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We introduce two general iterative schemes for finding a common fixed point of a countable family
of relatively nonexpansive mappings in a Banach space. Under suitable setting, we not only obtain
several convergence theorems announced by many authors but also prove them under weaker
assumptions. Applications to the problem of finding a common element of the fixed point set
of a relatively nonexpansive mapping and the solution set of an equilibrium problem are also
discussed.

1. Introduction and Preliminaries

Let C be a nonempty subset of a Banach space E, and let T be a mapping from C into itself.
When {x,} is a sequence in E, we denote strong convergence of {x,} to x € Eby x, — x and
weak convergence by x, — x. We also denote the weak* convergence of a sequence {x;}} to
x* in the dual E* by x}, = x*. A point p € C is an asymptotic fixed point of T if there exists
{x,} in C such that x, — p and x,, - Tx,, — 0. We denote F(T) and F(T) by the set of fixed
points and of asymptotic fixed points of T, respectively. A Banach space E is said to be strictly
convex if ||x + y||/2 < 1 for x,y € S(E) = {z € E : ||z|| = 1} and x#y. It is also said to be
uniformly convex if for each e € (0,2], there exists 6 > 0 such that ||x + y||/2 < 1 -6 for
x,y € S(E) and ||x — y|| > €. The space E is said to be smooth if the limit

x+tx|| - ||x
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exists for all x,y € S(E). It is also said to be uniformly smooth if the limit exists uniformly in
x,y € S(E).

Many problems in nonlinear analysis can be formulated as a problem of finding a fixed
point of a certain mapping or a common fixed point of a family of mappings. This paper deals
with a class of nonlinear mappings, so-called relatively nonexpansive mappings introduced
by Matsushita and Takahashi [1]. This type of mappings is closely related to the resolvent of
maximal monotone operators (see [2—4]).

Let E be a smooth, strictly convex and reflexive Banach space and let C be a nonempty
closed convex subset of E. Throughout this paper, we denote by ¢ the function defined by

$(x,y) = IxIP - 2(x, Jy) + |ly||> Vx,y€E, (1.2)

where ] is the normalized duality mapping from E to the dual space E* given by the following
relation:

(x, Jx) = ||xII* = | Jx|* (1.3)

We know that if E is smooth, strictly convex, and reflexive, then the duality mapping ] is
single-valued, one-to-one, and onto. The duality mapping ] is said to be weakly sequentially
continuous if x, — x implies that Jx, Z Jx (see [5] for more details).

Following Matsushita and Takahashi [6], a mapping T : C — E is said to be relatively
nonexpansive if the following conditions are satisfied:

(R1) F(T) is nonempty;
(R2) ¢(u, Tx) < p(u,x) forallu € F(T), x € C;
(R3) E(T) = F(T).

If T satisfies (R1) and (R2), then T is called relatively quasi-nonexpansive [7]. Obviously,
relative nonexpansiveness implies relative quasi-nonexpansiveness but the converse is
not true. Relatively quasi-nonexpansive mappings are sometimes called hemirelatively
nonexpansive mappings. But we do prefer the former name because in a Hilbert space setting,
relatively quasi-nonexpansive mappings are nothing but quasi-nonexpansive.

In [2], Alber introduced the generalized projection I'lc from E onto C as follows:

[ (x) = argming(y,x) Vx €E. (1.4)
yeC .

If E is a Hilbert space, then ¢(y,x) = |ly — x||* and ITc becomes the metric projection of E
onto C. Alber’s generalized projection is an example of relatively nonexpansive mappings.
For more example, see [1, 8].

In 2004, Masushita and Takahashi [1, 6] also proved weak and strong convergence
theorems for finding a fixed point of a single relatively nonexpansive mapping. Several
iterative methods, as a generalization of [1, 6], for finding a common fixed point of the family
of relatively nonexpansive mappings have been further studied in [7, 9-14].
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Recently, a problem of finding a common element of the set of solutions of an
equilibrium problem and the set of fixed points of a relatively nonexpansive mapping is
studied by Takahashi and Zembayashi in [15, 16]. The purpose of this paper is to introduce
anew iterative scheme which unifies several ones studied by many authors and to deduce the
corresponding convergence theorems under the weaker assumptions. More precisely, many
restrictions as were the case in other papers are dropped away.

First, we start with some preliminaries which will be used throughout the paper.

Lemma 1.1 (see [7, Lemma 2.5]). Let C be a nonempty closed convex subset of a strictly convex
and smooth Banach space E and let T be a relatively quasi-nonexpansive mapping from C into itself.
Then F(T) is closed and convex.

Lemma 1.2 (see [17, Proposition 5]). Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space E. Then

¢ (x,Tcy) + ¢(Tcy, y) < ¢(x, y) (1.5)

forallx e Candy € E.

Lemma 1.3 (see [17]). Let E be a smooth and uniformly convex Banach space and let v > 0. Then
there exists a strictly increasing, continuous, and convex function h : [0,2r] — Rsuch that h(0) =0
and

h(llx-yl|) < ¢(xy) (1.6)

orallx,y € B, ={z€ E:|z| <r}.
Y

Lemma 1.4 (see [17, Proposition 2]). Let E be a smooth and uniformly convex Banach space and let
{xn} and {y,} be sequences of E such that either {x,} or {y,} is bounded. If limy,_, ¢ (xn, yn) =0,
then limy, _, »||x, — vl = 0.

Lemma 1.5 (see [2]). Let C be a nonempty closed convex subset of a smooth, strictly convex, and
reflexive Banach space E, let x € E, and let z € C. Then

z=Iex <= (y—-z,Jx-Jz) <0, VYyeC. (1.7)

Lemma 1.6 (see [18]). Let E be a uniformly convex Banach space and let v > 0. Then there exists a
strictly increasing, continuous, and convex function g : [0,2r] — R such that g(0) = 0 and

[ex + (1= Oy|* < tlxl? + A - Hly]|* - 1 - g (lx - y) (1.8)

forallx,y € By and t € [0,1].

