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Suppose that K is a nonempty closed convex subset of a complete CAT(0) space X with the
nearest point projection P from X onto K. Let T : K → X be a nonexpansive nonself mapping
with F(T) := {x ∈ K : Tx = x}/= ∅. Suppose that {xn} is generated iteratively by x1 ∈ K,
xn+1 = P((1 − αn)xn ⊕ αnTP[(1 − βn)xn ⊕ βnTxn]), n ≥ 1, where {αn} and {βn} are real sequences
in [ε, 1 − ε] for some ε ∈ (0, 1). Then {xn}Δ-converges to some point x∗ in F(T). This is an analog
of a result in Banach spaces of Shahzad (2005) and extends a result of Dhompongsa and Panyanak
(2008) to the case of nonself mappings.

1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic
triangle in X is at least as “thin” as its comparison triangle in the Euclidean plane. It is
well known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT(0) space. Other examples include Pre-Hilbert spaces, R-trees
(see [1]), Euclidean buildings (see [2]), the complex Hilbert ball with a hyperbolic metric (see
[3]), and many others. For a thorough discussion of these spaces and of the fundamental role
they play in geometry see Bridson and Haefliger [1]. The work by Burago et al. [4] contains
a somewhat more elementary treatment, and by Gromov [5] a deeper study.

Fixed point theory in a CAT(0) space was first studied by Kirk (see [6, 7]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then the fixed point theory
for single-valued and multivalued mappings in CAT(0) spaces has been rapidly developed
and much papers have appeared (see, e.g., [8–19]).

In 2008, Kirk and Panyanak [20] used the concept of Δ-convergence introduced by
Lim [21] to prove the CAT(0) space analogs of some Banach space results which involve
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weak convergence, and Dhompongsa and Panyanak [22] obtained Δ-convergence theorems
for the Picard, Mann and Ishikawa iterations in the CAT(0) space setting.

The purpose of this paper is to study the iterative scheme defined as follows. Let K
is a nonempty closed convex subset of a complete CAT(0) space X with the nearest point
projection P from X onto K. If T : K → X is a nonexpansive mapping with nonempty fixed
point set, and if {xn} is generated iteratively by

x1 ∈ K, xn+1 = P
(
(1 − αn)xn ⊕ αnTP

[(
1 − βn

)
xn ⊕ βnTxn

])
, (1.1)

where {αn} and {βn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1), we show that the
sequence {xn} defined by (1.1) Δ-converges to a fixed point of T. This is an analog of a result
in Banach spaces of Shahzad [23] and also extends a result of Dhompongsa and Panyanak
[22] to the case of nonself mappings. It is worth mentioning that our result immediately
applies to any CAT(κ) space with κ ≤ 0 since any CAT(κ) space is a CAT(κ′) space for every
κ′ ≥ κ (see [1, page 165]).

2. Preliminaries and Lemmas

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic
from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y,
and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique
this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is
exactly one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said to be convex if
Y includes every geodesic segment joining any two of its points.

A geodesic triangle �(x1, x2, x3) in a geodesic metric space (X, d) consists of three points
x1, x2, x3 in X (the vertices of �) and a geodesic segment between each pair of vertices (the
edges of �). A comparison triangle for the geodesic triangle �(x1, x2, x3) in (X, d) is a triangle
�(x1, x2, x3) := �(x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic space is said to be a CAT(0) space if all geodesic triangles of appropriate
size satisfy the following comparison axiom.

CAT(0): Let � be a geodesic triangle in X and let � be a comparison triangle for �. Then �
is said to satisfy the CAT(0) inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d
(
x, y

) ≤ dE2
(
x, y

)
. (2.1)

If x, y1, y2 are points in a CAT(0) space and if y0 is themidpoint of the segment [y1, y2],
then the CAT(0) inequality implies

d
(
x, y0

)2 ≤ 1
2
d
(
x, y1

)2 +
1
2
d
(
x, y2

)2 − 1
4
d
(
y1, y2

)2
. (CN)
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This is the (CN) inequality of Bruhat and Tits [24]. In fact (cf. [1, page 163]), a geodesic space
is a CAT(0) space if and only if it satisfies the (CN) inequality.

