| + aiaan,

which implies that a,, < ||w;_1 — Twj||, and by induction on i, we get a,, = ||wo — Tw;]|.
Case 4. Suppose that a, = ||w; - zj|| or a, = ||zi - zj||, lyi — zjll, l1zi = Ty;ll, lyi — y;|l for some
0<1i,j <n, then

an = |[wi - z|

< (1=cj)[|wi = wj|| + ¢j]|wi = Tw; || (2.13)

< max{||w; — wj]|, ||wi — Twj|| }-

7

From Cases 2 and 3, ||[w; — wj|| < a,, and ||w; — Tw;|| < |[wy — Tw,|| for some m < j, that is,
ay = ||lwg — Twy||. If a, = ||z; — zj||, we obtain that a,, < [|w; — zj||. Therefore; a,, = ||wo — Twh|],
other cases, omitting.

Case 5. Suppose that a, = ||w;-Tzj|| or a, = ||zi=Tzj]|, [[wi~y;ll, llyi-Tzj|| for some 0 <i,j <n,
thenifi >0,
an = [Jwoi = Tzj|
<(1-aj1) ||wl-,1 - TZ]' ” + ai—lllTyi—l - TZ]' ” (2.14)
< (1-ain) ||wiss = Tzj|| + aic1an,

it leads to a;, < ||w;-1 — Tz||. Again by induction on i, we have a,, = |[wp — Tz;||. Similarly, if
ay = ||zi = Tzj|| or, a, = ||w; - yjll, we also get a,, = ||wo — Tzj]|; other cases, omitting.
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Case 6. Suppose that a, = ||z; — Twj|| or a,, = ||y; — Tw;j|| for some 0 < i,j < n, then, using
Case 1,

an = ||zi - Tew]|
< (]. - Ci) ||w, — Tw]” + ci||Twi — Tw]” (215)
< (1-¢)l||wi - Tw;j|| + cian,
or
an = ||lyi = T
<(1-b) ||w1 - Tw,-|| + bi”TZi - Tw; || (2.16)
< (1 - bl) ||w, - Tw]” + bian,

these imply that a, < ||w; — Twj||. By Case 3, we obtain that a,, = ||wo — Twj||.

Case 7. Suppose that a, = ||[w; — Tyjl| or a, = ||y; — Ty;|| for some 0 < i,j < n, then if i > 0,
using Case 2,

0 = [Jeoi - T |
< (- e fwir - Ty | + s [Tyics ~ Ty | 217)

<(1-aj1) ||wi71 - T}/i” + ai1ay,

which implies that a,, < ||w;_1 — Ty;||. Using induction on i, we have a,, = ||wo — Ty;|.

In view of the above cases, so we have shown that a,, = f,. It remains to show that
{a,} is bounded.
Indeed, suppose that a,, = ||wo — Twj|| for some 0 < j < n, then, using Case 1,
tn = ||zoo - Twj|
< lwo = Two| + || Two - Tw;|| (2.18)
< B+ 6ay,,
where B := ||wy — Twy||, then a, < B/ (1 - 6).

Similarly, if a, = |lwo — Ty;||, or a, = |lwo — Tzj|| we again get a,, < B/(1 - 6). Hence,
{a,} is bounded, that is, { A, } is bounded. O

Lemma 2.4. Let E,D, and T be as in Theorem 2.1, and that 3, a, = oo, then {wy}, as defined by
(1.6), converges strongly to the unique fixed point q of T.

Proof. From Ciri¢ [2], T has a unique fixed point g. For each n € N, define

B, = {wi};s, U {yi}izn U{zi}is, U{Twi};s, U {Tyi}izn UA{Tzi} sy (2.19)
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Then, using the same proof as that of Lemma 2.3, it can be shown that

7 := diam(By,)

= max{sup{[[w, ~ Tuwy]| : = n) sup(lJao, ~ Ty : j 2 n), sup{[[wa ~ Tz, :j = n} ).

(2.20)
Using (1.2) and (1.6),
Tn = ||won = Tewj|
< (1 - apa)||wna1 — Tw; || + ap || Twa-1 - Twj||
S (1 =au1)rn-1+ au-16rn_1
=(1-an1(1-06))rn1 (2.21)
n-1
<n[1a-1-6)a),
i=0
limr, =0, since Y, a, = oo.
For any m,n >0 with j >0,
2oy — | < ||wn — Twj|| + ||Tw; —w
n =Wl < |lwn = Twj]| + || Tw; - wn| 022)

=Tn+Ttm,

and {w,} is Cauchy sequence. Since D is closed, there exists w,, € D such that lim w, = w..
Also, lim |w,, — Tw,|| = 0.
Using (1.2),

ITwe — W || = |[TWe — Twy, + Twy, — Wy + Wy — We|
= lim||Twy, — Tw,y||
<limsup 6 max{||we — W, |[We — Twes ||, [|[wn — Twh||, (2.23)
[Weo = Tewnll, [[wn — Twe||}