We next prove the following three lemmas which are very useful for our main results.
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Lemma 1.7. Let Let C be a closed convex subset of a smooth Banach space E. Let T be a relatively
quasi-nonexpansive mapping from E into E and let {S; )Y, be a family of relatively quasi-nonexpansive

mappings from C into itself such that F(T) NN\, F(S;) #0. The mapping U : C — E is defined by

N
Ux =T] "> wi(ai]x + (1 - a;)]Six) (1.9)
i=1

for all x € C and {w;},{a;} € [0,1],i = 1,2,...,N such that Y, w; = 1. If x € Cand z €
F(T) nNY, F(S;), then

P(z,Ux) < p(z,x). (1.10)

Proof. The proof of this lemma can be extracted from that of Lemma 1.8; so it is omitted. O
If E has a stronger assumption, we have the following lemma.

Lemma 1.8. Let C be a closed convex subset of a uniformly smooth Banach space E. Let r > 0.
Then, there exists a strictly increasing, continuous, and convex function g* : [0,6r] — R such that
3% (0) = 0 and for each relatively quasi-nonexpansive mapping T : E — E and each finite family of

relatively quasi-nonexpansive mappings {S;}~, : C — C such that F(T) N N\Y, F(S;) #0,

N
Dwiai(l-a)g*(lJz - JSizll) < p(u,2) - p(u,Uz) (L11)

i=1

forallze CNB,andu e F(T)N nfﬁl F(S;) N B,, where

N
Ux =T] " Y wi(aiJx + (1 - a;) ] Sixx) (1.12)

i=1

x € Cand {w;}, {a;} € [0,1],i=1,2,..., N such that ¥, w; = 1.

Proof. Let r > 0. From Lemma 1.6 and E* is uniformly convex, then there exists a strictly
increasing, continuous, and convex function g* : [0,6r] — R such that ¢*(0) = 0 and

lltx* + (1 =ty ||> < x|+ A= D)]|y* P -t - g (|| - v*|) (1.13)
forall x*,y* € {z* € E* : ||z*|| < 3r}and t € [0,1]. LetT : E — E and {Si}ﬁl :C = C
be relatively quasi-nonexpansive for all i = 1,2,..., N such that F(T) n Y, F(S;) #9. For

z€ Cn B, and u € F(T) nNY, F(S;) N B,. It follows that

(Il = 1Sizl1)* < p(w, Siz) < P(u, z) < (lull + |12])* < (2r)* (1.14)
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and hence [|S;z|| < 3r. Consequently, fori=1,2,..., N,
laijz + (1 - a)JSizl* < aill Jz|* + (1 - a) [ JSiz|* - (1 - a)g" (1] z = JSizl)).  (1.15)

Then

pu,Uz) < ¢ <u, ]71§:wi(ai]2 +(1- ai)]5i2)>

i=1

N N 2
= Jlul® - 2<u, > wi(aiJz+ (1- di)]5i2)> + [ D wi@ijz+ (1 - )] Siz)
i=1 i=1
N
< Zwi<”u”2 ~ 2w, aiJz+ (1 -ai)JSiz) + [lai]z + (1 - di)]5i2||2>
i=1
ol 1.16
< o (Il =2 a0z + (1~ ) ]Si2) + all 217 + (1 - ) | SizlP (1o
i=1
- a(1-a)g* (12~ JSizl))
N
= Dwi(aip(u,z) + (1 - @) p(u, Siz) - ai(1 - i) g*(lJz = JSizl)))
i=1
N
<P(u,z) - Zwiai(l —a;) g (IlJz - JSizl).
i-1
Thus
N
D wiai(1-a)g*(|]z - JSizll) < ¢(u, z) - p(u, Uz). (1.17)
p
O

Lemma 1.9. Let C be a closed convex subset of a uniformly smooth and strictly convex Banach
space E. Let T be a relatively quasi-nonexpansive mapping from E into E and let {S;}~, be a family

of relatively quasi-nonexpansive mappings from C into itself such that F(T) n N\, F(S;) #. The
mapping U : C — E is defined by

N
Ux =T] " Y wi(ai]x + (1 - a;)] Sixx) (1.18)
i=1
forall x € C and {w;}, {a;} € (0,1),i=1,2,..., N such that zfﬁl w; = 1. Then, the following hold:

(1) FU) = F(T) NN, F(S)),

(2) U is relatively quasi-nonexpansive.
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Proof. (1) Clearly, F(T) N nfﬁl F(S;) ¢ F(U). We want to show the reverse inclusion. Let z €
F(U) and u € F(T) nX, F(S;). Choose

r = max{llull, |zl 1S1zll, S22, - - ., |Smzll}- (1.19)

From Lemma 1.8, we have
N
> wiai(1-a)g*(|Jz - JSiz|)) = 0. (1.20)
i1

From wja;(1 - a;) >0foralli=1,2,..., N and by the properties of g*, we have
Jz=]Siz (1.21)

foralli=1,2,...,N. From J is one to one, we have

z=S;z (1.22)
foralli=1,2,...,N. Consider
N
z=Uz=T]" Y wiaiJz+(1-a))]S;z) =Tz. (1.23)
i=1
Thus z € F(T) nNY, F(S)).
(2) It follows directly from the above discussion. O

2. Weak Convergence Theorem

Theorem 2.1. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let {T,,};21 : E — C be a family of relatively quasi-nonexpansive mappings and let

{Si)X, : C — C bea family of relatively quasi-nonexpansive mappings such that F := N2, F(T,) N
NY, F(S;) #0. Let the sequence {x,} be generated by x; € C,

N
Xn+l = Tn]_lzwn,i(an,i]xn + (1 - an,i)jsixn) (2-1)
i1

forany n € N, {wy;}, {an;} C [0,1] foralln e N, i =1,2,..., N such that Zﬁl wni = 1 for all
n € N. Then {I1px,} converges strongly to z € F, where I'1f is the generalized projection of C onto F.
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Proof. Letu € N2, F(T,) NNY, F(S;). Put