We now collect some elementary facts about CAT(0) spaces which will be used
frequently in the proofs of our main results.

Lemma 2.1. Let (X, d) be a CAT(0) space.
(i) [1, Proposition 2.4] LetK be a convex subset of X which is complete in the induced metric.

Then, for every x ∈ X, there exists a unique point P(x) ∈ K such that d(x, P(x)) = inf{d(x, y) :
y ∈ K}. Moreover, the map x �→ P(x) is a nonexpansive retract from X onto K.

(ii) [22, Lemma 2.1(iv)] For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y]
such that

d(x, z) = td
(
x, y

)
, d

(
y, z

)
= (1 − t)d

(
x, y

)
. (2.2)

one uses the notation (1 − t)x ⊕ ty for the unique point z satisfying (2.2).
(iii) [22, Lemma 2.4] For x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z

)
. (2.3)

(iv) [22, Lemma 2.5] For x, y, z ∈ X and t ∈ [0, 1], one has

d
(
(1 − t)x ⊕ ty, z

)2 ≤ (1 − t)d(x, z)2 + td
(
y, z

)2 − t(1 − t)d
(
x, y

)2
. (2.4)

Let K be a nonempty subset of a CAT(0) space X and let T : K → X be a mapping. T
is called nonexpansive if for each x, y ∈ K,

d
(
Tx, Ty

) ≤ d
(
x, y

)
. (2.5)

A point x ∈ K is called a fixed point of T if x = Tx. We shall denote by F(T) the set of fixed
points of T. The existence of fixed points for nonexpansive nonself mappings in a CAT(0)
space was proved by Kirk [6] as follows.

Theorem 2.2. Let K be a bounded closed convex subset of a complete CAT(0) space X. Suppose that
T : K → X is a nonexpansive mapping for which

inf{d(x, T(x)) : x ∈ K} = 0. (2.6)

Then T has a fixed point in K.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X,we set

r(x, {xn}) = lim sup
n→∞

d(x, xn). (2.7)

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}, (2.8)
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and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. (2.9)

It is known (see, e.g., [12, Proposition 7]) that in a CAT(0) space, A({xn}) consists of
exactly one point.

We now give the definition of Δ-convergence.

Definition 2.3 (see [20, 21]). A sequence {xn} in a CAT(0) space X is said to Δ-converge to
x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this
case one writes Δ-limnxn = x and call x the Δ-limit of {xn}.

The following lemma was proved by Dhompongsa and Panyanak (see [22, Lemma
2.10]).

Lemma 2.4. Let K be a closed convex subset of a complete CAT(0) space X, and let T : K → X be a
nonexpansive mapping. Suppose {xn} is a bounded sequence in K such that limnd(xn, Txn) = 0 and
{d(xn, v)} converges for all v ∈ F(T), then ωw(xn) ⊂ F(T). Here ωw(xn) :=

⋃
A({un}) where the

union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of exactly one point.

We now turn to a wider class of spaces, namely, the class of hyperbolic spaces, which
contains the class of CAT(0) spaces (see Lemma 2.8).

Definition 2.5 (see [16]). A hyperbolic space is a triple (X, d,W)where (X, d) is a metric space
and W : X ×X × [0, 1] → X is such that

(W1) d(z,W(x, y, α)) ≤ (1 − α)d(z, x) + αd(z, y);

(W2) d(W(x, y, α),W(x, y, β)) = |α − β|d(x, y);
(W3) W(x, y, α) = W(y, x, 1 − α);

(W4) d(W(x, z, α),W(y,w, α)) ≤ (1 − α)d(x, y) + αd(z,w)

for all x, y, z,w ∈ X, α, β ∈ [0, 1].

