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In analogy to the Eisenfeld-Lakshmikanthammeasure of nonconvexity and theHausdorffmeasure
of noncompactness, we introduce two mutually equivalent measures of noncircularity for Banach
spaces satisfying a Cantor type property, and apply them to establish a fixed point theorem of
Darbo type for multifunctions. Namely, we prove that every multifunction with closed values,
defined on a closed set and contractive with respect to any one of these measures, has the origin as
a fixed point.

1. Introduction

Let (X, ‖ · ‖) be a Banach space over the field K ∈ {R,C}. In what follows, we write BX = {x ∈
X : ‖x‖ ≤ 1} for the closed unit ball of X. Denote by 2X the collection of all subsets of X and
consider

b(X) :=
{
C ∈ 2X \ {∅} : C bounded

}
. (1.1)

For C,D ∈ b(X), define their nonsymmetric Hausdorff distance by

h(C,D) := sup
c∈C

inf
d∈D

‖c − d‖ (1.2)
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and their symmetric Hausdorff distance (or Hausdorff-Pompeiu distance) by

H(C,D) := max{h(C,D), h(D,C)}. (1.3)

This H is a pseudometric on b(X), since

H(C,D) = H
(
C,D

)
= H

(
C,D

)
= H

(
C,D

)
, (1.4)

where A denotes the closure of A ∈ 2X .
Around 1955, Darbo [1] ensured the existence of fixed points for so-called condensing

operators on Banach spaces, a result which generalizes both Schauder fixed point theorem
and Banach contractive mapping principle. More precisely, Darbo proved that if M ∈ b(X)
is closed and convex, κ is a measure of noncompactness, and f : M → M is continuous
and κ-contractive, that is, κ(f(A)) ≤ rκ(A) (A ∈ b(M)) for some r ∈]0, 1[, then f has a fixed
point. Below we recall the axiomatic definition of a regular measure of noncompactness on
X; we refer to [2] for details.

Definition 1.1. A function κ : b(X) → [0,∞[ will be called a regular measure of
noncompactness if κ satisfies the following axioms, for A,B ∈ b(X), and λ ∈ K:

(1) κ(A) = 0 if, and only if, A is compact.

(2) κ(coA) = κ(A) = κ(A), where coA denotes the convex hull of A.

(3) (monotonicity) A ⊂ B implies κ(A) ≤ κ(B).

(4) (maximum property) κ(A ∪ B) = max{κ(A), κ(B)}.
(5) (homogeneity) κ(λA) = |λ|κ(A).

(6) (subadditivity) κ(A + B) ≤ κ(A) + κ(B).

A regular measure of noncompactness κ possesses the following properties:

(1) κ(A) ≤ κ(BX)δ(A), where

δ(A) := sup
x,y∈A

‖x − y‖ (1.5)

is the diameter of A ∈ b(X) (cf. [2, Theorem 3.2.1]).

(2) (Hausdorff continuity) |κ(A) − κ(B)| ≤ κ(BX)H(A,B) (A,B ∈ b(X)) [2, page 12].

(3) (Cantor property) If {An}∞n=0 ⊂ b(X) is a decreasing sequence of closed sets with
limn→∞κ(An) = 0, then A∞ =

⋂∞
n=0 An /= ∅, and κ(A∞) = 0 [3, Lemma 2.1].

In Sections 2 and 3 of this paper we introduce two mutually equivalent measures of
noncircularity, the kernel (that is, the class of sets which are mapped to 0) of any of them
consisting of all those C ∈ b(X) such that C is balanced. Recall that A ∈ 2X \ {∅} is balanced
provided that μA ⊂ A for all μ ∈ K with |μ| ≤ 1. For example, in R the only bounded balanced
sets are the open or closed intervals centered at the origin. Similarly, in C as a complex vector
space the only bounded balanced sets are the open or closed disks centered at the origin,
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while in R
2 as a real vector space there are many more bounded balanced sets, namely all

those bounded sets which are symmetric with respect to the origin.
Denoting by γ either one of the two measures introduced, in Section 4 we prove a

result of Darbo type for γ-contractive multimaps (see Section 4 for precise definitions). It is
shown that the origin is a fixed point of every γ-contractive multimap F with closed values
defined on a closed set M ∈ b(X) such that F(M) ⊂ M.