N
Uy =Tu] ' D wni(@ni] + (1 - ani)JS). (2.2)
i=1

From Lemma 1.7, we have
¢(u, xp11) = ¢(u, Upxy) < P(u, xp). (2.3)

Therefore lim,,_, ¢ (u, x,) exists. This implies that {$p(u, x,)}, {x,} and {Six,} are bounded
foralli=1,2,...,N.
Let y, = Ilpx,. From (2.3) and m € N, we have

¢ (Yn Xnim) < P(Yn, Xn)- (2.4)
Consequently,
& (Yns Ynam) + D Ynems Xnem) < QYo Xnem) < P (Y, Xn)- (2.5)
In particular,
¢ (Yne1, Xnir) < P(Yns Xn)- (2.6)

This implies that lim,, _, . (Y4, x,) exists. This together with the boundedness of {x,} gives
r = sup,ylly.ll < oo. Using Lemma 1.3, there exists a strictly increasing, continuous, and
convex function h : [0,2r] — R such that #(0) = 0 and

h(”yn - yn+m”) < ¢(yn/ yn+m) < (i)(yn/ xn) - ¢(yn+mr xn+m)- (2-7)

Since {¢(yn, xn)} is a convergent sequence, it follows from the properties of g that {y,} is a
Cauchy sequence. Since F is closed, there exists z € F such that y,, — z. O

We first establish weak convergence theorem for finding a common fixed point of
a countable family of relatively quasi-nonexpansive mappings. Recall that, for a family of
mappings {T,},; : C — E with "2, F(T,,) #0, we say that {T,,} satisfies the NST-condition
[19] if for each bounded sequence {z,} in C,

lim ||z, — Tyzn|| = 0 implies wy,{z,} C ﬂF(Tn), (2.8)
n—e n=1

where wy, {z,} denotes the set of all weak subsequential limits of a sequence {z,}.
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Theorem 2.2. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let {T,};—, : E — C be a family of relatively quasi-nonexpansive mappings
satisfying NST-condition and let {S;)Y, : C — C be a family of relatively nonexpansive mappings
such that F := ;2 F(Ty) N ﬂf\:fl F(Si) # 0 and suppose that

¢(u, Tpyx) + P(Tpx, x) < P(u, x) (2.9)

forallu e (;2; F(T,), n € Nand x € E. Let the sequence {x,} be generated by x; € C,

N
Xn+l = Tn]_lzwn,i(“n,i]xn + (1 - “n,i)]sixn) (2-10)
i=1

forany n € N, {wn;}, {an;) € [0,1] foralln € N, i =1,2,...,N such that XN, w,; = 1 for all
n e N, liminf, , ,wyitni(1—a,;) >0foralli=1,2,...,N.If ] is weakly sequentially continuous,
then {x,} converges weakly to z € F, where z = limy, _, ,xITrx,.

Proof. Let u € F. From Theorem 2.1, lim,,_, ,¢(u, x,,) exists and hence {x,} and {S;x,} are
bounded foralli=1,2,...,N. Let

r = sup{|lxall, [S12al, [IS2xnll, - -, ISnxall}- (2.11)

neN

By Lemma 1.8, there exists a strictly increasing, continuous, and convex function g*
[0,2r] — R such that g*(0) =0 and

N
an,ian,i(l - “n,i)g*(”]xn - ]Sian) < ¢(u/ xn) - d)(u, xn+1)- (2~12)

i=1

In particular, foralli=1,2,..., N,

Wyt i (1= i) g (1] = JSixnll) < (1, x) — (14, Xp41). (2.13)
Hence,
an,i“n,i(l - an,i)g*(”]xn - ]Sixn”) < (214)
n=1

foralli = 1,2,...,N. Since liminf,_, ,wy;a,;(1 — ay;) > 0 for alli = 1,2...,N and the
properties of g, we have

nlglgolljxn = JSixn|| =0 (2.15)
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foralli =1,2...,N. Since J!is uniformly norm-to-norm continuous on bounded sets, we
have

Tim [lxy = Sixa]l = 0 (2.16)

foralli=1,2...,N.Since {x,} is bounded, there exists a subsequence {x,, } of {x,} such that
Xn, — z € C. Since S; is relatively nonexpansive, z € F(S;) = F(S;) foralli=1,2...,N.
We show that z € 2, F(T,). Let

N
Yn = ]_1zwn,i(an,i]xn + (1 - an,i)]Sixn)- (2-17)

i=1

We note from (2.15) that

N
< S wni(1 = an)|JSixtn = Jxal — 0. (2.18)
i=1

N
D Wni(niJXn + (1= 1) JSixn) = Jxn

i=1

Since J~! is uniformly norm-to-norm continuous on bounded sets, it follows that

N
lim ”yn - xn” = lim H]_l <an,i(“n,i]xn +(1- ‘Xn,i)]sixn)> - ]_1]xn =0. (2.19)

i=1

Moreover, by (2.9) and the existence of lim,, _, .¢ (1, x,,), we have
¢(Tnyn/ ]/n) S (,b (ur ]/n) - (,b (u/ Tnyn)
N
= (;b <u/ ]_1an,i(an,i]xn + (1 - an,i)]sixn)> - (i)(u/ xn+1) (220)
i=1
< p(u, xn) = P(u, xp41) — 0.