It follows from (W1) that for each x, y ∈ X and α ∈ [0, 1],

d
(
x,W

(
x, y, α

)) ≤ αd
(
x, y

)
, d

(
y,W

(
x, y, α

)) ≤ (1 − α)d
(
x, y

)
. (2.10)

In fact, we have

d
(
x,W

(
x, y, α

))
= αd

(
x, y

)
, d

(
y,W

(
x, y, α

))
= (1 − α)d

(
x, y

)
, (2.11)

since if

d
(
x,W

(
x, y, α

))
< αd

(
x, y

)
or d

(
y,W

(
x, y, α

))
< (1 − α)d

(
x, y

)
, (2.12)
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we get

d
(
x, y

) ≤ d
(
x,W

(
x, y, α

))
+ d

(
W

(
x, y, α

)
, y

)

< αd
(
x, y

)
+ (1 − α)d

(
x, y

)

= d
(
x, y

)
,

(2.13)

which is a contradiction. By comparing between (2.2) and (2.11), we can also use the notation
(1 − α)x ⊕ αy forW(x, y, α) in a hyperbolic space (X, d,W).

Definition 2.6 (see [16]). The hyperbolic space (X, d,W) is called uniformly convex if for any
r > 0, and ε ∈ (0, 2] there exists a δ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r

d
(
y, a

) ≤ r

d
(
x, y

) ≥ εr

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ d

(
1
2
x ⊕ 1

2
y, a

)
≤ (1 − δ)r. (2.14)

Amapping η : (0,∞) × (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0 and
ε ∈ (0, 2] is called a modulus of uniform convexity.

Lemma 2.7 (see [16, Lemma 7]). Let (X, d,W) be a uniformly convex hyperbolic with modulus of
uniform convexity η. For any r > 0, ε ∈ (0, 2], λ ∈ [0, 1] and a, x, y ∈ X,

d(x, a) ≤ r

d
(
y, a

) ≤ r

d
(
x, y

) ≥ εr

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ d

(
(1 − λ)x ⊕ λy, a

) ≤ (
1 − 2λ(1 − λ)η(r, ε)

)
r. (2.15)

Lemma 2.8 (see [16, Proposition 8]). Assume that X is a CAT(0) space. Then X is uniformly
convex, and

η(r, ε) =
ε2

8
(2.16)

is a modulus of uniform convexity.

The following result is a characterization of uniformly convex hyperbolic spaces which
is an analog of Lemma 1.3 of Schu [25]. It can be applied to a CAT(0) space as well.

Lemma 2.9. Let (X, d,W) be a uniformly convex hyperbolic space with modulus of convexity η,
and let x ∈ X. Suppose that η increases with r (for a fixed ε) and suppose that {tn} is a sequence
in [b, c] for some b, c ∈ (0, 1) and {xn}, {yn} are sequences in X such that lim supnd(xn, x) ≤
r, lim supnd(yn, x) ≤ r, and limnd((1 − tn)xn ⊕ tnyn, x) = r for some r ≥ 0. Then

lim
n→∞

d
(
xn, yn

)
= 0. (2.17)
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Proof. The case r = 0 is trivial. Now suppose r > 0. If it is not the case that d(xn, yn) → 0 as
n → ∞, then there are subsequences, denoted by {xn} and {yn}, such that

inf
n
d
(
xn, yn

)
> 0. (2.18)

Choose ε ∈ (0, 1] such that

d
(
xn, yn

) ≥ ε(r + 1) > 0 ∀n ∈ N. (2.19)

Since 0 < b(1 − c) ≤ 1/2 and 0 < η(r, ε) ≤ 1, 0 < 2b(1 − c)η(r, ε) ≤ 1. This implies 0 ≤
1 − 2b(1 − c)η(r, ε) < 1. Choose R ∈ (r, r + 1) such that

(
1 − 2b(1 − c)η(r, ε)

)
R < r. (2.20)

Since

lim sup
n

d(xn, x) ≤ r, lim sup
n

d
(
yn, x

) ≤ r, r < R, (2.21)

there are further subsequences again denoted by {xn} and {yn}, such that

d(xn, x) ≤ R, d
(
yn, x

) ≤ R, d
(
xn, yn

) ≥ εR ∀n ∈ N. (2.22)

Then by Lemma 2.7 and (2.20),

d
(
(1 − tn)xn ⊕ tnyn, x

) ≤ (
1 − 2tn(1 − tn)η(R, ε)

)
R

≤ (
1 − 2b(1 − c)η(r, ε)

)
R < r

(2.23)

for all n ∈ N. Taking n → ∞,we obtain

lim
n→∞

d
(
(1 − tn)xn ⊕ tnyn, x

)
< r, (2.24)

which contradicts to the hypothesis.