2. The E-L Measure of Noncircularity

The definition of the Eisenfeld-Lakshmikantham measure of nonconvexity [4] motivates the
following.

Definition 2.1. For C ∈ b(X), set

α(C) := H(baC,C) = h(baC,C), (2.1)

where baC denotes the balanced hull of C, that is,

baC :=
{
μc :

∣∣μ∣∣ ≤ 1, c ∈ C
}
. (2.2)

By analogy with the Eisenfeld-Lakshmikanthammeasure of nonconvexity, we shall refer to α
as the E-L measure of noncircularity.

Next we gather some properties of α which justify such a denomination. Their proofs
are fairly direct, but we include them for the sake of completeness.

Proposition 2.2. In the above notation, for C,D ∈ b(X), and λ ∈ K, the following hold:

(1) α(C) = 0 if, and only if, C is balanced.

(2) α(coC) ≤ α(C) = α(C).

(3) α(C ∪D) ≤ max{α(C), α(D)}.
(4) α(λC) = |λ|α(C).
(5) α(C +D) ≤ α(C) + α(D).

(6) α(C) ≤ 2‖C‖, where

‖C‖ := sup
c∈C

‖c‖ (2.3)

is the norm of C. In particular, if 0 ∈ C then α(C) ≤ 2δ(C), where

δ(C) := sup
x,y∈C

‖x − y‖ (2.4)

is the diameter of C.

(7) |α(C) − α(D)| ≤ 2H(C,D).
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Proof. Let baC denote the closed balanced hull of C. The identity

ba C = baC (2.5)

holds. Indeed, C ⊂ baC implies ba C ⊂ baC. Conversely, C ⊂ ba C implies baC ⊂ ba C.

(1) By definition, α(C) = H(baC,C) = h(baC,C) = 0 if, and only if, baC ⊂ C or,
equivalently, baC ⊂ C. This means that baC = C, which by (2.5) occurs if, and
only if, C is balanced.

(2) In view of (1.4) and (2.5),

α
(
C
)
= H

(
baC,C

)
= H

(
ba C,C

)

= H
(
baC,C

)
= H(baC,C) = α(C).

(2.6)

It only remains to prove that α(coC) ≤ α(C). Suppose α(C) < ε, so that baC ⊂
C+εBX . The set coC+εBX being convex, it follows that bacoC ⊂ cobaC ⊂ coC+εBX ,
whence α(coC) ≤ ε. From the arbitrariness of ε we conclude that α(coC) ≤ α(C).

(3) Assume max{α(C), α(D)} < ε, that is, α(C) < ε and α(D) < ε. Then baC ⊂ C + εBX ,
baD ⊂ D+εBX , and the fact that baC∪baD is a balanced set containing C∪D, imply

ba(C ∪D) ⊂ baC ∪ baD ⊂ (C ∪D) + εBX, (2.7)

whence α(C ∪D) ≤ ε. The arbitrariness of ε yields α(C ∪D) ≤ max{α(C), α(D)}.
(4) For λ = 0, this is obvious. Suppose λ/= 0. If |λ|α(C) < ε then baC ⊂ C + (ε/|λ|)BX =

C + (ε/λ)BX , whence baλC = λbaC ⊂ λC + εBX . Thus α(λC) ≤ ε, and from the
arbitrariness of ε we infer that α(λC) ≤ |λ|α(C). Conversely, assume α(λC) < ε.
Then baλC ⊂ λC + εBX , whence baC = (1/λ)baλC ⊂ C + (ε/λ)BX = C + (ε/|λ|)BX .
Therefore α(C) ≤ ε/|λ|, and from the arbitrariness of ε we conclude that |λ|α(C) ≤
α(λC).

(5) Let α(C) + α(D) < ε and choose ε1, ε2 > 0 such that ε = ε1 + ε2, α(C) < ε1 and
α(D) < ε2. Then baC ⊂ C + ε1BX , baD ⊂ D + ε2BX and the fact that baC + baD is a
balanced set containing C +D, imply ba(C +D) ⊂ baC + baD ⊂ C +D + εBX , so that
α(C +D) ≤ ε. The arbitrariness of ε yields α(C +D) ≤ α(C) + α(D).