It follows from Lemma 1.4 that lim,,_, || Ty — ¥xl|| = 0. From (2.19) and x,, — z, we have
Yn, — z. Since {T,,} satisfies NST-condition, we have z € ;>; F(T,). Hence z € F.
Let z,, = I1fx,. From Lemma 1.5 and z € F, we have

(zu, = 2, JXn, = J2n,) 2 0. (2.21)

From Theorem 2.1, we know that z, — z' € F. Since | is weakly sequentially continuous, we
have

(2 —z,Jz-Jz') >0. (2.22)
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Moreover, since | is monotone,
(2 —z,Jz-Jz') <0. (2.23)
Then

(2 —z,Jz-Jz') =0. (2.24)

Since E is strictly convex, z' = z. This implies that wy{x,} = {z'} and hence x, — z' =
lim,, _, I Tpxy,. O

We next apply our result for finding a common element of a fixed point set of
a relatively nonexpansive mapping and the solution set of an equilibrium problem. This
problem is extensively studied in [11, 14-16]. Let C be a subset of a Banach space E and
let f : CxC — Rbe abifunction. The equilibrium problem for a bifunction f is to find x € C
such that f(x,y) > 0 for all y € C. The set of solutions above is denoted by EP(f), that is

x € EP(f) iff f(x,y)>0VyeC. (2.25)

To solve the equilibrium problem, we usually assume that a bifunction f satisfies the
following conditions (C is closed and convex):

(Al) f(x,x) =0forallx € C;
(A2) f is monotone, thatis, f(x,y) + f(y,x) <0, for all x,y € C;
(A3) forall x,y,z € C, limsup,  f(tz+ (1 - t)x, y) < f(x,y);
(A4) forall x € C, f(x,-) is convex and lower semicontinuous.
The following lemma gives a characterization of a solution of an equilibrium problem.

Lemma 2.3. Let C be a nonempty closed convex subset of a Banach space E. Let f be a bifunction from
C x C — Rosatisfying (A1)—(A4). Suppose that p € C. Then p € EP(f) if and only if f(y,p) < 0 for
ally € C.

Proof. Letp € EP(f), then f(p,y) > 0forall y € C. From (A2), we get that f(y,p) < -f(p,y) <
Oforally € C.
Conversely, assume that f(y,p) <0forally € C. Forany y € C, let

xy=ty+(1-t)p, forte (0,1]. (2.26)
Then f(x¢,p) <0 and hence

0=fx,x) <tf(xp,y)+A—-t)f(x,p) <tf(x,y). (2.27)
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So f(x¢,y) >0forall t € (0,1]. From (A3), we have

0< lin:l%up ftty+1-tp,y) < f(py) VyeC (2.28)

Hence p € EP(f). O
Takahashi and Zembayashi proved the following important result.

Lemma 2.4 (see [15, Lemma 2.8]). Let C be a nonempty closed convex subset of a uniformly smooth,
strictly convex and reflexive Banach space E. Let f be a bifunction from C x C — R satisfying (A1)-
(A4). For r > 0 and x € E, define a mapping T, : E — C as follows:

T,(x) = {zeC:f(z,y) + %(y—z,]z—]x) 20VyEC} (2.29)

forall x € E. Then, the following hold:

(1) T, is single-valued;

(2) T, is a firmly nonexpansive-type mapping [20], that is, for all x,y € E

(Trx-Tyy, JT,x - JT,y) < (T,x - Ty, Jx - Jy); (2.30)

(8) F(T) = EP(f);
(4) EP(f) is closed and convex.
We now deduce Takahashi and Zembayashi's recent result from Theorem 2.2.

Corollary 2.5 (see [15, Theorem 4.1]). Let C be a nonempty closed convex subset of a uniformly
smooth and uniformly convex Banach space E. Let f be a bifunction from C x C to R satisfying (A1)-
(A4) and let S be a relatively nonexpansive mapping from C into itself such that F(S) N EP(f) #0.
Let the sequence {x,} be generated by u, € E,

x, € C such that f(x,,y) + l(y —Xp, JXp— Jun,) >0 Yy eC,
Tn (2.31)

Ups1 = ]_1 (anJxn + (1 - an)]Sxy)

for every n € N, {a,} C [0,1] satisfying liminf, _, (1 — ay) > 0 and {r,} C [a, o) for some
a > 0. If ] is weakly sequentially continuous, then {x,} converges weakly to z € Ips)nep(s), where
z = limy, ., oo [Tr(s)nEP(f) X01-
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Proof. Put T, = T,, where T, is defined by Lemma 2.4. Then N, F(T,) = EP(f). By
reindexing the sequences {x,} and {u,} of this iteration, we can apply Theorem 2.2 by
showing that the family {T},} satisfies the condition (2.9) and NST-condition. It is proved
in [15, Lemma 2.9] that

¢(u, Tyx) + P(Tux,x) < Pp(u,x) Vx€E, ue ﬁF(Tn). (2.32)

n=1

To see that {T,} satisfies NST-condition, let {z,} be a bounded sequence in C such that
lim, — o||zn — Tuzall = 0 and p € ww{z,}. Suppose that there exists a subsequence {z,, } of
{zu} such that z,, — p. Then T, z,, — p € C. Since J is uniformly continuous on bounded
sets and r,,, > a, we have

1
lim =]z, = J T, zn, || = 0- (2.33)

— oy,

From the definition of Ty, , we have
1
f(Twezn, y) + T—(y = TweZne, JTny Zn, — J2n ) 20 Vy € C. (2.34)
Nic

Since
f(y' Tﬂkzﬂk) < _f(T"kznk’ y)
1
S a <y - Tnkznk/ ]Tnkznk - ]znk> (235)

1
S ”y - Tnank ” ”]Tnkznk - ]znk ”
Ty
and f is lower semicontinuous and convex in the second variable, we have
f(y,p) <limint f (y, Ty zy,) < 0. (2.36)

Thus f(y,p) < 0 forall y € C. From Lemma 2.3, we have p € EP(f). Then {T,} satisfies the
NST-condition. From Theorem 2.2 where N =1, {x, } converges weakly to z € F(T,,)NF(S) =
EP(f) N F(S), where z = lim,, _, oI Tgp(f)nF(s) Xn- O]

Using the same proof as above, we have the following result.
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Corollary 2.6 (see [11, Theorem 3.5]). Let C be a nonempty and closed convex subset of a uniformly
convex and uniformly smooth Banach space E. Let f be a bifunction from C x C to R satisfies (A1)-
(A4) and let T,S : C — C be two relatively nonexpansive mappings such that F := F(T) N F(S) N
EP(f)#40. Let the sequence {x,} be generated by the following manner:

xy € C such that f(x,,y) + l(y = Xp, JXn— Jun,) >0 Yy eC,
n (2.37)

Unps1 = ]_1 (an]xn + ﬂn]Txn + Ynfsxn) Vn>1.