3. Main Results

In this section, we prove our main theorems.

Theorem 3.1. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → X be a nonexpansive mapping with x∗ ∈ F(T) := {x ∈ K : Tx = x}. Let {αn} and {βn} be
sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Starting from arbitrary x1 ∈ K, define the sequence {xn}
by the recursion (1.1). Then limn→∞d(xn, x

∗) exists.
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Proof. By Lemma 2.1(i) the nearest point projection P : X → K is nonexpansive. Then

d(xn+1, x
∗) = d

(
P
(
(1 − αn)xn ⊕ αnTP

[(
1 − βn

)
xn ⊕ βnTxn

])
, Px∗)

≤ d
(
(1 − αn)xn ⊕ αnTP

[(
1 − βn

)
xn ⊕ βnTxn

]
, x∗)

≤ (1 − αn)d(xn, x
∗) + αnd

(
TP

[(
1 − βn

)
xn ⊕ βnTxn

]
, Tx∗)

≤ (1 − αn)d(xn, x
∗) + αnd

(
P
[(
1 − βn

)
xn ⊕ βnTxn

]
, x∗)

≤ (1 − αn)d(xn, x
∗) + αn

[(
1 − βn

)
d(xn, x

∗) + βnd(Txn, Tx
∗)
]

≤ (1 − αn)d(xn, x
∗) + αn

[(
1 − βn

)
d(xn, x

∗) + βnd(xn, x
∗)
]

= d(xn, x
∗).

(3.1)

Consequently, we have

d(xn, x
∗) ≤ d(x1, x

∗) ∀n ≥ 1. (3.2)

This implies that {d(xn, x
∗)}∞n=1 is bounded and decreasing. Hence limnd(xn, x

∗) exists.

Theorem 3.2. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → X be a nonexpansive mapping with F(T)/= ∅. Let {αn} and {βn} be sequences in [ε, 1 − ε]
for some ε ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.1). Then

lim
n→∞

d(xn, Txn) = 0. (3.3)

Proof. Let x∗ ∈ F(T). Then, by Theorem 3.1, limnd(xn, x
∗) exists. Let

lim
n→∞

d(xn, x
∗) = r. (3.4)

If r = 0, then by the nonexpansiveness of T the conclusion follows. If r > 0, we let yn =
P[(1 − βn)xn ⊕ βnTxn]. By Lemma 2.1(iv) we have

d
(
yn, x

∗)2 = d
(
P
[
(1 − βn)xn ⊕ βnTxn

]
, Px∗)2

≤ d
(
(1 − βn)xn ⊕ βnTxn, x

∗)2

≤ (
1 − βn

)
d(xn, x

∗)2 + βnd(Txn, x
∗)2 − βn

(
1 − βn

)
d(xn, Txn)2

≤ (
1 − βn

)
d(xn, x

∗)2 + βnd(xn, x
∗)2

= d(xn, x
∗)2.

(3.5)

Therefore

d
(
yn, x

∗) ≤ d
((
1 − βn

)
xn ⊕ βnTxn, x

∗) ≤ d(xn, x
∗). (3.6)
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It follows from (3.6) and Lemma 2.1(iv) that

d(xn+1, x
∗)2 = d

(
P
[
(1 − αn)xn ⊕ αnTyn

]
, Px∗)2

≤ d
(
(1 − αn)xn ⊕ αnTyn, x

∗)2

≤ (1 − αn)d(xn, x
∗)2 + αnd

(
Tyn, x

∗)2 − αn(1 − αn)d
(
xn, Tyn

)2

≤ (1 − αn)d(xn, x
∗)2 + αnd(xn, x

∗)2 − αn(1 − αn)d
(
xn, Tyn

)2

= d(xn, x
∗)2 − αn(1 − αn)d

(
xn, Tyn

)2
.