(6) Pick x = μu ∈ baC, with |μ| ≤ 1 and u ∈ C, and let c ∈ C. As

‖x − c‖ = ‖μu − c‖ ≤ ∣∣μ∣∣‖u‖ + ‖c‖ ≤ 2‖C‖, (2.8)

we obtain

α(C) = sup
x∈baC

inf
c∈C

‖x − c‖ ≤ 2‖C‖ ≤ 2δ(C), (2.9)

where for the validity of the latter estimate we have assumed 0 ∈ C.
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(7) It is enough to show that

α(C) ≤ α(D) + h(C,D) + h(D,C), (2.10)

since then, by symmetry,

α(D) ≤ α(C) + h(C,D) + h(D,C), (2.11)

whence the desired result. Now

α(C) = H(baC,C) = h(baC,C)

≤ h(baC, baD) + h(baD,D) + h(D,C)

= h(baC, baD) + α(D) + h(D,C).

(2.12)

To complete the proof we will establish that h(baC, baD) ≤ h(C,D). Indeed, suppose
h(C,D) < ε, and let x = μc ∈ baC, with |μ| ≤ 1 and c ∈ C. Then there exists d ∈ D such
that ‖c − d‖ < ε. Consequently, for y = μd ∈ baD we have

‖x − y‖ = ‖μc − μd‖ =
∣∣μ∣∣‖c − d‖ < ε. (2.13)

This means that baC ⊂ baD + εBX , so that h(baC, baD) ≤ ε. From the arbitrariness of ε we
conclude that h(baC, baD) ≤ h(C,D).

Remark 2.3. The identity α(coC) = α(C) (C ∈ b(X))may not hold, as can be seen by choosing
C = {−1, 1} ∈ 2R. In fact, coC = [−1, 1] is balanced, while C is not. Therefore, α(coC) = 0 <
α(C).

In general, the identity α(C ∪ D) = max{α(C), α(D)} (C,D ∈ b(X)) does not hold
either. To show this, choose C and D, respectively, as the upper and lower closed half unit
disks of the complex plane. Then C ∪D equals the closed unit disk, which is balanced, while
C, D are not. Thus, α(C ∪D) = 0 < max{α(C), α(D)}.

Note that α is not monotone: from C,D ∈ b(X) and C ⊂ D, it does not necessarily
follow that α(C) ≤ α(D). Otherwise, α(D) = 0 would imply α(C) = 0, which is plainly false
since not every subset of a balanced set is balanced.

3. The Hausdorff Measure of Noncircularity

The following definition is motivated by that of the Hausdorff measure of noncompactness
(cf. [2, Theorem 2.1]).

Definition 3.1. We define the Hausdorff measure of noncircularity of C ∈ b(X) by

β(C) := H(C, bb(X)) = inf
B∈bb(X)

H(C,B), (3.1)

where bb(X) denotes the class of all balanced sets in b(X).
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In general, α(C)/= β(C), as the next example shows.

Example 3.2. Let C = {1} ∈ 2R. Then baC = [−1, 1], and

α(C) = sup
|x|≤1

|x − 1| = 2. (3.2)

If Br = [−r, r] (r ≥ 0) is any closed bounded balanced set in R, we have

h(C,Br) = inf
|x|≤r

|x − 1|, h(Br, C) = sup
|x|≤r

|x − 1|, (3.3)

so that

H(C,Br) = max{h(C,Br), h(Br, C)} = h(Br, C). (3.4)

Since

h(Br, C) = sup
|x|≤r

|x − 1| = 1 + r, (3.5)

we obtain

β(C) = inf
r≥0

H(C,Br) = inf
r≥0

(1 + r) = 1. (3.6)

Thus, 2β(C) = 2 = α(C).

Next we compare the measures α and β and establish some properties for the
latter. Again, most proofs derive directly from the definitions, but we include them for
completeness.

Proposition 3.3. In the above notation, for C,D ∈ b(X), and λ ∈ K, the following hold:

(1) β(C) ≤ α(C) ≤ 2β(C), and the estimates are sharp.

(2) β(C) = 0 if, and only if, C is balanced.

(3) β(coC) ≤ β(C) = β(C).