Assume that {a,}, {Bn}, and {y,} are three sequences in [0, 1] satisfying the following restrictions:

(a) an"‘ﬂn"‘}/n =1
(b) iminf, _, ,a,p, > 0, iminf, , ,a,y, > 0;

(c) {ra} C [a, o) for some a > 0.

If ] is weakly sequentially continuous, then {x,} converges weakly to z € F, where z = limy,, _, ,,ITrx,,.
The following result also follows from Theorem 2.2.

Corollary 2.7 (see [9, Theorem 5.3]). Let E be a uniformly smooth and uniformly convex Banach
space and let C be a nonempty closed convex subset of E. Let {S;}Y, be a finite family of relatively
nonexpansive mappings from C into itself such that F = (X, F(S;) is a nonempty and let {a,; :
nieN, 1<i<N}cl[01]and {wy;:nieN, 1<i< N} CIl0,1] besequences such that
liminf, . ,a,i(1 — a,;) > 0and liminf, _, ,w,; >0 forallie {1,2,..., N} and Zgl wni =1 for
all n € N. Let U,, be a sequence of mappings defined by

N
Upx = TIc] 7' D wni@ni] x + (1 - ) ] Six) (2.38)
i=1
forall x € C and let the sequence {x,} be generated by x; = x € C and

Xp1 =Upx, (m=1,2,...). (2.39)

Then the following hold:

(1) the sequence {x,} is bounded and each weak subsequential limit of {x,} belongs to
NELF(S);

(2) if the duality mapping J from E into E* is weakly sequentially continuous, then {x,}
converges weakly to the strong limit of {I1px,}.

Proof. Since Ilc is relatively nonexpansive, the family {Ilc} satisfies the NST-condition.
Moreover, F(I'l¢) = C and

¢(x,Icy) + p(Tcy,y) < Pp(x,y) YyeE, xeC. (2.40)

Thus the conclusions of this corollary follow. O
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3. Strong Convergence Theorem

In this section, we prove strong convergence of an iterative sequence generated by the hybrid
method in mathematical programming. We start with the following useful common tools.

Lemma 3.1. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let {T,}%2, : E — E and {S;})Y, : C — C be families of relatively quasi-

n=1

nonexpansive mappings such that F == (\,—; F(T,) N ﬂf\:jl F(S;)#0, and
¢(u, Tx) + (Tux, x) < Pp(u, x) 3.1)

forallu e ;2 F(T,), n € Nand x € E. Let {x,} C C be such that {x,} and {S;x,} are bounded for
alli=1,2,...,N,and

N
Yn = ]_1an,i(an,i]xn + (1 - an,i)]sixn)/
i=1 (3.2)

Un = 1ulYn,
where {wy;}, {ay;} € [0,1] foralln € Nand i = 1,2,..., N satisfy Zgl wyi =1foralln €N,

liminf,  ,w,i(1—a,;) >0 foralli=1,2,...,N and lim,_, o,||x, — u,|| = 0. Then the following
statements hold:

(1) limy, - o (P (1, x,) — p(u, uy)) =0 forallu e C,

(2) lirrlnaoo””n - yn” = 0/

(B) ww{xn} = wwlyn},

(4) if limy, -, oo || Xps1 — x4|| = 0, then limy, _, oo ||xn, — Sixy|| =0 foralli=1,2,..., N,
)

(5) ifx, — z, thenu, — zand y, — z.

Proof. (1) Since lim,_,o||x, — uy|| = 0 and J is uniformly norm-to-norm continuous on
bounded sets,

nlgl}o”]xn — Juu| = 0. (3.3)
We note here that {u,} is also bounded. For any u € C, we have

|pCat, ) = o, )| = [Iall? = latall® = 224, it = J)
< [l = lll| + 20 a, Tt = J00)] (3.4)

< 2en = unl[(lxnll + [lenl) + 20|l Jtan = J 20|l — O.

(2) Let u € F. Using (3.1) and the relative quasi-nonexpansiveness of each T, we have

S (n, Yn) = (TuYn, Yn) < P10, yn) — d (1, Tuyn) < (1, x,) — (1, 11,) — 0. (3.5)
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By Lemma 1.4 and the boundedness of {u,}, we have

1im [t = ya| = 0. (3.6)
(3) Since
”xn - yn” < ||xn - un” + ”un - yn” = ”xn - un” + ”Tn]/n - ]/n” —0, (37)

we have wy {x,} = W {yn}.

(4) Assume that lim,_,o||xz41 — X4|| = 0. From lim,_,||x, — ya|| = 0, we get that
limy, —, || X241 — Y|l = 0. Since ] is uniformly norm-to-norm continuous on bounded sets, we
have

nliirgo”]xnﬂ - ]xn” = _ﬂlijlgo”]xnﬂ - ]yn” =0. (38)
So,

N
I xne1 = Tl = |[JXne1 = D wni(aniJxn + (1 = @) J Six)
P

(3.9)

N
> Z(wn,i(l - “n,i)”]xnﬂ - JSixn| - wn,ian,i”]xnﬂ = Jxal)).
i=1

From (3.8), we have

N N
an,i(l - ‘xn,i)”]an - ]Sixn” < ||]xn+1 - ]yn ” + an,ian,i”]xnﬂ - ]xn” — 0. (310)

i=1 i=1
It follows from liminf, , (1 — a,;) > 0foralli=1,2,..., N that

Tim (|1 = JSizall = 0 (3.11)

foralli=1,2,...,N.Since J7!is uniformly norm-to-norm continuous on bounded sets and
lim, o ||xn11 — x| = 0, we have

lim [|x, — Sixn| = 0 (3.12)

foralli=1,2,...,N, as desired.
(5) Assume that x, — z. From the assumption and (2), we have

Jim [l — ]| = Tim ||y = yu| = 0. (3.13)

Hence u, — zandy, — z. O
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Lemma 3.2 (see [21, Lemma 2.4]). Let F be a closed convex subset of a strictly convex, smooth and
reflexive Banach space E satisfying Kadec-Klee property. Let x € E and {x,} be a sequence in E such
that wy {x,} C F and ¢(x,, x) < ¢(Ilpx, x) for all n € N. Then x, — z = I1fx.