= 0| we — TWos||-

Since 6 < 1, it follows that we, = Twe,, and wy, is a fixed point of T. But the fixed point
is unique. Therefore, we, = g.
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Returning to the proof of Case C, from (1.6),

lewss ~all 2 (1~ a)lles ~all - [Ty~ Ta]

a,6
>(1- an)"wn _‘7” “1-6 ”yn _‘7”

a,6
2 (1= an)|[wn = ql| = 775 (llwon = qll + bal| Tz, ~ Ta]])
a,6 a,6%
>(1- n - n— - n -
2 (1= a0 5 ) Ieen—all = 2l oo
(14 and a,6% ~ a,6° lwn — 4]
“\ "8 a-e? a-ep )M
2.
> 1 1—gi— ai6 _ (1162 _ (1163 ”w _ ”
LI\ T s T amer T ae )TN
So,
|1 — 4|
l|zoni1 - 4|
n+1 _
P 6" |lpo — 4 Y
(1—6)2]_[?=0<1—ai—a,-6/1—6—a,-62/(1—6)2—a,-63/(1—6)3>||w0—q||
(2.25)
O

asn — oo, since a, < 0(1 - 06) forn > 0.

It is not possible to compare the rates of convergence between the Krasnoselskij, Mann,
and Noor iterations for quasicontractive maps. However, if one considers Zamfirescu maps,

then some comparisons can be made.

3. Zamfirescu Maps

A selfmap T is called a Zamfirescu operator if there exist real numbers a, b, ¢ satisfying 0 <
a < 1,0 < b,c <1/2such that, for each x,y € X at least one of the following conditions is

true:

(1) d(Tx,Ty) < ad(x, y),
(2) d(Tx,Ty) <b(d(x,Tx) +d(y,Ty)),

(3) d(Tx,Ty) < c(d(x,Ty) +d(y, Tx)).
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In [6] it was shown that the above set of conditions is equivalent to

A(Tx, Ty) < 6max{ d(x,y), BT + Ay Ty)] [d(xTy) +d(y, Tx)] } 3.1)

2 ! 2
for some 0 < 6 < 1.
In the following results, we shall use the representation (3.1).

Theorem 3.1. Let E, and D be as in Theorem 2.1, T a Zamfirescu selfmap of D, then if a, < A(1 -
6)0/(1 + 6) with the constant 0 < 0 < 1 + 6 for each n > 0, Krasnoselskij iteration converges faster
than Mann, Ishikawa, or Noor iteration.

Proof. Since Zamfirescu maps are special cases of quasicontractive maps, from Theorem 1.1
{vn}, {xn}, and {w,} converge to the unique fixed point of T, which we will call g.
Using (1.2),

low ~all< - Dlle - qll + A[Tos - gl 62)

Using (3.1),

||Tvn _q” < 6max{||vn —g [|on — To,| +0] [”vn _q” + ”q_TU"”] }

2 ’ 2

(3.3)
= 6”7)11 - q”
Therefore,
o1 —ql| < (1= A1 = 6))||va - q||
<. (3.4)
< (1-M1-6))"" oo - 4],
and
||un+1 - q" >(1-a,(1+ 6))””” - q”
(3.5)
n
>[ T -a+6)luo -4
i=0
Thus,
_ _ _ n+l _
[ona—qll . (1-20-6)""owo-q] o (3.6)

lluni = qll =TT (1 = ai(1+6)) [|uo - 4|

asn — oo, since a, < A(1-0).
The proofs for Ishikawa and Noor iterations are similar. O
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Theorem 3.2. Let E, D, and T be as in Theorem 3.1, then if A\(1 + 6)0/(1 - 6) < a, < 1 with the
constant 0 < 0 <1 — 6 for any n, Mann iteration converges faster than Krasnoselskij iteration.

Proof. Using (1.4) and (3.1),

[[#ni1 = qll < (1= an)[[un = 4| + @n||Tun - q]|
< (1-an(1-6))||un -4l
<. (3.7)

<JJ@-ai1-6))|uo -4
i=0

And again using (1.3), (3.1), we have

o1 =gl = (1= V) ||on - q]| - A|| T, — T4|
> (1-AM1+8))||vn—4||

(3.8)
> (1-A(1+8)"luo-q|-
Thus,
i —all Tt ~at 5Dl gl _ o)
[ona =all = (1-11+86)"" w0 - 4]
asn — oo, since A(1+6)8/(1-06) <a, <1. O

It is not possible to compare the rates of convergence for Mann, Ishikawa, and Noor
iterations, even for Zamfirescu maps.

Remark 3.3. It has been noted in [7] that the principal result in [8] is incorrect.

Remark 3.4. Krasnoselskij and Mann iterations were developed to obtain fixed point iteration
methods which converge for some operators, such as nonexpansive ones, for which Picard
iteration fails. Ishikawa iteration was invented to obtain a convergent fixed point iteration
procedure for continuous pseudocontractive maps, for which Mann iteration failed. To date,
there is no example of any operator that requires Noor iteration; that is, no example of
an operator for which Noor iteration converges, but for which neither Mann nor Ishikawa
converges.
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