(4) β(C ∪D) ≤ max{β(C), β(D)}.
(5) β(λC) = |λ|β(C).
(6) β(C +D) ≤ β(C) + β(D).

(7) β(C) ≤ 2‖C‖, where

‖C‖ := sup
c∈C

‖c‖ (3.7)
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is the norm of C. In particular, if 0 ∈ C then β(C) ≤ 2δ(C), where

δ(C) := sup
x,y∈C

‖x − y‖ (3.8)

is the diameter of C.

(8) |β(C) − β(D)| ≤ H(C,D).

Proof. (1) That β(C) ≤ α(C) follows immediately from the definitions of β and α. Let ε > 2β(C)
and choose B ∈ bb(X) satisfyingH(C,B) < ε/2, so that C ⊂ B+(ε/2)BX and B ⊂ C+(ε/2)BX .
Then baC ⊂ B + (ε/2)BX and B ⊂ baC + (ε/2)BX , thus proving that H(baC,B) ≤ ε/2. Now

α(C) = H(baC,C) ≤ H(baC,B) +H(B,C) < ε, (3.9)

and the arbitrariness of ε yields α(C) ≤ 2β(C). Example 3.2 shows that this estimate is sharp.
In order to exhibit a set C ∈ 2R such that β(C) = α(C), let C = {−1, 1}. Then baC = [−1, 1], and

α(C) = sup
|x|≤1

inf
c∈C

|x − c| = 1. (3.10)

On the other hand, let Br = [−r, r] (r ≥ 0) be any closed bounded balanced subset of R. For a
fixed r ≥ 0, there holds

h(Br, C) = sup
|x|≤r

inf
c∈C

|x − c| =
⎧
⎨
⎩
1, r ≤ 1

max{1, r − 1}, r > 1,

h(C,Br) = sup
c∈C

inf
|x|≤r

|x − c| =
⎧
⎨
⎩
1 − r, r ≤ 1

0, r > 1.

(3.11)

Therefore,

H(Br, C) = max{h(Br, C), h(C,Br)} =

⎧
⎨
⎩
1, r ≤ 1

max{1, r − 1}, r > 1,
(3.12)

so that

β(C) = inf
r≥0

H(Br, C) = 1 = α(C). (3.13)

(2) Let C ∈ b(X). As we just proved, β(C) = 0 if, and only if, α(C) = 0. In view of
Proposition 2.2, this occurs if, and only if, C is balanced.

(3) By (1.4), there holds

β(C) = inf
B∈bb(X)

H(C,B) = inf
B∈bb(X)

H
(
C,B

)
= β

(
C
)
. (3.14)



8 Fixed Point Theory and Applications

Now we only need to show that β(coC) ≤ β(C). Assuming β(C) < ε, choose B ∈ bb(X) for
which H(C,B) < ε, so that

C ⊂ B + εBX, B ⊂ C + εBX. (3.15)

The sum of convex sets being convex, we infer

coC ⊂ coB + εBX, coB ⊂ coC + εBX. (3.16)

Since coB is balanced we obtain β(coC) ≤ ε and, as ε is arbitrary, we conclude that β(coC) ≤
β(C).

(4) Suppose max{β(C), β(D)} < ε, that is, β(C) < ε and β(D) < ε. Pick B1, B2 ∈ bb(X)
satisfying H(C,B1) < ε and H(D,B2) < ε. Then

C ⊂ B1 + εBX, B1 ⊂ C + εBX,

D ⊂ B2 + εBX, B2 ⊂ D + εBX.
(3.17)

Thus we get

C ∪D ⊂ (B1 ∪ B2) + εBX, B1 ∪ B2 ⊂ (C ∪D) + εBX, (3.18)

whence H(C ∪ D,B1 ∪ B2) ≤ ε and, B1 ∪ B2 being balanced, also β(C ∪ D) ≤ ε. From the
arbitrariness of ε we conclude that β(C ∪D) ≤ max{β(C), β(D)}.

(5) If λ = 0, the property is obvious. Assume λ/= 0. Given ε > |λ|β(C), there exists
B ∈ bb(X) such that

C ⊂ B +
(

ε

|λ|
)
BX = B +

( ε

λ

)
BX,

B ⊂ C +
(

ε

|λ|
)
BX = C +

( ε

λ

)
BX.