Recall that a Banach space E satisfies Kadec—Klee property if whenever {u,} is a
sequence in E with x,, — x and ||x,|| — ||x||, it follows that x,, — x.

3.1. The CQ-Method

Theorem 3.3. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly convex
Banach space E. Let {T, }2, : E — E be a family of relatively quasi-nonexpansive mappings satisfying
NST-condition and let {S;}N, : C — C be a family of relatively nonexpansive mappings such that
Fi= (V21 F(T) NN F(S) #0, and

¢(u, Tpyx) + P(Tnx, x) < P(u, x) (3.14)
forallu e ;24 F(Ty), n € Nand x € E. Let the sequence {x,} be generated by
x1=x€C,

N
Up = n]ilzwn,i(“n,i]xn + (1 - an,i)]sixn)/
i=1

(3.15)
Ch={z€C:P(z,us) <P(z,xn)},

Qn={zeC:(xp—2z Jx—]Jx,) >0},
Xn41 =1lc,n0,x
foreveryn € N, {wy;}, {an:} C[0,1] foralln e Nandi=1,2,...,N satisfying ijl wni =1 for
alln e N, liminf, _, w,i(1-ay;) >0foralli=1,2,...,N. Then {x,} converges strongly to I'lrx.
Proof. The proof is broken into 4 steps.

Step 1 ({x,} is well defined). First, we show that C,, N Q,, is closed and convex. Clearly, Q,, is
closed and convex. Since

Pz, un) < ¢(2,%0) & llal® = |xall* = 2(2, Jutn = Jxn) <0, (3.16)

then C,, is closed and convex. Thus C,, N Q,, is closed and convex.
We next show that F ¢ C, N Q,. Let u € F. Then, from Lemma 1.7,

¢(u,un) < Pu, x,). (3.17)

Thus u € C,,. Hence F ¢ C,, for all n € N.
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Next, we show by induction that F ¢ C,, N Q, for all n € N. Since Q; = C, we have

FcCinQ. (3.18)

Suppose that F C Cx N Qy for some k € N. From xy;1 = Ilc,ng, x € Cx N Qi and the definition
of the generalized projection, we have

(X1 =2, Jx = Jxp41) 20 (3.19)
forall z € C, N Qk. From F € Cx N Qy,
(Xk1 —p, Jx = Jxp1) 20 (3.20)

for all p € F. Hence F C Qi.1, and we also have F C Ci1 N Qgs1. So, wehave 9#F c C, N Q,
for all n € N and hence the sequence {x,} is well defined.

Step 2 (wwi{x,} C ﬂf-\zjl F(5;)). From the definition of Q,, we have x, = Il x. Using
Lemma 1.2, we get

P(xn, x) = (I, x,x) < P(u,x) — p(u, Iy, x) < P(u,x) (3.21)
for all u € Q,,. In particular, since x,+1 € Qn and [Irx € F C Q,,

¢(xnl x) S li)(‘xn-%—‘l/ x)/ (322)
P (xn, x) < p(IFx, x) (3.23)

for all n € N. This implies that lim,, _, ,$(x,, x) exists and {x,} is bounded. Moreover, from
(3.21) and x,41 € Qy,

P(xn, x) < P(xXni1, X) = P(Xns1, Xn)- (3.24)
Hence
P(xns1, ) < P(xXns1,x) = P(xn, x) — 0. (3.25)
It follows from x,,.1 = Ilc,ng,x € C, that
P (xns1,un) < P(xn41,%0) — 0. (3.26)
From (3.25), (3.26), and Lemma 1.4, we have

Hm [l = x| = 0= 1 [loener = w4]|- (3.27)
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So limy, —, o || — ty|| = 0. Using Lemma 3.1(4), we get that
Jim [lxy = Sixa]l = 0 (3.28)

foralli=1,2,...,N. Since each S; is relatively nonexpansive,
wolxn} C(E(Si) =(F(Sh). (3.29)

Step 3 (wwl{xn} C (hey F(Ty)). Let v, = J! Zf\zfl wyi(ayi]x, + (1 — a,;)JSix,). From
Lemma 3.1(2), we have

nlgI;O”Tnyn - yn” =0, (330)

and wy, {x,} = wy{ya}. It follows from NST-condition that wq, { X, } = wew{yn} C Npeq F(Th).

Step 4 (x, — Ilrx). From Steps 2 and 3, we have wy,{x,} C F. The conclusion follows by
Lemma 3.2 and (3.23). O

We apply Theorem 3.3 and the proof of Corollary 2.5 and then obtain the following
result.

Corollary 3.4. Let C, E, f, S be as in Corollary 2.5. Let the sequence {x,} be generated by

x1=x€C,
Yn = ]_1(“n]xn + (1 -au)JSxu),

1
u, € C such that f(u,,vy)+ —(y —u,, Ju,— Jy,) >0 VyeC,
funy) + —{y Yn) y (331

Co={z€C:P(z,un) <P(z,xn)},
Qn={zeC:(xp—2z Jx-]x,) >0},

Xns1 = Ic,n0, %

for every n € N, {a,,} C [0,1] satisfying limsup, ,_a, < 1and {r,} C [a, o] for some a > 0.
Then, {x,} converges strongly to I1ps)nep(r)x, where Ip(s)nep(f) is the generalized projection of E
onto F(S) NEP(f).