(3.7)

Therefore

d(xn+1, x
∗)2 ≤ d(xn, x

∗)2 −W(αn)d
(
xn, Tyn

)2
, (3.8)

where W(α) = α(1 − α). Since αn ∈ [ε, 1 − ε],W(αn) ≥ ε2.
By (3.8), we have

ε2
∞∑

n=1

d
(
xn, Tyn

)2 ≤ d(x1, x
∗)2 < ∞. (3.9)

This implies limn→∞d(xn, Tyn) = 0.
Since T is nonexpansive, we get that d(xn, x

∗) ≤ d(xn, Tyn) + d(yn, x
∗), and hence

r ≤ lim inf
n→∞

d
(
yn, x

∗). (3.10)

On the other hand, we can get from (3.6) that

lim sup
n→∞

d
(
yn, x

∗) ≤ r. (3.11)

Thus limnd(yn, x
∗) = r. This fact and (3.6) imply

lim
n→∞

d
((
1 − βn

)
xn ⊕ βnTxn, x

∗) = r. (3.12)

Since T is nonexpansive,

lim sup
n→∞

d(Txn, x
∗) ≤ r. (3.13)
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It follows from (3.4), (3.12), (3.13), and Lemma 2.9 that

lim
n→∞

d(xn, Txn) = 0. (3.14)

This completes the proof.

The following theorem is an analog of [23, Theorem 3.5] and extends [22, Theorem
3.3] to nonself mappings.

Theorem 3.3. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → X be a nonexpansive mapping with F(T)/= ∅. Let {αn} and {βn} be sequences in [ε, 1 − ε]
for some ε ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.1). Then
{xn} Δ-converges to a fixed point of T.

Proof. By Theorem 3.2, limnd(xn, Txn) = 0. It follows from (3.2) that {d(xn, v)} is bounded
and decreasing for each v ∈ F(T), and so it is convergent. By Lemma 2.4, ωw(xn) consists of
exactly one point and is contained in F(T). This shows that the sequence {xn}Δ-converges to
an element of F(T).

We now state two strong convergence theorems. Recall that a mapping T : K → X is
said to satisfy Condition I ([26]) if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(r) > 0 for all r > 0 such that

d(x, Tx) ≥ f(d(x, F(T))) ∀x ∈ K. (3.15)

Theorem 3.4. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
T : K → X be a nonexpansive mapping with F(T)/= ∅. Let {αn} and {βn} be sequences in [ε, 1 − ε]
for some ε ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.1). Suppose
that T satisfies condition I. Then {xn} converges strongly to a fixed point of T.

Theorem 3.5. Let K be a nonempty compact convex subset of a complete CAT(0) space X and let
T : K → X be a nonexpansive mapping with F(T)/= ∅. Let {αn} and {βn} be sequences in [ε, 1 − ε]
for some ε ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion (1.1). Then
{xn} converges strongly to a fixed point of T.

Another result in [23] is that the author obtains a common fixed point theorem of two
nonexpansive self-mappings. The proof is metric in nature and carries over to the present
setting. Therefore, we can state the following result.

Theorem 3.6. Let K be a nonempty closed convex subset of a complete CAT(0) space X and let
S, T : K → K be two nonexpansive mappings with F(S) ∩ F(T)/= ∅. Let {αn} and {βn} be sequences
in [ε, 1 − ε] for some ε ∈ (0, 1). From arbitrary x1 ∈ K, define the sequence {xn} by the recursion

xn+1 = (1 − αn)xn ⊕ αnS
[(
1 − βn

)
xn ⊕ βnTxn

]
. (3.16)

Then {xn}Δ-converges to a common fixed point of S and T.
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