(3.19)

Then

λC ⊂ λB + εBX, λB ⊂ λC + εBX, (3.20)

so that H(λC, λB) ≤ ε. Since λB is balanced, it follows that β(λC) ≤ ε and, ε being arbitrary,
we obtain β(λC) ≤ |λ|β(C). Conversely, let ε > β(λC). Then there exists B ∈ bb(X) such that

λC ⊂ B + εBX, B ⊂ λC + εBX. (3.21)
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Hence,

C ⊂
(
1
λ

)
B +

( ε

λ

)
BX =

(
1
λ

)
B +

(
ε

|λ|
)
BX,

(
1
λ

)
B ⊂ C +

( ε

λ

)
BX = C +

(
ε

|λ|
)
BX.

(3.22)

Therefore, H(C, (1/λ)B) ≤ ε/|λ|. Since (1/λ)B is balanced we conclude that β(C) ≤ ε/|λ|, or
|λ|β(C) ≤ ε. The arbitrariness of ε finally yields |λ|β(C) ≤ β(λC).

(6) Let β(C) + β(D) < ε and let ε1, ε2 > 0 satisfy ε = ε1 + ε2, β(C) < ε1 and β(D) < ε2.
Choose B1, B2 ∈ bb(X) such that H(C,B1) < ε1 andH(D,B2) < ε2. Then

C ⊂ B1 + ε1BX, B1 ⊂ C + ε1BX,

D ⊂ B2 + ε2BX, B2 ⊂ D + ε2BX.
(3.23)

Thus we obtain

C +D ⊂ B1 + B2 + εBX, B1 + B2 ⊂ C +D + εBX, (3.24)

whence H(C + D,B1 + B2) ≤ ε and, B1 + B2 being balanced, also β(C + D) ≤ ε. From the
arbitrariness of ε we conclude that β(C +D) ≤ β(C) + β(D).

(7) This follows from Proposition 2.2.
(8) For B ∈ bb(X) there holdsH(C,B) ≤ H(C,D)+H(D,B), whence β(C) ≤ H(C,D)+

β(D). Therefore, β(C) − β(D) ≤ H(C,D). By symmetry, β(D) − β(C) ≤ H(C,D), thus yielding
|β(C) − β(D)| ≤ H(C,D), as claimed.

Remark 3.4. By the same reasons as α, the measure β fails to be monotone and, in general, the
identities β(coC) = β(C) and

β(C ∪D) = max
{
β(C), β(D)

}
(3.25)

do not hold (cf. Remark 2.3).

4. A Fixed Point Theorem for Multimaps

The study of fixed points for multivalued mappings was initiated by Kakutani [5] in 1941 in
finite dimensional spaces and extended to infinite dimensional Banach spaces by Bohnenblust
and Karlin [6] in 1950 and to locally convex spaces by Fan [7] in 1952. Since then, it
has become a very active area of research, both from the theoretical point of view and in
applications. In this section we use the previous theory to obtain a fixed point theorem for
multifunctions in the Banach space X. We begin by recalling some definitions.

Definition 4.1. Let M ∈ 2X \ {∅}. A multimap or multifunction F from M to the class 2Y \ {∅}
of all nonempty subsets of a given set Y , written F : M � Y , is any map from M to 2Y \ {∅}.
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If F is a multifunction and A ∈ 2M, then

F(A) :=
⋃
x∈A

F(x). (4.1)

Definition 4.2. GivenM ∈ 2X\{∅}, let F : M � X, and let γ represent any of the twomeasures
of noncircularity introduced above. A fixed point of F is a point x ∈ M such that x ∈ F(x).
The multifunction F will be called

(i) a γ-contraction (of constant k), if

γ(F(B)) ≤ kγ(B)
(
B ∈ b(X) ∩ 2M

)
(4.2)

for some k ∈]0, 1[;
(ii) a (γ, φ)-contraction, if

γ(F(B)) ≤ φ
(
γ(B)

) (
B ∈ b(X) ∩ 2M

)
, (4.3)

where φ : [0,∞[→ [0,∞[ is a comparison function, that is, φ is increasing, φ(0) = 0,
and φn(r) → 0 as n → ∞ for each r > 0.