Remark 3.5. Corollary 3.4 improves the restriction on {a,} of [15, Theorem 3.1]. In fact, it is
assumed in [15, Theorem 3.1] that liminf, _, ,a, (1 — a;) > 0.
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3.2. The Monotone CQ-Method

Let C be a closed subset of a Banach space E. Recall that a mapping T : C — Cis closed if for
each {x,}inC,if x, — xand Tx, — y, then Tx = y. A family of mappings {T,} : C — E
with (2, F(T,) # 0 is said to satisfy the (*)-condition if for each bounded sequence {z,} in C,

lim ||z, — Tyzul| =0, z, — zimply z € ﬂF(Tn). (3.32)

n=1

Remark 3.6. (1) If {T,,} satisfies NST-condition, then {T,} satisfies (*)-condition.
(2) If T, =T and T is closed, then {T,} satisfies (*)-condition.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly smooth and uniformly
convex Banach space E. Let {T,};-, : E — E be a family of relatively quasi-nonexpansive mappings
satisfying ()-condition and let {S;}~, : C — C be a family of closed relatively quasi-nonexpansive
mappings such that F := 2, F(T,) NN\, F(S:) #0, and

¢(u, Tyx) + P(Tpx, x) < P(u, x) (3.33)
forallu € ;- F(T,), n € N, and x € E. Let the sequence {x,} be generated by
xo=x€C, Qo =¢C,
N
Up = n]_lzwn,i(“n,i]xn + (1 - ‘Xn,i)]sixn)/
i=1

Co={z€C:¢(z,up) < P(z,x)}, (3.34)
C,= {Z €Cr1NQp: (;b(Z, uy) < ¢(Z/xn)}/
Qn=1{z€Cr1NQui1:{(xn—2Jx~Jx,) 20},

Xns1 = Ic,n0, %
for every n € N, {wy;i}, (i) € [0,1] satisfying SN wy; = 1 and liminf,,_, e, (1 - a,,;) > 0 for
alli=1,2,...,N. Then {x,} converges strongly to I'lrx.
Proof.

Step 1 ({x,} is well defined). This step is almost the same as Step 1 of the proof of
Theorem 3.3, so it is omitted.

Step 2 ({x,} is a Cauchy sequence in C). We can follow the proof of Theorem 3.3 and conclude
that

lim ¢ (x, x) (3.35)

n
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exists. Moreover, as X.m € Q, for all n,m and x,, = I, x,

¢(xn+m/ xn) = (i)(xnﬂnr Han)
< P(Xnem, x) = (j)(Han, x) (3.36)

= P(Xnam, X) = P (xn, ).

Since {x,} is bounded, it follows from Lemma 1.3 that there exists a strictly increasing,
continuous, and convex function h such that #(0) = 0 and

h(”xn+m - xn”) < ¢(xn+m/ x) - (,b(xnr x)- (3.37)

Since lim,, _, (x5, x) exists, we have that {x,} is a Cauchy sequence. Therefore, x, — z for
some z € C.

Step 3 (z € ﬂf\:ll F(Si)). Since xp41 = Ilc,ng,x € C,, we have
@ (xps1, Un) < P(Xps1, %) — P(z,2) =0. (3.38)
By Lemma 1.4 and the boundedness of {x,}, we have

nli_{r;o”xnﬂ —uy| =0. (3.39)

So, we have limy, _, ,||x, — #,|| = 0. Using Lemma 3.1(4), we get that

Tim [lx, = Sixa]| = 0 (3.40)

foralli=1,2,...,N.Since each S; is closed, z € ﬂf\ll F(S;).

Step 4 (z € N2, F(Ty)). Lety, = J! Zﬁl waianiJxy + (1 - ay;)JSix,). From Lemma 3.1(2),
we have limy, ., oo ||[yn—Tuyn|| = 0and y, — z. It follows from (x)-condition that z € 32, F(T,).

Step 5 (x, — Ilrx). From Steps 3 and 4, we have wy,{x,} C F. The conclusion follows by
Lemma 3.2 and (3.23). O

Letting T,, = identity and S; = S, = --- = Sy yield the following result.
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Corollary 3.8 (see [12, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth real Banach space E. Let T : C — C be a closed relatively quasi-
nonexpansive mapping such that F(T)#@. Assume that {a,} is a sequence in [0,1] such that
limsup,,_, a, < 1. Define a sequence {x,} in C by the following algorithm:

xo € C chosen arbitrarily,
Yn = ]71 (anJxn + (1= ay)JTxy),
Cn={z€Co1NQu1:¢(z,yn) < P(z,xa)},

Co={z€C:¢(z,y) < P(z,x0)}, (3.41)
Qn = {Z €Cya an—l : <xn_Z/]x0_]xn> > 0}/
Qo =C,

Xns1 = Ic,ng, Xo-

Then {x,} converges strongly to I )xo.
Letting T,, = identity and N = 2 yield the following result.

Corollary 3.9 (see [13, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly
convex and uniformly smooth real Banach space E. Let T, S be two closed relatively quasi-nonexpansive
mappings from C into itself such that F := F(T) N F(S) #0. Define a sequence {x,} in C be the
following algorithm:

xo € C chosen arbitrarily,
2o = J (B Jxn + B T + B TS,

Yn =T Han] 20+ (1= an)Jzn),
Co={z€C:¢(z 1) < §(z x0)},
Ch={z€CpraiNQu1:9(z,yn) <P(z,xn)},
Qn=1{z€CraNQu1:(xn—z Jxo - Jxn) 20},
Q=G

Xn41 = Ic,nQ, X0

(3.42)

with the conditions: ﬂﬁll), ;2), 513) € [0,1] with ﬁfll) + ﬂf) + ﬂf?) =1and

(1) liminf, B % > 0;
(2) liminf,_, .3 B > 0;
(3)0<a, <a<1forsomeac(0,1).

Then {x,} converges strongly to ITrxy.
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Remark 3.10. Using Theorem 3.7, we can show that the conclusion of Corollary 3.9 remains
true under the more general restrictions on {a,}, { ,(11) 1, 512) }, and { 513) }:

1) ay, S) € [0,1] are arbitrary;

(2) liminf,_ B > 0 and liminf,_, B > 0.