Note that a γ-contraction of constant k corresponds to a (γ, φ)-contraction with φ(r) =
kr (r ≥ 0).

In order to establish our main result, we prove a property of Cantor type for the E-L
and Hausdorff measures of noncircularity.

Proposition 4.3. Let X be a Banach space and {Ak}∞k=0 ⊂ b(X) a decreasing sequence of closed sets
such that limk→∞γ(Ak) = 0, where γ denotes either α or β. Then the set

A∞ :=
∞⋂
k=0

Ak (4.4)

satisfies

A∞ =
∞⋂
k=0

baAk. (4.5)

Hence A∞ belongs to b(X) and is closed and balanced.

Proof. By Proposition 3.3 we have limk→∞α(Ak) = 0 if, and only if, limk→∞β(Ak) = 0. Thus
for the proof it suffices to set γ = α.

Since Ak ⊂ baAk (k ∈ N), necessarily

A∞ =
∞⋂
k=0

Ak ⊂
∞⋂
k=0

baAk. (4.6)
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Conversely, let x ∈ ⋂∞
k=0 baAk. As limk→∞α(Ak) = 0, to every ε > 0 there corresponds N ∈ N

such that n ∈ N, n ≥ N implies baAn ⊂ An + εBX . This yields an increasing sequence {nm}∞m=1
of positive integers and vectors anm ∈ Anm which satisfy ‖x−anm‖ ≤ 1/m (m ∈ N, m ≥ 1). Thus
the sequence {anm}∞m=1 converges to x as m → ∞. Moreover, since anm ∈ Anm ⊂ Ak (m, k ∈
N, m ≥ 1, nm ≥ k) and Ak is closed, we find that x ∈ Ak (k ∈ N). In other words, x ∈ A∞.
This proves (4.5).

Note that ∅/=An ⊂ baAn implies 0 ∈ baAn (n ∈ N), whence 0 ∈ A∞ /= ∅. Since the
intersection of closed, bounded and balanced sets preserves those properties, so doesA∞.

Remark 4.4. In contrast to Proposition 4.3, the Eisenfeld-Lakshmikantham measure of
nonconvexity does not necessarily satisfy a Cantor property. Indeed, in real, nonreflexive
Banach spaces one can find a decreasing sequence {An}∞n=1 of nonempty, closed, bounded,
convex sets with empty intersection. To construct such a sequence, just take a unitary
continuous linear functional f in a real, nonreflexive Banach space X which fails to be norm-
attaining on the closed unit ball BX of X (the existence of such an f is guaranteed by a
classical, well-known theorem of James, cf. [8]), and define

An =
{
x ∈ BX : f(x) ≥ 1 − 1

n

}
(n ∈ N, n ≥ 1). (4.7)

Now we are in a position to derive the announced result. Here, and in the sequel, γ
will stand for any one of the measures of noncircularity α or β.

Theorem 4.5. Let X be a Banach space, and let M ∈ b(X) be closed. If F : M � M is a (γ, φ)-
contraction with closed values, then 0 ∈ M and 0 is a fixed point of F.

Proof. Our hypotheses imply

Fn+1(M) ⊂ Fn(M) (n ∈ N),

lim
n→∞

γ(Fn(M)) ≤ lim
n→∞

φn(γ(M)
)
= 0.

(4.8)

Setting An = Fn(M) (n ∈ N), from Propositions 2.2 and 3.3 we find that {An}∞n=0 ⊂ b(X) is a
decreasing sequence of closed sets with limn→∞γ(An) = 0. Proposition 4.3 shows that A∞ is
a nonempty, balanced subset of M; in particular, 0 ∈ A∞ ⊂ M. Now, {0} being balanced, we
have

γ(F(0)) ≤ φ
(
γ({0})) = 0, (4.9)

whence γ(F(0)) = 0. This shows that the nonempty set F(0) = F(0) is balanced and forces
0 ∈ F(0), as asserted.

Corollary 4.6. Let X be a Banach space, and let M ∈ b(X) be closed. If F : M � M is a γ-
contraction with closed values, then 0 ∈ M and 0 is a fixed point of F.

Proof. It suffices to apply Theorem 4.5, with φ(r) = kr (r ≥ 0), for k ∈]0, 1[.
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