3.3. The Shrinking Projection Method

Theorem 3.11. Let C, E, {T, )7y, {Si }f\zjl be as in Theorem 3.7. Let the sequence {x,} be generated
by
xo € E chosen arbitrarily,
C =¢C,
x1 = I, xo,
N (3.43)
Up = Tn]_lzwn,i(‘xn,i]xn + (1 - ‘Xn,i)]sixn)/

i=1

Cus1 = {Z €Cy:d(z,uy) < (,b(zrxn)}/

X1 =g, X0
foreveryn € N, {wy;}, {a,:} € [0,1] foralln e Nandi=1,2,..., N satisfies Zf\zjl wn,i =1 for all
neN, liminf,_, wni(1 —a,;) >0foralli=1,2,...,N. Then {x,} converges strongly to ITpx.
Proof. The proof is almost the same as the proofs of Theorems 3.3 and 3.7; so it is omitted. [
In particular, applying Theorem 3.11 gives the following result.

Corollary 3.12. Let C, E, f, S be as in Corollary 2.5. Let the sequence {x,} be generated by xy =
x€C,Cy=Cand

Yn = ]_1(“n]xn +(1-ay)JSxy),
1
.€C h that 1 —(y —uy, Ju, — Jy,) >0 VYyeC,
u such that f(u y)+rn<y Un, Jtn = JYn) v (5.4
Cu1 = {Z €Cn:P(z,un) < (IJJ(Z/xn)}/

xn+1 = HCVH.le
for every n € NU {0}, where | is the duality mapping on E. Assume that {a,} C [0,1] satisfies

limsup,_, a, <land {r,} C [a, o) for some a > 0. Then {x,} converges strongly to Irs)nep(f)X,
where T1p(s)nep(f) is the generalized projection of E onto F(S) NEP(f).

Remark 3.13. Corollary 3.12 improves the restriction on {a,} of [16, Theorem 3.1]. In fact, it is
assumed in [16, Theorem 3.1] that liminf, ., ,a, (1 — a;) > 0.
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Corollary 3.14 (see [11, Theorem 3.1]). Let C be a nonempty and closed convex subset of a
uniformly convex and uniformly smooth Banach space E. Let f be a bifunction from C x C to R
satisfying (A1)—(A4) and let T,S : C — C be two closed relatively quasi-nonexpansive mappings
such that F := F(T)NF(S)NEP(f) #0. Let the sequence {x,} be generated by the following manner:

xo € E chosen arbitrarily,
C;=C,
x1 = Ile, xo,
Yn =T (@) xn + Bu Txn + Y] SXu), (3.45)

u, € C such that f(u,,y) + %(y—un,]un -Jyn) 20 VyeC,

Cui = [2€Cu: p(z,un) < P(z,%,) ),

xne1 = 1c

n+l

Assume that {a,}, {Pn}, and {y,} are three sequences in [0, 1] satisfying the restrictions:

(a) an"'pn"'}’n =1;
(b) liminf, _, ,a,f, > 0, liminf, ., ,a,y, > 0;
(c) {rn} C [a, o0) for some a > 0.

Then {x,} converges strongly to TTrxy.

Remark 3.15. The conclusion of Corollary 3.14 remains true under the more general
assumption; that is, we can replace (b) by the following one:

(b") liminf, _, ,,f, > 0 and liminf,_, .}, > 0.
We also deduce the following result.

Corollary 3.16 (see [14, Theorem 3.1]). Let C, E, f, T, S be as in Corollary 3.14. Let the
sequences {xn}, {Yn}, {2}, and {u,} be generated by the following:

X0 € E chosen arbitrarily,
C=¢C,
x1 = e, xo,
=] (6nJxu + (1= 64)] zn),

Zu = J 7 (@] %0 + Pu] Ton + YT Sxn), (3.46)

u, € C such that f(u,,y) + %(y—un,]un —Jza) 20 VyeC,

Cue1 = {2 €Cr: pz,un) < P(2,xn)},

xne1 = 1c

n+1
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Assume that {a,}, {Bn}, and {y,} are three sequences in [0, 1] satisfying the following restrictions:
(a) an"‘ﬂn"‘}/n =1
(b) 0<ay, <1 foralln € NU {0} and limsup, , a,<1;
(c) liminf, , a,p, >0, iminf, ., ,a,y, > 0;

(d) {r.} C [a, o) for some a > 0.

Then {x,} and {u,} converge strongly to ITrxy.

Remark 3.17. The conclusion of Corollary 3.16 remains true under the more general
restrictions; that is, we replace (b) and (c) by the following one:

(b') lim inf, . ofn > 0 and liminf, _, .y, > 0.

Corollary 3.18 (see [10, Theorem 3.1]). Let C be a nonempty closed convex subset of a uniformly

convex and uniformly smooth Banach space E. Let {T;}&, : C — C be a family of relatively

nonexpansive mappings such that F := N\, F(T;) #0 and let xo € E. For C; = C and x; = Tl¢, xo,
define a sequence {x,} of C as follows:

Yn = J (@] xn+ (1 - an) ] 2n),

N
zy= ]! < T + ZﬁfJ”)JTixn>,
i=1

Cus1 = {Z €Cy: ¢(Z,yn) < (,b(zlxn)}/

xn41 = 1c

(3.47)

X0,

n+1

where {a,}, { S)} C [0, 1] satisfies the following restrictions:
(i) 0<a, <1foralln € NU {0} and limsup, ,_a, <1;
() 0<pP <1foralli=1,2,...,N+1, SN Y =1 foralln e NU (0}. If

a eztherhmmfnaw (1) (M) >0foralli=1,2,...,Nor

(a)

b hmnﬂw n = 0and liminf, ., 3, (k1) (1+1) >0foralli#j, k,1=1,2,...,N.
J

then the sequence {x,} converges strongly to Ilrxo.

Remark 3.19. The conclusion of Corollary 3.18 remains true under the more general

restrictions on {a,}, { S) }:

(1) an,ﬁn [0,1] are arbitrary.

(2) liminf,HOO M DS 0foralli=2 ,...,N.
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